
Physica 19D (1986) 334-354 
North-Holland, Amsterdam 

REDOX FRONT PROPAGATION AND BANDING MODALITIES* 

P. ORTOLEVA, G. AUCHMUTY, J. CHADAM, J. HETTMER, E. MERINO, C.H. MOORE 
and E. RIPLEY 
Geo-Chem Research Associates, Inc., 400 E. Third Street, Bloomington, IN 47401, USA 

Received 9 November 1983 
Revised 15 September 1985 

Oxygenated waters flowing through a reduced sandstone cause propagating redox fronts. Mathematical reaction-transport 
models of these fronts studied here show a number of nonlinear phenomena including one-parameter families of constant- 
velocity fronts, decelerating fronts and two types of front instabilities leading to pattern formation. These redox front 
phenomena are examples of nonlinear wave propagation and self-organization. Redox fronts in nature are economically 
important because they can trap accumulations of metallic ores. Furthermore, they are but one example of a wider class of 
water-rock interaction systems rich in nonlinear reaction-transport phenomena. 

Analytical results are presented on conservation law and free boundary methods to study the velocity and profiles of the 
waves. A new model of the Ostwald supersaturation-nucleation-depletion cycle is presented that incorporates features of 
Liesegang banding not predicted by other formulations: these include finite band widths and continuous undulatory as well as 
discrete banding. 

1. Introduction 

Chemical waves have been extensively studied 
in recent years and a variety of interesting phe- 
nomena have been discovered [1-5]. In these stud- 
ies waves are driven by system-wide, sustained 
nonequilibrium conditions. Yet another type of 
driving force for wave propagation exists-an in- 
flux of waters that react with a porous medium 
through which they flow. Our purpose here is to 
demonstrate that this situation can lead to a variety 
of nonlinear wave and pattern phenomena. 

A common geological example of this type is a 
so-called redox roll front depicted in fig. 1. In this 
case water of a given composition flows through a 
porous rock and reacts with it. As the water ad- 
vances it eventually becomes equilibrated with the 
rock. At any given time a moving transition zone 
exists where the altered rock upstream grades into 
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the unaltered rock downstream. The altered zone 
may be termed the water-dominated zone since 
the only minerals that can exist there are those in 
equilibrium with the inlet waters. On the other 
hand the unaltered (downstream) zone may be 
considered the rock dominated zone since the 
waters there are transformed to a composition in 
equilibrium with the original rock minerals after 
passing through the reaction front. We find that in 
this transition zone the nonequilibrium conditions 
can permit instability and the development of 
patterns of deposition. This is expected on quite 
general grounds from the work of Prigogine and 
coworkers [6] who find that instability and pattern 
formation in reaction-transport systems are ex- 
pressed only under non-equilibrium conditions. 

Where meteoric, oxygen-saturated water flows 
through a porous sandstone that contains pyrite 
grains (fig. 1), the transition zone is called a redox 
front [7-9]. The oxygen is consumed in oxidizing 
the pyrite. The redox front at any given time 
separates the zone upflow where the pyrite is 
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Fig. 1. Idealized cross-section through uranium ore roll front, based on refs. 7 and 9. 

oxidatively dissolved out from the zone downflow 
where it is still at its original level. As the water 
continues to flow, the redox front advances down- 
flow. Since many useful metal ions (such as copper, 
molybdenum, selenium, and uranium) form mo- 
bile species under oxidizing conditions but rela- 
tively insoluble minerals in reducing environments, 
these redox fronts can act as traps for these metals 
as low concentration levels in the original rock are 
accumulated at the interface. The greater the 
amount of metals trapped the more slowly the 
front migrates downflow. These accumulations, 
called roll front deposits, are reviewed in refs. 7-9. 
The reducing environment in the unaltered rock is 
due mainly to pyrite and in some cases carbona- 
ceous material (i.e. plant debris in a sandstone). 

In the present study several simple models, sug- 
gested by these geological redox fronts, are set 
forth and analyzed to demonstrate the striking 
variety of nonlinear wave phenomena that these 
systems may support. We find that while some 
systems yield stable steady state front advance- 
ment, others can rigorously be shown to decelerate 
continuously as precipitation of one of the miner- 
als at the front takes place. We also find that some 
systems yield mineral banding while others may 
sustain a one-parameter family of fronts with 
strong selection rules-choosing from among the 
family a single physically realizable one. In other 

systems a discrete multiplicity of fronts or even 
temporally oscillatory or chaotic fronts are possi- 
ble. 

All the models discussed here include diffusion 
of aqueous species, water flow, and dissolution, 
nucleation, and growth of mineral grains. One of 
the striking results obtained is that the propagat- 
ing redox front may leave in its wake a trail of 
banded iron-oxide precipitate. The banding arises 
through a dissolution-transport-nucleation- 
growth feedback, as follows. The oxidation of 
pyrite (iron disulfide, FeS2) releases ferrous ions 
and sulfur-bearing ions. The ferrous ion becomes 
oxidized to ferric ion. The latter then nucleates as 
iron oxide, but only if and where the concentra- 
tion product for iron oxide (hematite or goethite) 
reaches a given value, Q., larger than the equi- 
librium constant Q. Once iron oxide has nucleated 
at a given place and time, it grows. If the growth is 
fast enough, it will, by diffusion, bring the sur- 
rounding aqueous solution below the nucleation 
threshold (though not below saturation), both be- 
hind and ahead of the point of growth. Thus, the 
nucleation threshold, Qn, may not be reached again 
until a point far enough downflow where sufficient 
additional pyrite is oxidized, and enough ferrous 
ion is released but not consumed by the iron oxide 
precipitation. At this point a new iron oxide zone 
nucleates and grows. Later, more bands form 
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farther downflow by the same supersaturation- 
nucleation-depletion cycle. 

In geology such bands are often called Liese- 
gang bands. The above cycle was invoked by 
Ostwald [15] to explain their genesis. The model 
presented here for these bands differs from the 
original formulation of Prager [16]. Unlike the 
Prager theory the formulation presented here al- 
lows for continuous undulatory variations of iron 
oxide and not only discrete bands with precipitate 
free gaps separating them. Also, our formulation 
can describe the finite width of the precipitate- 
bands. Our model allows for bifurcation analysis 
of the transition from steady to undulatory profiles 
of mineral precipitation. 

Patterning in water-rock interaction problems 
may also take on inherently a two-dimensional 
character. The banding as described above could 
give way to spotted patterns, for example. Planar 
water-rock interaction fronts may also undergo 
morphological instability via a transition to scal- 
loped or fingered fronts [14]. The underlying 
feedback arises due to a coupling between flow 
and the mineral dissolution process: mineral dis- 
solution causes increased permeability which in 
turn causes augmented flow and, via an increased 
rate of import of reactive waters, an increased rate 
of dissolution. 

The velocity of a steady water-rock interaction 
front turns out to be independent of the diffusion 
coefficients of aqueous species and the detailed 
form of the reaction rates, while the concentration 
profiles across the front do depend on them. The 
advancement velocity of a variety of redox fronts 
is calculated exactly here by demonstrating the 
existence of a number of constants of steady wave 
motion. These conservation conditions are shown 
to hold even for certain nonplanar fronts. 

In many situations of geological interest trans- 
port is rate limiting for the progress of the mineral 
reactions. In this "fast reaction" limit we show 
how the water-rock interaction front equations 
can be reduced to a free boundary problem. This 
reduction is used to calculate wave profiles for a 
number of simple redox front models. 

For almost a century there has been interest in 
patterns of mineralization (bands, rings, mosaic 
arrays and orbicules) as manifestations of the in- 
teraction of precipitation/dissolution reactions 
and transport [19, 20]. Recent interest in the 
self-organizing properties of reaction-diffusion 
systems [21] has regenerated active work on the 
description and modeling of such phenomena in 
geochemical systems (see refs. 18, 21, 22 for a 
review of phenomena and mathematical modeling 
efforts). The reaction fronts studied herein mani- 
fest much of the wealth of nonlinear phenomena 
found in other reaction-transport models of re- 
cent interest although they show interesting 
mathematical and physical differences from the 
latter. 

2. Decelerating fronts and roll-type deposits 

The imposition of reactive waters on a rock does 
not necessarily lead to a zone of transformation 
that moves at constant velocity, even assuming 
that the flow and the initial rock chemistry are 
constant. In fact in a conspicuous natural instance 
- t he  formation of ore bodies at roll fronts as in 
fig. 1 -  this is not the case. To contrast our later 
results we first examine a case where constant 
velocity solutions do not exist. 

2.1. A simple roll front  deposition model 

Consider the set of reactions 

X + A ~ Y ,  

X + B ~ Z ,  

(2.1) 

(2.2) 

where X, Y and Z are mobile aqueous species and 
A and B are minerals. The detailed form of the 
rate laws for the dissolution reactions, W 1 and W 2, 
will not be needed explicitly for our considerations 
here. 

We now investigate the possible existence of a 
front of constant velocity u for a one-dimensional 
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aquifer. For such a steady front the concentrations 
of all species depend only on the front-fixed coor- 
dinate q~. With this, and letting v denote the 
velocity of the water flowing through the porous 
rock, the reaction-transport equations for X, Y 
and Z may be written 

[ D x X ' + ( u - v ) X - u A - u B ] ' = O ,  (2.3) 

[ D y Y '  + ( u - v ) Y  + uA]' = 0, (2.4) 

[ D z Z '  + ( u -  v )Z  + uB]'  = 0. (2.5) 

Here D x, D v and D z are the diffusion coeffi- 
cients of the indicated species and ..... = d / d ~ .  

The phenomenon of interest involves subjecting 
a rock of given content of minerals A and B to a 
given inlet water chemistry. Sufficiently down- 
stream of the interaction zone, reactions (2.1), 
(2.2) are at equilibrium. To ensure this, we must 
subject the solutions of (2.3)-(2.5) to the following 
boundary conditions: 

A, B~':~_~O, A , p ~ A  o, B ~ B  o, (2.6) 

X~"L'z'o~XM, Y, Z~'2"='_ooO, (2.7) 

Y(oo) = KX(oo), Z(oo) = QX(oo), 
(2.8) 

= 

Conditions (2.8) imply that downstream of the A, 
B dissolution front Y and Z are at equilibrium for 
their respective minerals, K and Q being equi- 
librium constants. A 0 and B o are the values of A 
and B far ahead of the front and we assume the 
inlet water has no Y or Z. 

2.2. Non-existence of constant velocity fronts 

Eqs. (2.3)-(2.5) indicate the existence of three 
constants of the front motion (i.e. the three quanti- 
ties in brackets). Using the conditions at I~01 - - '  oo 
to evaluate these constants we get the following 
three algebraic equations: 

(u - v)Xoo - u A o -  uBo= (u - v ) X  M, (2.9) 

(u - v )KX~ + uA o = 0, (2.10) 

( u -  o ) Q X ~  + uS o = O. (2.11) 

This is a system of three equations for the two 
unknowns Xoo and u. Clearly (2.9)-(2.11) is an 
over-determined problem, and hence constant 
velocity solutions do not exist except for very 
special choices of parameters. This "degeneracy 
condition" follows directly by solving (2.10, 2.11) 
for u/Xo~ and equating the results to find 

A o / K  = Bo/Q. (2.12) 

If K =  Q then we see that this implies that 
A o = B o. When this condition is attained a balance 
is struck between the A and B front motion so that 
the advancement is coordinated and steady. 

2.3. Formation of a roll front type deposit 

What is the evolution of the system when (2.12) 
is not satisfied? To address this we have carried 
out some numerical simulations of the model (2.1) 
(2.2). We assumed the rates of mineral dissolution 
W 1 and W 2 (moles/rock volume-time) are of the 
mass-action form in the aqueous species con- 
centrations X, Y, Z (moles/rock volume) and are 
proportional to the mineral grain surface area. The 
surface area of the grains of mineral A is propor- 
tional to A 2/3 and similarly for B (see the appen- 
dix for further details). With this we write 

W 1 =- k A 2 / 3 [ K  X -  Y], 

w2 = qB2/3[OX- z ] .  

(2.13) 

(2.14) 

With these rate laws we write the reaction-trans- 
port equations, for a constant flow of velocity v, 

OX 02X vOX 
= Dx- 7 r - Or - w , -  w2, (2.15) 

OA 
Ot = - WI' (2.16) 

and similarly for ¥, Z and B. The one-dimen- 
sional system was taken to be along the r-axis and 
the evolution in time t was followed. Numerical 
simulations of these equations were carried out 
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Fig. 2. A, B model of section 2 showing how such a coupled 
redox system leads to localized deposition (B here) when steady 
wave non-existence occurs. (This is a schematic summary of 
numerical solutions of the reaction-transport equations using 
an approach as outlined in section 6) 

using familiar space discretization and iterated 
backward difference (in time) techniques. 

A typical simulation is shown in fig. 2 for 
parameter values such that Ao/K >> Bo/Q. Under 
these conditions B is "swept" (by dissolution) and 
accumulates by reprecipitation as an ever increas- 
ing concentration peak at the A redox front. Be- 
cause the A front has to "sweep" an ever increas- 
ing amount of B, the A front moves forward at an 
ever decreasing speed. A simulation for parameter 
values such that Ao/K << Bo/Q would show a B 
redox front that traps an ever increasing amount 
of A. Whichever of the two minerals would by 
itself generate a faster redox front becomes trapped 
by the other. 

A class of deposits of this type is the so-called 
uranium roll fronts, in which uranium is trapped 
by a redox front of pyrite or carbonaceous matter. 

The proof of nonexistence does not depend on 
the detailed form of the rate laws. Rather it fol- 
lows from the nature of the overall rate process. 
Conservation conditions as in (2.3)-(2.5) play an 
important role in analyzing water-rock interaction 
problems as we now show via other examples. 
Note however, that while conservation conditions 
can be used to demonstrate nonexistence, they are 
not by themselves sufficient to prove the existence 
of constant-velocity fronts. 

3. Exact results for simple redox fronts 

A number of exact results can be obtained for 
simple redox transition front models. These results 
provide insights into more general processes and 
are an important check on analytical and numeri- 
cal techniques developed to handle more complex 
fronts. Most interesting from the point of view of 
nonlinear phenomena, these simple fronts are 
found to be vulnerable to instabilities as discussed 
in section 6. 

3.1. A simple irreoersible model 

Under conditions of low iron and high oxygen 
content in the inlet waters, we expect the overall 
redox process to be characterized by 

g/ 
m X +  nP ~ products. (3.1) 

The products of the oxidation of the mineral pyrite 
(P = FeS2) by oxygen (X = 02) are considered in 
greater detail in section 5 and in ref. 7. Briefly they 
include complexes of Fe 3 + with OH- and oxidized 
sulphur species like SO 2- and $2 O2-. In (3.1) W 
represents the rate of the reaction and m and n 
are stoichiometric coefficients. 

Reaction (3.1) is driven by the influx of oxygen 
dissolved in the water flowing with velocity v(r, t) 
through the system. We assume the continuity 
equation 

aX 
at = DV '2X-  V . (  Xv) - mW, (3.2) 

where X represents the 0 2 concentration per rock 
volume, and D is the diffusion coefficient for 
oxygen. Since pyrite grains are immobile, the pyrite 
content P (in moles of pyrite/era 3 of rock volume) 
evolves via 

aP 
O--i- = - n W .  (3.3) 

To complete the description we need the initial 
data, X(r, O) and P(r, 0) and the boundary condi- 
tions. 
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Fig. 3. Idealized two-dimensional lossless, constant cross sec- 
tion aquifer. The advancement velocity of redox fronts (when 
they exist) can be calculated exactly in great generality for such 
system- see section 3. 

3.2. The ideafized aquifer 

An idealized case is shown in fig. 3. At the top 
and bot tom surfaces the normal flux vanishes since 
the aquifer is assumed lossless. We take the water 
velocity in the x-direction along the aquifer. Al- 
though all results to follow hold for an aquifer of 
arbitrary cross section shape, we assume the aquifer 
to be rectangular for simplicity here. The no-flux 
boundary condition then becomes, assuming that 
v is along the x-direction only, 

OX 
Oy =0' y=O, Ly, (3.4) 

OX 
Oz =0' z=O, Lz. (3.5) 

At the meteoric inlet, x = 0, the concentration 
X(0, y, z, t)  is assumed to have the time-indepen- 
dent value XM(y, Z), 

X(O, y , z , t ) =  XM(y,z) .  (3.6) 

Before the pyrite becomes oxidized P has its initial 
value Po(Y, z) taken to be constant along the 
aquifer, 

e ( x ,  y, z,O) = Po(Y, z). (3.7) 

Since the flow is in the x direction only, we have 

v = v ( y , z ) x ,  (3.8) 

where l x is a unit vector pointing along the aquifer 

away from the meteoric inlet (in the positive x 
direction). 

3.3. Constant-velocity redox fronts 

Far from the meteoric inlet the X and P profiles 
are monotone interlaced as shown in fig. 4. We 
expect that for the idealized case there can be a 
balance set up such that the total rate of oxidant 
moved in just  eliminates a stoichiometric amount 
of pyrite such that the redox interface moves for- 
ward at a constant velocity denoted u. We now 
obtain an exact equation for u in this idealized 
aquifer. 

It is convenient to study such a constant veloc- 
ity solution in the reference frame ~p = x - ut mov- 
ing with the front. In this wave-fixed frame X = 
X(rp, y, z), P = P(cp, y, z). Substituting these ex- 
pressions into (3.2), (3.3), (3.4), (3.5) and taking 
account of the initial data, we find that the ideal- 
ized redox front is described by the solution of the 
following problem: 

0 O 2 t~ 2 ] o + jx+ (u-v) ox  mW=O, 

(3.9) 

OP 
u~-ep nll  e =  0, (3.10) 

OX 
cgy = O, y = O, Ly, (3.11) 

BX 
Oz--O' z = O , L  z, (3.12) 

X~':'~_ oo XM, X~':'-~+ ~o O, (3.13) 

P~':'~_~O, P ~ P o ( Y ,  z), (3.14) 

where a bar atop any function f (y ,  z) indicates 
the cross section average, i.e. 

1 Ly L z 

f = L y L z f o  d Y f  0 d z f ( y , z ) .  (3.15) 

We have imposed the condition X ~ XM as ~--,  
--oo because far from the meteoric inlet, but far 
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Fig. 4. Schematic interlaced X, P profiles for simple irreversi- 
ble redox front as discussed in section 4. 

behind the front, X has had time to become 
uniform through diffusion. 

An analytical expression for u may be obtained. 
First we combine (3.9), (3.10) to get 

[0_~ 2 02 a 2 ] z, OX mu OP - ~ = .  a~" 
- , . . ,  - - . . 1  

(3.16) 

Integrating both sides over a cross section area 
and using the no-flux boundary conditions (3.11), 
(3.12) we get 

it states that, in the wave-fixed reference frame, 
the total amount of X moving into the redox 
interface from its downstream side equals the total 
stoichiometricaUy balanced amount of P moving 
in from the other side. Thus (3.18) is simply a 
result of the losslessness of the aquifer and the 
stoichiometry of the oxidation process (3.1). Also, 
u in (3.18) measures the capacity of the rock to 
buffer the water. If P0 << Xra the rock is unable to 
significantly buffer the water and the redox front 
will move as fast as the water ( u -  ~). In the 
typical case where P0 >> XM the rock has a high 
buffering capacity and hence the front will move 
much more slowly than the water (u << ~). 

This result has been obtained assuming the ex- 
istence of a constant velocity front. From the 
previous section we see that not all such water-rock 
interaction kinetic schemes yield constant velocity 
fronts. The above calculations yield a constant 
velocity front speed but do not prove its existence 
or stability. In the next section we determine solu- 
tions of certain constant velocity water-rock inter- 
action fronts in various geologically important 
limiting cases. The exact result (3.18) can be gener- 
alized to much more complex systems with inter- 
esting consequences as will be seen in section 5. 

d [ D d X  muff0] 
dep [ d¢p + u X -  v X -  = O. (3.17) 

Hence the quantity in brackets is a constant over 
the front profile. Using (3.13), (3.14), we can 
evaluate the constant at cp = -  oo and + oo. 
Equating the two results we get 

nXvt~ 
u = n ~  M + mp ° . (3.18) 

In obtaining this result we have used the fact that 
far from the inlet but still well behind the front Xv 
is XM~. 

The result (3.18) has a simple physical interpre- 
tation. Rewriting it in the form 

(3.19) 

4. Quasi-discontinuous fronts 

Systems of low porosity have slow transport. In 
these transport-limited situations, the zone in which 
the redox processes take place is often narrow. In 
this section we develop equations for the speed 
and profile of these narrow transition fronts and 
set forth solutions in some simple cases. 

4.1. A simple irreversible model 

To illustrate the theory we consider the redox 
dynamics of section 3. The relatively high rate of 
reaction relative to transport is emphasized here 
by writing the rate of reaction W in (3.2), (3.3) as 
w/c where w(X, P) is a rate expression and 1/c is 
a large rate coefficient, i.e. ~ << 1. We thus examine 
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the solutions of (3.2), (3.3) in the formal limit 
IE ""~ O. 

By the nature of process (3.1) we expect that w 
vanishes if either X or P does. Thus as c --* 0 the 
solutions of  (3.2), (3.3), written here as 

OX 
Ot = IT'[ D g r X -  Xv] - mw/c, (4.1) 

OP 
Ot = - n w / c ,  (4.2) 

are expected to look qualitatively like fig. 5, i.e. 
space is divided into well-defined zones where 
X ~ 0, P = 0 - the oxidized zone - and where X = 
0, P 4:0 - the reduced zone. This must be true or 
else the solutions of (4.1), (4.2) must vary ex- 
tremely rapidly in space or time if w is nonzero as 
c---, 0; in obtaining the above picture we have 
assumed that w(X, P) vanishes as either X or P 
vanishes. 

To describe the interface between these zones 
we introduce a function E(r, t) such that the 
reaction zone for small c is a narrow domain 
centered about  the surface defined by 

E(r ,  t) = O. (4.3) 

We make the convention E < 0 in the oxidized 
region and E > 0 in the reduced domain. Our 
analysis will proceed by obtaining equations for X 
and P in their respective domains, coupled to an 
equation for E. 

The concentration profiles may be obtained mosl 
directly by combining (4.1), (4.2) in the form 

n [ OX ] OP 
V . ( v X -  DVX) = o--7 (4.4) 

In the oxidized region P vanishes as c ~ 0 and .~ 
vanishes downstream from the redox interface 

Thus we have 

OX 
Ot = V . ( D I T X -  vX), E < 0, (4.5) 

X = 0, E > 0. (4.6) 

Since X vanishes in the reduced zone, we have th~ 
trivial equation OP/Ot--0. Thus P is constanl 
and hence it remains at its initial value denoted 

Po(r). Thus 

p = { 0, E < 0, (4.7) 
e0(r) ,  e > 0. 

To complete the theory we require an evolution 

equation for E(r, t)  and boundary conditions fol 
X at the redox interface. The former is obtained a.~ 
follows. Let n be a unit normal to the redox 
interface E =  0 pointing into the reducing zone, 

i.e. n = VE/IWEI .  We define u as the velocity ol 
advancement  of the front in the direction n. In a 
small time 8t a point r on E -- 0 moves to r + nu St. 
The latter must,  by definition, lie on E(r + u 8tn, 
+ 8 0  = 0. Expanding the latter up to linear term., 
in the infinitesimal 8t and noting E(r, t ) =  0, we 
get 

SPACE ~ 

Fig. 5. Same as in fig. 4 except for the fast reaction limit. 

OE 
0-7 + ul v E I  = o. (4.81 

The advancement  velocity u is given in terms oJ 
the normal  flux of X as follows. In a time St, 
n . ( v X - D V X ) S t S A  moles of X pass across 
small area 8A on the redox interface E = 0. Be- 
cause reaction is fast this consumes P in a s m ~  
zone of area 8A and width 8L. The number ol 
moles of P consumed is nPoSA 8L/m.  Thus w~ 
have n . (  vX  o -  DVXo) St ffi nPoSL/m. But sinc~ 
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u = 8 L / $ t  we get 

- m n  • D V X  
U ~ n p  0 (4.9) 

To obtain this result we have used the fact that 
since X is continuous it must vanish at E = 0 as 
c ~ 0. Thus we have 

8E mD 
= ._-7h-V-Z-V_xVX" VE ,  (4.10) 0t nl-o~ r ) 

the equation for the moving interface. Eqs. 
((4.5)-(4.7), (4.10)) with the initial data and 
boundary conditions 

X(r ,O)  in E ( r , 0 ) < 0 ,  (4.11) 

X ( r ,  t)  = X u ( r  ) at meteoric inlet, (4.12) 

X ( r , t ) = O  on E ( r , t ) = O  (4.13) 

and the function E(r ,0)  constitute a well posed, 
free boundary problem [10, 11]. 

The profile in (4.14) demonstrates the effect of 
the competition between flow and diffusion. Be- 
cause u < o and ~ is negative to the left of the 
front, we see that if D is small the second term in 
(4.14) is negligible and X =  X M for x < ut and 
X = 0 for x > ut; i.e. X is a step function. Thus in 
the regime where flow dominates diffusion the 
concentration drops abruptly at the redox inter- 
face. More generally D/v ,  the "upstream diffusion 
length", characterizes the width of the transition 
zone over which the incoming species may diffuse 
upstream from the zone where fast solid reactions 
Occur .  

4.3. Fast reoersible redox dissolution front 

We next contrast the above irreversible redox 
front with a related reversible one. Consider 
X-laden waters flushing through an aquifer con- 
taining the solid P and reacting according to 

w/c 
mX + nP ~ yY + zZ, (4.16) 

4.2. Planar redox front solutions 

An exact solution for the redox interface de- 
scribed by ((4.5)-(4.7), refs. 10-13) can be ob- 
tained for the case of constant flow velocity o, 
meteoric oxygen concentration XM and initial 
pyrite content P0 (i.e. o, X u and P0 independent 
of r -  see fig. 5). With E = ep = x - ut for advance- 
ment along the x direction we obtain 

X =  [ XM[1 - exp ( (0 - u)q~/D }1, 
0, 

x < ut, 

x >  ut.  

(4.14) 

The advancement velocity u of the redox front is 
obtained by inserting (4.14) into (4.10) with E = 
x - ut to obtain 

nXMV (4.15) 
u = nXM + meo 

in agreement with the general result (3.18). 

where Y and Z are mobile species and y and z are 
stoichiometric coefficients. We now investigate this 
reversible process in the limit of fast equilibration, 
c ~ 0 .  

Assume that w has the form 

w = kPI3R( X,  Y, Z ) ,  (4.17) 

where at equilibrium, R = 0, we have 

X =  xeq (Y ,  Z ) .  (4.18) 

In particular, for low concentrations we have 
(xeq)  m =  K Y Y Z  z, where K is the equilibrium con- 
stant for (4.16). Finally the exponent fl is positive 
and, for surface area limited kinetics, is 2/3. 

As c ~ 0 space is again divided into two re- 
gions: 

P = O ,  E ( r , t ) < O ,  (4.19) 

P * O ,  X = x e q ( Y , Z ) ,  E ( r , t ) > O .  (4.20) 
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The interface E = 0 moves with (4.8) in general, 
but for the reversible problem, the equations for E 
and u, are implicit as follows. Across the boundary 
E = 0, X, Y and Z are continuous, i.e. 

X(0-  ) = X(0 +) (4.21) 

and similarly for Y and Z. The notation 0 + and 
0 -  implies evaluation at points very close to E -- 0, 
i.e. E = 0 + or 0 -  where 0 + and 0-  are very small 
positive and negative numbers respectively. Using 
scaling methods [11, 12], we can obtain expres- 
sions for the jumps in the normal derivatives of X, 
Y and Z across the boundary, namely 

n[n °+ • DxWX]o- + uP(O +) = 0, (4.22) 

n[n .  OvVY]°-  + - yuP(0 +) = 0, (4.23) 

n[n .  D z V Z ]  °+- - zuP(O +) -- 0, (4.24) 

where n - - V E / I  ~rE I, and we have noted P is 
zero for E < 0 (i.e. P (0- )  = 0). 

The conservation equations for X, Y and Z in 
the two domains can be readily obtained. For 
E < 0 P vanishes and hence from (4.4) we have 

OX 
Ot = D x W 2 X -  V ' ( v X ) ,  E < 0  (4.25) 

and similarly for Y and Z. In the reduced zone, 
E > 0, P 4. 0. Because X-- xeq(Y, Z) in E > 0 we 
can get closed equations for Y and Z by solving 
for w/c in the conservation equation for X and 
then using X =  xeq(Y, Z)  in the equations for Y 
and Z to express the w/c factor in terms of Y and 
Z. We get 

0Y 
Ot = D v W 2 Y -  V ' ( v Y )  

y [ ] 
-m [ Ot - DxV2Xeq + V' (vXeq) j '  + 

(4.26) 

OZ 
0"7 ---- D z W ' 2 Z -  W'(vY)  

±[ o x e q  - -  

+ m [ Ot DxW2Xeq + 

(4.27) 

Once Y and Z are obtained from (4.26), (4.27) we 
can calculate P via 

aP n [ a X  eq ] 
0-7 = - m [ at - Dxgr2Xeq + V'(Vxeq)j" 

(4.28) 

This completes the general description of the fast 
equilibrium redox dissolution front when the dy- 
namics of E is  represented by (4.8). 

Note the interesting difference between the 
structure of this free boundary problem and that 
of the free boundary dynamics of the previous 
section wherein the reduced domain (E > 0) prob- 
lem was trivial (X = 0 for E > 0). In the present 
problem P need not be constant for E > 0; indeed 
P dissolves or grows just enough to ensure that 
X =  xeq(y, Z)  in E > 0. Furthermore note that 
while (4.26), (4.27) look like modified transport 
equations for a reaction-free system, their struc- 
ture does allow for sinks or sources of Y and Z to 
account for P dissolution or precipitation. 

4.4. The planar reversible redox front 

The problem of the previous section yields a 
constant velocity propagating interface. Assume 
the flow is in the x-di rect ion and the advance- 
ment speed is u. Then in the wave fixed frame 

= x - ut, we have, putting the interface at ~p = 0, 

D x X " + ( u - o ) X ' = O ,  ~ < 0 ,  (4.29) 

and similarly for Yand Z. Theseequations yield a 
solution of the form 

X ( ~ )  = XM + A e ¢°-")*/°x, 

Y(~0) = B e c°-")*/°~, 

Z(  ~p ) = C e (v-")*/°z, 

(4.30) 

assuming that at the meteoric inlet (here at 9~ = 
-Qo), Y and Z are negligible. The constants 
A, B, C will be determined below. 

The continuity condition for X, Y and Z and 
the equilibrium relation X =  X~(Y ,  Z) for ~ = 0 + 
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Fig. O. Same as in fig. 5 except for the reversible simple model 
of section 4 in the fast reaction limit. 

together yield 

X M + A = x e q ( B ,  C ) ,  

B = r (o+ ) ,  

c = z(0 ÷). 

(4.31) 

We now show that if all variables are constant for 
cp > 0, clearly a solution of (4.26)-(4.28), all neces- 
sary conditions can be satisfied and indeed the 
advancement velocity u can be determined. The 
derivative discontinuity relations (4.22)-(4.24) 
yield 

- n (  v - u ) A  - muPo = O, 

- n ( v -  u)B + yuP o=0, 

- n ( v -  u)¢ + zuPo= O. 

(4.32) 

Note that since we seek solutions such that all 
variables are constant for ¢p > 0, we have set P 
equal to its (assumed) constant initial value P0. 
Eqs. (4.31), (4.32) are six equations in the six 
unknowns A, B, C, Y(0 ÷), Z(0 ÷) and u. 

An equation for u can be obtained by combin- 
ing the above results; we find 

xeq[Y~, z~t] q"~ 
= u P o / ( V  - u) .  

(4.33) 

The simple case X + P = Y yields 

u= xMo/[ + (1 + K)eo] (4.34) 

when the equilibrium concentration of X takes on 
the low concentration limiting behavior X °a = KY 
where K is the equilibrium constant. This agrees 
with the irreversible case of section 4.2 (see (4.15)) 
when we take the irreversible limit K--, 0. The 
concentration profiles are shown schematically in 
fig. 6. As K---,0, X(0+) - ,0 ,  and the reversible 
profile maps onto the irreversible one. 

For non-ideal systems the equation for u, (4.33), 
could have multiple solutions corresponding to 
multiple types of waves. This discrete multiplicity 
is in contrast to the possible existence of a one- 
parameter family of waves (continuous multiplic- 
ity) for the two-mineral model of the next section. 
Clearly, discrete multiplicity is possible in the 
above reversible front whenever xeq(ylx/n , zg//n) 
as a function of # has a sufficiently sharp maxi- 
mum. This could in principle happen for non-ideal 
equilibrium relations. 

4.5. Nonlinear phenomena at redox fronts 

Having obtained planar redox front solutions, 
we are led to the investigation of their stability. In 
a companion paper, ref. 13, we find that the simple 
irreversible front is stable both among the class of 
planar solutions (in fact, globally so) and linearly 
morphologically stable (i.e., with respect to changes 
of shape). Rigorous results on existence and 
uniqueness are also given there for the irreversible 
case. 

Morphological instability is found, however, 
when the reactive flows induce changes in porosity 
which, in turn, couple to the flow v via Darcy's 
law - see ref. 14 for details. From these results and 
the possibility of discrete multiplicity for the re- 
versible front, it is clear that water-rock interac- 
tion fronts can support a host of nonlinear 
phenomena including dynamical behavior as dis- 
cussed in section 7 below. 
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5. Two-mineral replacement front 

5.1. The model  

Perhaps the simplest model that describes the 
iron-sulfur redox chemistry is summarized as fol- 
lows: 

302 + FeS2 (Pyrite) --- Fe 2+ + $2 O2- , (5.1) 

¼02 + ~H20 + Fe 2+ 

= FeO-OH(Goethi te)  + 2H +. (5.2) 

In the presence of buffering reactions H ÷ tends to 
have a fixed value and we assume this to be the 
case. Since H20  is in excess in the aqueous en- 
vironment, it can be neglected in a schematic 
kinetics and thus we arrive at the following sim- 
plified working model: 

aX + P = F + T, (5.3) 

bX + F = G, (5.4) 

where X, F and T are the mobile species (02, Fe 2+ 
and $202-); P and G represent pyrite and goethite 
respectively. The stoichiometric parameters a and 
b are 3 /2  and 1 /4  respectively, but to simplify the 
analysis while still maintaining the interesting 
effects we shall take a = b = 1. 

Let W x and W 2 be the overall rate laws of 
processes (5.3), (5.4). They are presumed ex- 
pressible as functions of X, F, T, P and G. At 
equilibrium these rates must yield the correct equi- 
librium relations 

K X  = FT, = 0, (5.5) 

Q=FX, W 2=0; (5.6) 

here K and Q are equilibrium constants, and we 
assume the solution to be dilute. 

Consider a one-dimensional, lossless, initially 
homogeneous aquifer with oxidizing waters enter- 
ing from the left. Then for a front of P dissolution 
and G deposition we impose the following condi- 
tions on either side of and far from the transition 

region 

P ( -  

P (+  

X ( -  

X(+ 

where (5.3) and (5.4) are operative: 

oo) = Po, G ( -  oo) = (1 - a ) P  o, (5.7) 

~ ) = X  M, F ( - ~ ) = F  M, r ( - ~ ) = 0 ,  

~ ) - - X ~ ,  V ( + ~ ) - - r ~ ,  T ( + ~ ) = T ~ .  

Po is the pyrite content in the unoxidized aquifer. 
The amount of iron fixed as goethite is (1 - a)Po, 

a < 1, defining a. The incoming (meteoric) iron 
and oxygen are F u and X M respectively. The 
downstream values Xoo, Fo~ and T~ are de- 
termined for steady front propagation as we shall 
see below. 

Far in advance of and behind the front the 
waters have had time to come to equilibrium with 
local rocks. Thus we assume the following connec- 
tions: 

F~T~ = K X ~ ,  

F M X  M = Q, a < 1 (G-saturated inlet), (5.8) 

F M X  M < Q, a = 1 (G-undersaturated inlet), 

which follow directly from the data (5.7) and the 
equilibrium conditions (5.5), (5.6). Note that if the 
inlet waters are undersaturated with respect to 
goethite then the last condition in (5.8) holds and 
a = 1 (and hence G ( -  ~ )  = 0). 

Our goal in this section is to investigate the 
steady state advancement of a pyrite-goethite front 
due to the mechanism (5.3), (5.4). Assuming the 
existence of such a front we now show how some 
of  its properties can be determined quite easily 
without actually calculating the composition pro- 
files. 

In the frame moving with the redox front at 
velocity u, (i.e. cO = x - ut is the redox front-fixed 
reference frame) we have 

u P ' -  W 1 = 0, (5.9) 

u 6 ' +  w2 -- o, (5.10) 

n x X " + ( u - o ) X ' - W l - W 2 = O ,  (5.11) 

O F F " + ( u - o ) F ' + W 1 - W 2 = O ,  (5.12) 

n , r "  + ( , -  o ) r ' +  wl=o ,  (5.13) 
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where ..... = d/d¢p. Eqs. (5.7)-(5.13) provide a 
complete description of the steady state front once 
the functional forms of W x and W 2 are set forth. 

5.2. Constants of the front motion 

Three constants of the motion for redox front 
advancement can be obtained by eliminating W 1 
and W 2 from the five equations (5.9)-(5.13). We 
find 

[ D x X ' + ( u - v ) X + u ( G - P ) ] ' = O ,  (5.14) 

[ D F F ' + ( u - v ) F + u ( P + G ) ] ' = O ,  (5.15) 

[ DTT'  + ( u -  v ) T  + uP] '  = 0. (5.16) 

From this we see that the quantities inside the 
brackets are constants over the steady state wave 
profile. Evaluating each of these constants at qo--- 
- oo and ~ = + ~ and equating the results, using 
the P equilibrium relation at ~ = oo, and eliminat- 
ing Too, we obtain 

(U- -V)XM=(U--V)XOO--U(2- -a )P  o, (5.17) 

.2 KX~ 
( U - - O ) F M = - ( u - v )  --~-~-o +uaPo . (5.18) 

These results may be further combined to obtain 
an equation relating u and a: 

. ( u )  

(u - v){ FMUP o + K [(u - v ) X  M + 2uP0] } 
Ueo{.eo + (u - } 

(5.19) 

With this we may then obtain the other unknowns, 

X (u) 

= ( u -  o ) - a [ ( u -  o ) X  M+ u ( 2 - a ( u ) ) P o ] ,  
(5.20) 

Foo(u) = - (u - v )KX• (u ) /uP  o. (5.21) 

These results are interesting. They indicate that the 
redox front solutions of our model for the saturated 

inlet are not necessarily unique but may constitute 
a one-parameter family of solutions that differ 
according to their velocity u. This type of behavior 
is not unknown in other problems, most notably 
the Fisher equation of ecology. In the Fisher prob- 
lem, it is found that only one velocity corresponds 
to a stable wave. 

5.3. Constraints on allowed velocities for the 
saturated case 

5.3.1. Positivity constraints 
The positivity of concentrations puts constraints 

on the allowed range of u values. Since G ( -  oo) > 
0, 

a(u)_< 1. 

Also F( + o¢) > 0 implies that 

U < O .  

(5.22) 

(5.23) 

Most interesting is the condition Xoo > 0; this 
implies 

a ( u )  > aB(u ) -= ( u -  v ) X u +  2uP o up ° (5.24) 

These inequalities place constraints on the allowed 
values of u. 

5.3.2. Poles and zeros of a(u) and aB(u ) 
The curve a(u) of (5.19) with F M --- Q / X  M has 

several features that dominate its behavior and 
which, along with the constraints, point out the 
existence of two distinct domains of behavior. The 
zeros of a(u)  occur at u = v, u0 where 

KX2v 
(5.25) 

u° =- KX2  + 2KPoXM + QPo" 

Also there are two poles of a(u) located at u --- 0, 
Up where 

Kv 
up - K + Po" (5.26) 
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Fig. 7. Schematic plot of a-parameter as a function of the 
wave speed u of the pyrite-goethite model. As discussed in 
section 5 this figure demonstrates the possible existence of a 
continuum of fronts with different values of the amount of 
goethite deposited (as measured by a). 
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Fig. 8. Same as in fig. 7 except for a different range of inlet X 
(see section 5 for details). 

T h e  curve a s ( u )  has  a zero at u b, 

XMV (5.27) 
u b ---- XM + 2 P  o " 

The  inequa l i ty  

ub > Uo (5.28) 

fo l lows f rom (5.25), (5.27). 

F r o m  these  results  it  is seen that  there  are two 

d i s t inc t  cases,  depend ing  on whether  the pole  of  

a(u) is to the  f ight  or  left  of  its zero, i.e. up >< Uo. 

T h e  two cases  a re  shown schemat ica l ly  in figs. 7 

a n d  8. 

5.3.3. Two regimes of front propagation 
a) Case  Up > u 0. The expressions for  up and  u o 

o f  the  p rev ious  sect ion yield for this case 

X 2 -  2KX M -  O < O. 

Since X M > 0, this condi t ion  reduces to 

o _< xM < 2 M -  r + [ r  2 + e l  

(5.29) 

(5.30) 

T h e  curves  a(u) and aB(u) are  shown in fig. 7 

for  this  case. I t  is seen that  since a > a  s the 

a l lowed values  of  u lie in the interval  0 < u < u 1 

where  a (ux )  = 1. 

b)  Case  Up < u 0. This s i tuat ion is seen in fig. 8. 

Since a > a s and  a < 1 we see that  the a l lowed 

veloci t ies  a re  in the interval  ux < u < u x where  u x 

is the  va lue  of  u at  which a crosses aB, namely  

v ( X ~ - Q )  (5.31) 
u x =  x r  ~ +  2 P o X  M -  Q" 

Because  for  this case 

XM > i 'M,  (5.32) 

we see tha t  bo th  the numera to r  and  denomina to r  

o f  u x in (5.31) are  posi t ive and hence u is restr ic ted 

to  a finite doma in .  F r o m  fig. 8 we see that  a lies in 

the  range  1 > a > as (Ux)  and if u x > u 0 then a 
can  be  negat ive .  In  the la t ter  case this would  mean  

tha t  the  a m o u n t  of  G left  beh ind  the front,  G( - ~ )  

= (1 - a)P o, could  exceed the or iginal  amoun t  of 

pyr i te ,  Po, b y  ext rac t ing  some i ron  f rom the inlet  

waters .  H e n c e  the present  cons idera t ions  do  not  

rule  ou t  the  poss ib i l i ty  that  G ( -  ~ )  exceeds P0. 
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5.3.4. Remarks 
Physically the one-parameter family of waves 

arises because the entry waters are in equilibrium 
with the final product G of the oxidation. The key 
question remaining concerns the existence and 
stability of each wave in the family; this is 
addressed numerically in the next section. 

5.4. Uniqueness for the undersaturated inlet 

For undersaturated inlet water G ( -  o0) = 0, and 
hence a = 1. Thus putting a = 1 in (5.19) yields a 
unique positive value of u, as the solution of 

[ ?g - eo + xM) - eoFM] u 2 

+ . [ r ( ? o  + 2xM) + e o F M ] u - K X M : = O .  
(5.33) 

Letting A - Po 2 - K[P o + XM] -- PoFM, we have 
F 

u=-~A { Po[( K + FM)2 + 4KXM] '/2 

- K ( P o +  2XM)-PoFM}. (5.34) 

Note that the zero in the denominator A is just 
cancelled by a zero in the numerator so that 
u( X M, F M, Po) is well behaved for all values of the 
parameters. The speed of the undersaturated inlet 
front is monotonically increasing from 0 to v as 
X M varies from 0 to ~ .  

It is interesting to note that the behavior of the 
front depends on the nature of the reaction. Thus 
the conclusion that u vanishes when X M does 
would be altered if there was a process for pyrite 
dissolution that does not require oxygen (such as 
pyrite ~ Fe 2+ + S~-). Such a "two-channel" dis- 
solution front could also be analyzed by the con- 
servation condition methods. For the case of 
goethite-undersaturated inlet water the total 
amount  of goethite precipitated depends sensi- 
tively on the kinetic and transport rate laws, and 
not just on stoichiometry and equilibrium condi- 
tions. 

6. Numerical simulation of the 
pyrite-goethite model 

6.1. Open questions 

The results of the previous sections lead us to a 
number of interesting questions. The possibility 
represented by (5.19) of a continuum of planar 
redox front solutions for the pyrite-goethite sys~ 
tem raises the question of which among such a 
continuum exists and is stable. What is the exact 

^ 

nature of the critical value XM of the inlet oxygen? 
Also, for the pyrite-goethite and the simple pyrite 
models of section 3 we would like to know about 
the stability to nonplanar perturbations-i .e ,  do 
there exist morphological instabilities of the planar 
front to the formation of scalloping or fingering? 

To answer these questions we have undertaken a 
numerical study of these redox fronts. The numeri- 
cal technique used is based on the usual spatial 
gridding and then solution of the resulting set of 
ordinary differential equations for the concentra- 
tions at each spatial grid point via a modified 
Euler method. We found a number of interesting 
results and surprises. The simulations presented 
here are limited to one-dimensional systems for 
the pyri te-goethite system of section 5. Two- 
dimensional simulations and analytical results on 
nonlinear and morphological stability analysis are 
presented elsewhere [13, 14]. 

6.2. The detailed model 

The mechanism of the redox front studied here 
is as in section 5 for the special case a = b = 1: 

wl 
X + P ~ F + T ,  (6.1) 

w2 
X + F ~ G. (6.2) 

The rates of these reactions, W 1 and W 2, are 
constructed to include the following factors: 

1) the rate vanishes at equilibrium; 
2) the rate is proportional to the surface area of 

the mineral involved; and 
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3) nucleation of a new mineral occurs when a 
critical value of the appropriate concentration 
product (such as X F )  is exceeded. 

In the appendix we develop detailed mineral 
reaction rate laws based on the assumption that P 
and G occur as coatings on preexisting ("host") 
grains of an inert and predominant mineral con- 
stituting the porous rock. The rates are in the 
following forms: 

wl  = v + p)2/3( K x -  FT),  

W 2 -- q(G + g ) z / 3 ( F X -  Q). 

(6.3) 

(6.4) 

The factors k and q are rate constants, K and Q 
are equilibrium constants, and p and g model 
nucleation effects. If g = 0 then, if there is no 
initial G, W 2 will always be zero and G will 
remain zero henceforth. Thus we let 

0, X F  < Qn and G = O, 

g =  go, otherwise, 
(6 $5) 

where Q , ( >  Q) is the threshold value of X F  at 
which nucleation just starts and go is a constant 
that depends sensitively on the original medium. If 
nucleation occurs readily on the host grain surfaces, 
go will be large (reflecting all the host grain surface 
area) and Q~ will be near Q. Alternatively if G 
nucleation occurs at very rare surface defects on 
the host grains, then go is small; Q,  can be near 
or much greater than Q depending on how easily 
G can nucleate at these selected sites. Similar 
considerations hold for p in modeling pyrite 
nucleation, i.e. 

to simulate a semi-infinite system as follows: 

X ( O , t ) = X M ,  F ( O , t ) = F M ,  

a X  OF aT  
Or =-&- =-0-f = 0 a t  r = L ;  

X ( r , O )  = Xo, F ( r ,O)  = Fo, 

V ( r , O ) = V o ,  G ( r , O ) = O .  

T(0, t) =0 ;  

r ( r , 0 )  = To, 
(6.7) 

The initial concentrations X0, F 0 and T O are as- 
sumed to be in equilibrium with pyrite, the solutes 
F and T assumed to have formed solely from 
reaction (6.1), i.e. 

K X  o = FoT o, F o = T o. (6.8) 

Simulations differed according to the choices of 

XM, F M, K, Q, go, P0, P0, Kn, Q n, and X 0, the 
aqueous flow velocity (v > 0), and the diffusion 
coefficients D x, Dr,  D r. 

The system was taken to evolve according to the 
following reaction-transport equations: 

OX _ 02X  OX 
Ot = Dx-~r2  - v--~- - W 1 - W 2, (6.9) 

OF _ 02F OF 
a-~ = D F ' ~ r 2  --  V--~- -1- W 1 - W2, (6.10) 

OT _ O z r  r O T +  W1 ' (6.11) 
0--7 = ° r - f f ~ r 2  - Or 

a P  
0--7 = - WI' (6.12) 

OG 
0--7 = W2" (6.13) 

These equations are the basis of the steady front 
equations (5.9)-(5.13) of the previous section. 

o, (Fr/X)<r°,  v=0,  
P =  P0, otherwise. 

(6.6) 

All simulations were carried out using the 
boundary and initial data for a one-dimensional 
system along the r-spatial coordinate in the inter- 
val 0 < r < L. We took the inlet to be placed at 
r = 0 and chose the boundary condition at r = L 

6.3. Undersaturated inlet F~t X M < Q 

Using the above strategy, the undersaturated 
inlet waters case, X M F M <  Q, was simulated 
numerically. A typical example is seen in fig. 9. 
Note that although goethite G nucleates and grows, 
it is eventually dissolved out by the waters under- 
saturated with respect to it. The theory of section 
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Fig. 9. Deposi t ion  and dissolution of goethite (G) in a redox 
front  with inlet waters  undersaturated with goethite. Parameter 
choices are o = D x = D F m D T  = K = Q = P0 = 1.0; k = 100, 
q = 10; XM = 5.0, F M = T M = 0, Qn = 1.1. The spatial discreti- 
zat ion increment  is 0.05. 

5.4 can be used to calculate the unique front speed 
when the inlet waters are not in goethite equi- 
librium. For  the case F M = 0 we obtain u from 
(5.34) as the unique positive solution. This relation 
was tested for various values of the other system 
parameters. It was found to hold when compared 
with the rate of advancement of the half height of 
the pyrite front obtained numerically. 

.4 U~ 

U .3 t 

i 
1 XM 3 

XM 

Fig. 10. Compar i son  of observed velocity (indicated by dots) 
and the bounds  u X and u x. All parameter  values are as in fig. 
11 except that X M is as shown here. 

through surface rock does not quite dissolve 
enough G that saturation, FMX M = Q, is attained. 
Thus, because strictly speaking equilibrium takes 
an infinite time to be established, F M is expected 
to be at most very close to but just below Q / X  M. 
In this spirit consider the conjecture that the 
physically relevant velocity Uob Can be obtained by 
calculating u for arbitrary F M (<  Q / X M )  and 
then taking the limit as FM approaches its goethit¢ 
equilibrium value Q/XM: 

6.4. Selection from the continuum for FMX M = Q 

In the case of goethite-saturated inlet waters, the 
possible existence of a one-parameter family of 
fronts was demonstrated in section 5 (see (5.19)). 
Simulations were carried out to test this possibility 
and to see if any insight could be gained as to 
which wave (if any) was selected. 

Results on the front advancement rate as a 
function of X M are shown in fig. 10 for fixed 
values of the other parameters. Note that within 
the error of the calculation the observed speed 
always lies inside the allowed range predicted in 
section 5. In fact the observed velocities lie close to 
the limiting velocity u 1 for which G ( -  ~ )  = 0. 

Geologically we might argue that the original 
meteoric water that flows over a finite distance 

Uob = limit U(FM). (6.14) 
FM-'~ 

< 

T h e "  < "  notation means that the approach of F M 
to its equilibrium value Q / X M  is via a sequence ot 
undersaturated values F M < Q / X  u. For each such 
F M, u has a unique value - there is no one-param- 
eter family of fronts as for F M = Q / X  M. Any 
goethite precipitated is eventually dissolved ou! 
since F M X  M < Q; hence G ( -  oo) = 0, a = 1. Car- 
rying out this undersaturated approach to equi- 
librium we find that uob is given by (5.34) with 

F M = Q / X  M. 
A qualitative argument for the instability oJ 

fronts for a < 1 is as follows. Suppose a < 1 
Consider a point far behind the front; there 
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Fig. 11. Pyrite dissolution and oscillatory goethite deposition 
predicted from simulations as per section 6. Parameter values 
are v = DF = DT = D z  = K = Q =  Po = I.0; k = q =  lO.O; X M 
= 2.0; Qn = 1.1. The spatial increment used is 0.05. The vari- 
ous line patterns correspond to successive times. 

goethite is bathed in saturated waters. At this 
point a fluctuation in the G growth rate could 
cause G to increase or decrease a little. If it 
dissolves then the flow will carry the excess F and 
X downstream. If G ever goes to zero by a series 
of such fluctuations then it will stay at zero unless 
a large fluctuation occurs such that FX > Qn. This 
is highly improbable so that G in the wake of the 
front eventually finds its way to zero. 

6.5. O s c i l l a t o r y  d e p o s i t i o n  

6.5.1. The supersaturation, n u c l e a t i o n ,  d e p l e t i o n  

c y c l e  

Fig. 11 shows a striking, banded precipitation of 
goethite. This periodic deposition can be readily 
understood in terms of the original Ostwald theory 
of Liesegang banding [15]. For the present problem 
the Ostwald picture is as follows. When the product 
XF reaches its nucleation threshold, Qn, goethite 
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FeO.OH, goethite Q=1.1 

  AA AAA^ 
FeO'OH, goethite Q.=I. 2 
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FeO. OH, goethite Q.= 1.3 

Fig. 12. Goethite deposition for parameters as in fig. 11 except 
for values of Q, as indicated. Note dependence of amplitude 
and wavelength on Qn. 
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Fig. 13. Goethite deposition for the parameter values as in fig. 
11 except D F = 0.5. There are both goethite gaps (places where 
G = 0) and smooth oscillatory deposition of G. Note also that 
banding starts, stops and then starts aga in-an  unexpected 
sequence. The various tine patterns correspond to successive 
times. 
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precipitation begins. This causes depletion of F 
and X downstream so that nucleation may be 
repressed downstream until the pyrite front moves 
sufficiently far downstream that upstream diffusion 
to the original band is ineffective and hence the 
product XF again builds up. Further downstream 
XF attains its threshold value Qn and a second 
region of G precipitate is nucleated. The cycle can 
clearly be repeated and explains the periodic 
precipitation of fig. 11. 

In fig. 12 we show the dependence of the band 
spacing and amplitude on the nucleation threshold 
Qn (see (6.4), (6.5)). Beyond a maximum value of 
"Qn no G precipitation is found since Qn could 
never be exceeded by XF. As one might expect this 
maximum value of Q~ is of order (but less than) 
X3/2K 1/2. We arrive at this estimate by noting 
that X < X M and that (KXM) ~/2 is the value that 
F would attain if P was placed in waters initially 
free of F and T and with X at X M. The simulations 
indicate that as Qn reaches the cutoff value, the 
spacing diverges. Furthermore there is a lower 
value o f  Qn below which banding gives way to 
unbanded precipitation. 

There exists a transition between discrete 
banding (with G-free gaps between G-bearing 
bands) and undulatory continuous precipitation 
that seems sharp with respect to variations in X M 
although the finite space grid increment may mask 
a more gradual transition. In this regard, we have 
carried out a series of runs at fixed parameters but 
with variable grid spacing and found that well- 
defined limiting profiles are attained as the grid is 
refined. The gap width attains a well defined limit 
as the space grid increment is decreased. 

6.5.2. Non-gap banding 
Under some conditions the effective diffusion of 

the aqueous iron species F through the rock could 
be quite slow because F could stick to the walls 
of the pores. This led us to try runs at various 
values of D r < D x = D T. An interesting case is 
shown in fig. 13 where two types of banding are 
observed. Indeed, banding in our supersaturation/ 
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Fig. 14. Pyrite (a) and Goethite (b) evolution for parameters 
the same as fig. 11 except D x = 0.1. Note the maximum of P 
(secondary pyrite deposition) reminiscent of the pyrite deposi- 
tion zone just ahead of the front in the geological system of 
fig. 1. 

nucleation/depletion mathematical model does not 
occur only with precipitate free gaps-  unlike the 
Prager formulation [16] of the Ostwald theory. 
Another way to get non-gap banding is by 
the competitive particle growth model based on 
the surface tension-mediated dependence of the 
equilibrium constant on particle size [17, 18]. A 
further advantage of the present model over the 
Prager formulation is that the finite width and 
profile of the bands may be predicted. 

6.6. Reprecipitation of pyrite 

In all the simulations shown thus far, the profile 
of P has simply been a monotonic front from 0 to 
Po. However, in some roll type deposits (fig. 1), 
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F e S  2 is observed to have a maximum just down- 
stream of the redox front. This FeS  2 crest  is mani- 
fest in our simulation of fig. 14, reminiscent of the 
geological example of fig. 1. 

To account for nucleation we replace go by a 
factor g which is go unless G -- 0 and FX does not 
exceed a threshold value Qn; in the latter case 
g = 0 so that no G growth starts if the nucleation 
threshold is not exceeded. 

Appendix 

The specific form of grain growth/dissolution 
laws depends on a number of detailed considera- 
tions. Here we take the case where the active 
minerals form as a coating on inert, host grains. 
We develop the formulae for a mineral G that 
forms from aqueous species X and F via X + F --- G 
as in sections 5 and 6. 

Consider spherical host grains of radius R o. 
When G overgrowth occurs the grain has radius 
R > R 0. If n is the number of host grains per unit 
volume and p is the solid molar density of G, then 
the moles of G per unit rock volume, denoted G, is 
given by 

G= R'o]. (A.1) 

The rate of growth of volume of a grain is taken to 
be proportional to the surface area  4 e r r  2. Hence 
we write 

] ~7 ~'R3 = 4~rk'R2[XF- Q]' (A.2) 

where the last factor is based on a mass action 
growth kinetics. The rate coefficient k' is assumed 
constant. Combining (A.1, A.2) yields 

O__GG k [ G +  g o ] 2 / 3 [ X F  - Q ] ,  
Ot = (A.3) 

where 

k ~- 4¢rk'/(-~rnp) 2/3, (A .4 )  

3 4  3 (A.5) go ~PRo. 
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