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a b s t r a c t

A variational method for the classical Liouville equation is introduced that facilitates the
development of theories for non-equilibrium classical systems. The method is based on
the introduction of a complex-valued auxiliary quantity Ψ that is related to the classical
position-momentum probability density ρ via ρ = Ψ ∗Ψ . A functional of Ψ is developed
whose extrema imply thatρ satisfies the Liouville equation.Multiscalemethods are used to
develop trial functions to be optimized by the variational principle. The present variational
principle with multiscale trial functions can capture both the microscopic and the coarse-
grained descriptions, thereby yielding theories that account for the two way exchange of
information across multiple scales in space and time. Equations of the Smoluchowski form
for the coarse-grained state probability density are obtained. Constraints on the initial state
of the N-particle probability density for which the aforementioned equation is closed and
conserves probability are presented. The methodology has applicability to a wide range of
systems including macromolecular assemblies, ionic liquids, and nanoparticles.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Variational principles have been used in many areas of science and engineering [1]. Here, a classical nonequilibrium
variational method is introduced to facilitate the analysis of the Liouville equation (LE). Its use is demonstrated in
deriving stochastic equations for coarse-grained (CG) variables characterizing long-scale dynamics. A methodology based
on multiscale perturbation analysis is provided for constructing trial functions to be optimized via the variational principle.

Variational approaches to quantum and classical systems include the following. The entropy maximum principle is used
to construct the equilibrium probability [2]. For the stationary states of quantum systems, the energy-minimum principle
is used [3,4]. The least-action principle is used for time-dependent pure-state quantum systems [5]. For nonequilibrium
reacting systems described by a master equation, an evolution criterion has been discussed [6]. Variational approaches
based on the maximum entropy production hypothesis have been presented [7–10]. For example, the Onsager–Machlup
approach [10,11] is based on a phenomenological maximum entropy production principle; it appears to be appropriate for
systems which are close to equilibrium.

A variational method for the LE was developed in the 1970s by Gross; it was cast in terms of the Laplace transform of
the N-particle density ρ [12]. The functional considered is related to correlation functions of interest. The stationary values
of the constructed functionals implied the LE exactly for ρ when no restrictions on the trial function are imposed. The
trial functions used were taken in successive approximations as the sum of one-body, then two-body, etc., terms [13]. It
was noted that there is a multiplicity of alternative variational functionals whose extrema satisfy the LE [12]. While this
multiplicity of functionals raises the question of the physical motivation for choosing one over another, it suggests that
this may enable one to gain experience in choosing functionals that yield results that are optimal for addressing a given
problem, e.g., for constructing correlation functions of a given type. In the present formulation, a functional is introduced
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that involves a complex-valued quantityΨ related to the N-particle density ρ via ρ = Ψ ∗Ψ . The complex valuedness of the
auxiliary function Ψ in effect introduces two N-particle densities, and provides a self-consistent way to construct both of
them. In the Gross formulation, a second function in addition to theN-particle density is needed to formulate the variational
principle. This function was chosen to be a specific modification of ρ (namely, a momentum reversed density). Here, the
second function is simply the complex conjugate of the first, and the variational principle implies equations for both.

The Martin–Siggia–Rose method [14–16] starts with a coarse-grained statistical description that follows from
renormalization group arguments. The present approach starts with a variational principle built on the original (not
renormalized) LE. Trial functions are then used that are inspired by multiscale perturbation theory [17]. Such trial functions
will be shown to account for the coupling of processes across scales in space and time that underlies the dissipative
phenomena of interest in nonequilibrium systems.

The formulation proposed here is suggested by analogy with the quantum least-action principle. The quantum principle
is based on a functional whose extrema correspond to the solutions of the time-dependent Schrödinger equation [5]. The
quantum action takes the form of an expectation value of ih̄∂/∂t−H , for HamiltonianH . Here, a similar quadratic functional
is constructed for the classical LE. To achieve this, a wave function-like quantity Ψ is introduced. It is an essential feature of
the present variational method that this auxiliary function Ψ is complex-valued. In effect, ReΨ is found to serve as a test
function [18] for ImΨ , and conversely. The use of this variational principle in deriving stochastic equations of CG dynamics
is discussed based on multiscale perturbation theory-inspired trial functions.

Multiscale perturbation methods [19,20] yield Smoluchowski or other equations for the stochastic dynamics of the
probability density of a set of coarse-grained variables [20–23], the latter describing the larger-scale features of a classical
N-particle system. These methods account for the coupling of processes across multiple scales in space and time. They
follow a long tradition of multiple time and length scale approaches to many-particle quantum [24] and classical [19,21,
22,25,26] systems. Multiscale perturbation approaches for classical systems have been validated via, e.g., simulation of viral
capsids [27,28], RNA [20], and virus-like particles [26,29]. A necessary condition for their validity is that correlation functions
of the CG momenta do not display long-time tails [20]. The variational method presented here provides a framework to
extend/utilize perturbation theory in a manner similar to that of other variational approaches.

A variety of CG variables have been used as a starting point of a multiscale perturbation approach [20,30–35]. It is hoped
that reexamination of these results byusing them to construct trial functions for thepresent variationalmethodwill facilitate
the development of novel stochastic equations for CG dynamics. All methods based on the identification of slowmodesmust
address the requirement for the existence of a timescale gap between the slow and fast modes of an N-particle system. One
may proceed by assuming the existence of this gap between the fastest modes and the quasi-continuum of slower ones
[36], and then justifying it a posteriori. The latter justification is achieved via comparison with experimental or computer
molecular dynamics results, or through the identification of self-consistency criteria. Examples of the latter are as follows.

• CG momenta correlation functions should not have long-time tails since the latter indicate coupling to slow modes not
included in the set considered.

• Emergence of large differences between the all-atom configuration generated coherently through the CG variables versus
that from MD computations may be used to identify additional modes to be included [20]. In developing a multiscale
approach to classical nanosystems, it was shown that certain CG variables could be introduced in a manner that enables
the automated detection of key missing CG variables, and provides an explicit algorithm for relating these otherwise
hidden variables to the underlying N-particle description [20].

• Straightforward use of multiscale perturbation theory may lead to non-conserving equations for a reduced probability
density. Certainly, one does not expect that conserving equations should follow for an arbitrarily chosen set of slow
variables given any initial statistical state. This is addressed in the context of the present variational principle by
identifying initial statistical states which lead to a conserving equation for the reduced probability of the CG state.

These considerations can also be applied to the projection operator methods [19,21,25]. For example, if key CG variables
are missing then memory functions have long time tails.

The variational principle introduced here has the following features (those indicated with ∗ are unique to our approach).

∗ A quadratic functional of a complex-valued quantity is introduced in analogy with the quantum least-action principle
and has symmetry properties that greatly facilitate variational calculations.

• Extrema of the proposed functional satisfy the LE.
∗ A remote time factor is introduced to ensure that the operator ∂/∂t is skew Hermitian.
∗ Multiscale perturbation theory is used to inspire trial functions.
∗ Intuitive arguments starting with multiscale mean-field trial functions provide a way to develop novel kinetic theories

of nonequilibrium classical systems. These properties will be explored via several illustrative examples.

Closure has been a long standing issue, e.g., for the BBGKY hierarchy [37]. A method for discovering a closed equation for
the probability of the CG state is presented. It follows from a detailed examination of the initial statistical state’s influence
on the dynamics of the N-particle probability density. A variational principle is used to generate an approximation for the
N-particle density.

The proposed variational method is formulated and demonstrated via simple Vlasov approximation, which describes the
inertia-dominated, frictionless dynamics ofN identical particles (Section 2). Amultiscale perturbation scheme for generating
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trial functions is presented (Section 3). A Smoluchowski equation for a set of coarse-grained variables is derived via the
variational principle, and conditions on the initial N-particle statistical state for its validity are obtained (Section 4). The
presentation is concluded with a prospective on the use of the variational approach for deriving kinetic equations for
nonequilibrium classical systems via the use of perturbation theory-inspired trial functions (Section 5).

2. The variational principle: definitions, properties, and simple illustration

2.1. Formulation

The LE for a classical N-particle system ∂ρ/∂t = Lρ yields the evolution of the position-momentum density ρ, and the
Liouville operator L is given by

L = −

N
ℓ=1

⇀

P ℓ
Mℓ

·
∂

∂
⇀
r ℓ

+
⇀

F ℓ ·
∂

∂
⇀

P ℓ

 . (1)

Analysis of this equation is challenging due to the complexity of the structure of ρ since it subsumes a range of phenomena
from continuous processes like diffusion to discontinuous ones like shock waves. The objective here is to develop a
variational approach that facilitates the analysis of the LE based on approximations inspired by intuition and perturbation
methods.

The first step in the development is to introduce a complex-valued auxiliary quantity Ψ related to ρ via

ρ = Ψ ∗Ψ . (2)

Introduction of ψ enables the construction of a quadratic functional C (Ψ ∗,Ψ ) which has a similar form to the action of
quantum theory [5]. By design, the structure of this functional is chosen such that its extrema occur at Ψ that imply the
classical LE for ρ, and which has convenient symmetry properties.

Consider the functional C defined such that

C = i


dtdΓ e−ηt2Ψ ∗ [∂/∂t − L]Ψ . (3)

Here,Γ is a point in 6N-dimensional particle position-momentum space, η is a positive infinitesimal constant, the range of t
goes from the remote past to the remote future,while the range ofΓ is determinedby constraints on the system (e.g., a closed
volume). The factor e−ηt2 ensures that after integration by parts of a ∂/∂t term, the boundary values at t → ±∞ are zero;
this remote-time repression factor ensures that ∂/∂t is skew Hermitian. With this, C is found to be real and nonnegative.

Finding extrema of C with respect to the complex function Ψ is equivalent to doing so simultaneously for the real and
imaginary parts of Ψ . This is also equivalent to minimizing C with respect to Ψ and Ψ ∗ themselves, as pointed out in
the 1930s in the context of the quantum least-action principle [12,38]. Such symmetry is built in the variational principle
discussed below.With this, one may compute the functional derivative δC/δΨ ∗ to arrive at an equation forΨ , and similarly
for taking the functional derivative with respect to Ψ to obtain an equation for Ψ ∗. With this, the variational equation
δC/δΨ ∗

= 0 implies the LE for Ψ ,

∂Ψ /∂t = LΨ . (4)

Recalling that ρ = Ψ ∗Ψ , the dynamical equation for Ψ (and a similar one for Ψ ∗) imply that ρ satisfies the LE. This is an
advantage over other approaches which start with the renormalized coarse-grained equations [14–16], and not with the full
LE. The complex auxiliary function formulation has advantages over other approaches [12,13] where a second probability
density is introduced that is arbitrarily taken to be a time-reversed solution of the LE. In the present formulation no such
assumption is needed, — a factor that has particular advantageswhen constructing and using trial functions for optimization
(as in Section 4).

2.2. Necessity of complex-valuedness of the auxiliary function

The above development does not yet clarify the importance of introducing Ψ as a complex-valued function. To do so,
consider finding the extrema of C . If the auxiliary functionΨ is real, the variational equation δC/δΨ (Γ , t) = 0 based on (3)
yields no information, as follows. If Ψ equals the real-valued function A, it follows that

C =
i
2


dtdΓ e−ηt2 [∂/∂t − L] A2. (5)

The fact that L only involves first-order derivatives with respect to Γ , and that A vanishes at the boundaries in Γ -space,
imply the integrated LA2 term of (5) is zero. Since


dΓ A2 can be shown to be constant, it follows that


dΓ ∂

∂t A
2

= 0. Thus,
seeking the extrema of C when Ψ is real yields no information. However, since Ψ is complex-valued, the extrema of C are
nontrivial, as follows.
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LetΨ = A+ iB for independent real functions A(Γ , t) and B(Γ , t). With this, C can be thought of as a functional of A and
B. LettingΩ = ∂/∂t − L, one obtains

C (A, B) =


dtdΓ e−ηt2 [i (AΩA + BΩB)− BΩA + AΩB] . (6)

The AΩA and BΩB terms yield no information when seeking extrema of C with respect to A or B, as can be shown using
arguments similar to the case when Ψ is real. The −BΩA term is equal to the AΩB term, as can be shown using integration
by parts and the fact that AB vanishes at the boundaries of the Γ domain. With this, one finds that δC/δA = 0 implies that B
obeys the LE. Similarly, setting δC/δB to zero implies that A satisfies the LE. Thus, whenΨ is complex-valued the variational
principle yields nontrivial results. A similar conclusion can be derived using a polar representation (see Appendix).

2.3. Relation to the Gross formulation

Consider a reformulation of the functional C into Fourier representation. The Fourier transform Ψ is related to Ψ via

Ψ (Γ , t) =
1
2π


dωeiωtΨ (Γ , ω). (7)

With this, C (3) can be written as a functional of Ψ :

C =
i

(2π)2


dωdω′dtdΓ e−ηt2ei(ω−ω′)tΨ

∗
(Γ , ω′)[iω − L]Ψ (Γ , ω). (8)

For infinitesimal η

1
2π


dte−ηt2ei(ω−ω′)t

= δ(ω − ω′), (9)

and hence

C =
i

2π


dωdΓ Ψ ∗

[iω − L]Ψ . (10)

This functional looks similar to that of Gross except that here (1) the objective is to construct both the ReΨ and ImΨ via a
unified approach, i.e., finding the extrema of C with respect to ReΨ and ImΨ rather than focusing on the N-particle density
and itsmomentum-reversed image, and (2) the integration overω is not considered in theGross formulation and the present
representation is in Fourier and not Laplace transform. However, the results of Sections 3 and 4 suggest that it is convenient
to adopt a time-domain formulation when using multiscale perturbation methods to generate trial functions. Finally, the
time-domain ρ is related to Ψ via the product rule (ρ = Ψ ∗Ψ ), while for the Fourier transform ρ ≠ Ψ

∗
Ψ but is related to

Ψ via a convolution. Again, this suggests the convenience of working in the time-domain. These advantages are illustrated
more specifically in Sections 3 and 4.

To further explore the relation of the present approach to that of Gross, first let r and p be the set of particle positions and
momenta, respectively. The method of Gross is equivalent to the present one when ImΨ (r, p; t) = ReΨ (r,−p; −t). If this
ReΨ is a solution of the LE then so is ImΨ . In contrast, the present formulation is less restricted, i.e., the only criterion is that
ReΨ and ImΨ may not be simply related via constant of proportionality. The assumption that ImΨ is themomentum-time
reversed ReΨ is restrictive when, e.g., developing a trial function for optimization by the present variational method.

2.4. Simple mean-field trial function: the Vlasov equation

To illustrate that the variational procedure of Section 2.1 allows one to recover a familiar result, consider a mean-
field approximation for a collection of N identical particles interacting with pairwise forces. Stating the classic mean-field

approximation in the present notation, Ψ (Γ , t) is postulated to be a product of single-particle functionsψ(
⇀
r ,

⇀
p , t). In this

case, the trial function, denoted T , is given by

T =

N
ℓ=1

ψ (
⇀
r ℓ,

⇀
p ℓ, t). (11)

With this, the functional C (3) takes the form

C = i


dtdΓ e−ηt2
N
ℓ=1

ψ∗(
⇀
r ℓ,

⇀
p ℓ, t)[∂/∂t − L]

N
ℓ′=1

ψ(
⇀
r ℓ′ ,

⇀
p ℓ′ , t). (12)
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A dynamical equation for ψ is then obtained from the extremum condition

δC/δψ∗(
⇀
r ,

⇀
p , t) = 0. (13)

The result is

∂ψ

∂t
= −

⇀
p

m
·
∂ψ

∂
⇀
r

−
⇀

F ·
∂ψ

∂
⇀
p
. (14)

The mean-field force
⇀

F is given by

⇀

F (
⇀
r , t) = −

(N − 1)
ϑ

∂

∂
⇀
r


d3r ′d3p′

|ψ(
⇀′

r ,
⇀′

p , t)|2u(
⇀
r ,

⇀′

r ), (15)

where u(
⇀
r ,

⇀′

r ) is the pair potential and

ϑ =


d3rd3p

ψ(⇀r ,⇀p , t)2. (16)

The norm ϑ can be shown to be independent of time for finite systems assuming that ψ = 0 at the boundaries of
⇀
r ,

⇀
p

space.
The kinetic equation (14), rewritten for the single-particle density |ψ |

2, is the Vlasov equation from plasma theory [39].
The only damping is of the Landau type and is, therefore, not appropriate for liquids.

3. Multiscale perturbation theory-inspired trial functions for dissipative phenomena

The mean-field trial function used in Section 2.4 generated the Vlasov equation upon use of the variational principle.
However, the Vlasov equation does not provide a realistic account of dissipative phenomena in a condensed system. Here,
multiscale perturbation theory is used to generate trial functions which are rich enough to capture dissipative effects
that dominate most phenomena in classical liquids. A further advantage of using trial functions inspired by multiscale
perturbation theory is that they incorporate a degree of physical intuition into a formulation via the specific choice of CG
variables used.

There is often a smallness parameter ε that naturally emerges when computing the rate of change of CG variables.
Typically, ε is a dimensionless ratio of characteristic masses, lengths, or force constants. For simplicity, it is assumed that
there is a regular progression of times tn = εnt that characterize all the relevant timescales displayed by a system of interest.
These timescales are O(ε−n) (n = 0, 1, . . .). Consider a set Φ of CG variables which, by construction, evolve on timescales
much greater than that for individual particle collisions/vibrations [20,40]. With this, the multiscale ansatz is made

Ψ = Ψ (Γ ,Φ; t0, t; ε), (17)

where t = {t1, t2, . . .} is the set of long time variables. Using the LE forΨ (4), the ansatz (17), and the chain rule, one obtains
n=0

εn∂Ψ /∂tn = (L0 + εL1 + · · ·)Ψ . (18)

The operators Ln follow from L and the Γ -dependence of the NCG CG variables Φ . Specifically, L0 has the same form as L
but the Γ -derivatives are at constantΦ , while the Ln (n > 0) involveΦ-derivatives at constant Γ . This framework is not a
violation of the number of degrees of freedom; rather, it simply reflects the ansatz (17) on the multiple dependencies of Ψ
on Γ [20,41]. The resulting formulation allows for the construction of these dependencies via a perturbation scheme valid
when ε is small.

To be more specific, consider the setΦ of CG variables introduced earlier [41]. Assuming all these CG variables evolve on
about the same timescale, then the form of the multiscale LE (18) holds with

L1 = −Π ·
∂

∂Φ
, (19)

where the notation

A · B ≡

NCG
k=1

AkBk. (20)

Note that L0 and L1 operate on the space of functions that depend on both Γ andΦ , and k labels the CG variables. The CG
variable velocityΠk is given by

Πk = −LΦk. (21)
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Next, the smallness of ε is used to construct Ψ as a perturbation expansion

Ψ = Ψ0 + εΨ1 + · · · . (22)

Placing this expansion in (18), and collecting terms to each order in ε, equations for the coefficients Ψn of the expansion are
obtained.

As with the analysis of the N-particle probability density ρ as earlier [20,27,32–35,41–43], one may construct Ψ0 under
conditions where it evolves slowly (i.e., is independent of t0). Thus, to lowest order,

L0Ψ0 = 0. (23)

This equation admits the solution

Ψ0 = Ψ̂ (Γ ,Φ)Υ (Φ, t). (24)

Since Ψ̂ ∗Ψ̂ is the conditional probability for Γ given Φ (in analogy with earlier studies [20,27,32–35,41–43]), Ψ̂ is deter-
mined via the entropy maximum principle. For isothermal conditions, this implies

Ψ̂ = e−βH/2/Q 1/2,Q =


dΓ̃ ∆


Φ − Φ̃(Γ )


e−βH̃ . (25)

Here, ∼ indicates evaluation at Γ̃ over which integration is taken. The factor∆ is a product of Gaussian-like functions (one
for each of the NCG CG variables in the setΦ) that favors states Γ̃ for which the CG variables have values nearΦ . Since Ψ̂ ∗Ψ̂ ,
and not Ψ̂ , is a probability, the entropy maximization principle was used to construct Ψ̂ ∗Ψ̂ , and not Ψ̂ itself.

Next, one collects terms to first order in ε in (18) to find

[∂/∂t0 − L0]Ψ1 = L1Ψ0. (26)

Removal of secular behavior [44] inΨ1 implies ∂Υ /∂t1 = 0; this results in the absence of a ∂Ψ0/∂t1 term in (26). Collecting
the above results yields

Ψ1 = eL0t0Ψ o
1


Γ ,Φ, t


+ Ψ̂

 0

−t0
dt ′0e

−L0t ′0

NCG
k=1

Πk


β

2
fkΥ −

∂Υ

∂Φk


. (27)

Here fk is the thermal-average force:

fk(Φ) = −∂F/∂Φk. (28)

The Helmholtz free energy F is related to the partition function Q via

Q (Φ) = e−βF . (29)

The value of Ψ1 at t0 = 0 is denoted Ψ o
1 .

The integral term in Ψ1 contains the timecourse of a fluctuating microscopic variable, i.e., the momentum Πk (21)
conjugate to the CG variable Φk. The exchange of information between particle-like and CG variables contained in Ψ1 is
the source of dissipative effects. Thus, including them in a trial function for condensed systems should overcome some of
the shortcomings of the Vlasov equation (Section 2.4) as developed in the next section.

4. Equations for stochastic CG dynamics derived from the variational principle

4.1. General considerations

The variational principle of Section 2 opens the way to use the multiscale perturbation theory of Section 3 to generate
trial functions and then optimize them. This allows one to go beyond perturbation methods by constructing trial functions
such as those involving mean-field approximations. In this section this theme is developed by taking the O(ε) results from
Section 3 as the trial function to be optimized. First consider some general issues.

Let T be a trial function. Then the functional (3) takes the form

C

T , T ∗


= i


dtdΓ e−ηt2T ∗ [∂/∂t − L] T = −i


dtdΓ e−ηt2T [∂/∂t − L] T ∗. (30)
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The second result is implied by the first upon using integration by parts and the fact that the positive infinitesimal η removes
the remote time boundary terms. These expressions for C show that δC/δT∗ and δC/δT are related via

δC(T , T ∗)/δT = −δC(T ∗, T )/δT ∗. (31)

This symmetry rule enables one to avoid computing derivatives with respect to both T and T ∗, thereby reducing the number
of calculations. This is a consequence of the present complex formulation of the variational principle. This result is used to
facilitate obtaining the kinetic equation for a CG probability density in Section 4.5.

Note thatwhen T is an exact solution of the LE,C(T , T ∗) = 0. In thisway, the closeness ofC to zero provides an assessment
of the quality of a variational solution.

4.2. Multiscale trial functions

Consider trial functions with the multiscale dependence T (Γ ,Φ; t0, t2; ε) as suggested by the O(ε)multiscale develop-
ment of Section 3. This is to suggest that T depends on Γ both directly and, via a set of CG variablesΦ , indirectly. Using the
chain rule and introducing an expression for the CG variables as functions ofΓ (denoted Φ̃(Γ )), one hasLT = L0T +εL1T ,
where L0 and L1, as in Section 3, act on quantities which are functions of both Γ and Φ . With the above, the action C for
multiscale trial functions may be written in the convenient form

C

T , T ∗


= i


dtdt0dt2dΓ dΦe−ηt2∆


Φ − Φ̃ (Γ )


δ (t0 − t) δ


t2 − ε2t


T ∗


∂/∂t0 + ε2∂/∂t2 − L0 − εL1


T ,(32)

where ∆ is defined above, after Eq. (25); δ(tn − εnt) indicates the Dirac delta function. In the above, the dependence of T
and T ∗ on Γ ,Φ, t0, t2, and ε is implied.

Take the trial function T to be given by the series (22) truncated to a given order in ε. If the truncation is to O(ε), then the
CG factors are Υ and Υ ∗ (see (22), (24) and (27)). With this, one can use the variational principle to find a pair of equations
to determine Υ and Υ ∗, i.e., δC/δΥ ∗

= 0, δC/δΥ = 0. These two equations obey a symmetry rule analogous to (31).
For the choice T = Ψ0 of (24) one has L0T = 0 as in (23). This implies that

C

Υ ,Υ ∗


= −iε


dtdt0dt2dΓ dΦe−ηt2∆(Φ − Φ̃(Γ ))δ(t0 − t)δ


t2 − ε2t


Ψ̂ Υ ∗L1


Ψ̂ Υ


. (33)

The following facts can be used to simplify the expression for C(T , T ∗): (1) Ψ̂ is even in the particle momenta; (2) the
CG momenta Πk (see (19) and (21)) are odd in the individual particle momenta; and (3) Υ is independent of the particle
momenta. As in Section 3, ∂Ψ0/∂t0 = 0; thus, for the choice T = Ψ0 from (26) it follows that C = 0 and there is no useful
information for optimizing Υ with this choice of trial function. Hence, a higher-order trial function is now considered.

Next, take the trial function to be the series (22) truncated to O(ε):

T = Ψ0 + εΨ1. (34)

The Υ and Υ ∗ dependence of T is embedded in Ψ o
1 or explicitly provided as in (27). Since Ψ1 obeys (26), it is seen that

[∂/∂t0 − L0]Ψ1 − L1Ψ0 term does not contribute to C . Assuming ∂Ψ o
1 /∂t1 = 0 (which is found to be self-consistent a

posteriori), for the trial function (34) C takes the form

C(Υ ,Υ ∗) = iε2


dtdt0dt2dΓ dΦe−ηt2∆(Φ − Φ̃(Γ ))δ (t0 − t) δ

t2 − ε2t


Ψ ∗

0 {∂Ψ0/∂t2 − L1Ψ1} . (35)

4.3. Reduced probability density

The main objective of the remainder of this section is to develop an approximate equation for the reduced probability
W (Φ, t). By definition,

W (Φ, t) =


dΓ∆(Φ − Φ̃(Γ ))ρ. (36)

To lowest order in the multiscale perturbation scheme, ρ → Ψ̂ 2Υ ∗Υ , since Ψ̂ can be taken to be real-valued. With this,
W → Υ ∗Υ as ε → 0. Hence, to lowest order,W is a function of t2 and thus

∂W/∂t2 = Υ ∗∂Υ /∂t2 + Υ ∂Υ ∗/∂t2. (37)

With this and an approximate equation for Υ , one can construct a kinetic equation forW , as follows.
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4.4. Variational calculus for multiscale trial functions

To facilitate the use of multiscale perturbation theory-inspired trial functions to construct a kinetic equation for W ,
consider the following device. Define a quantity U which is a typical term encountered when constructing C during
optimization of trial functions derived from multiscale perturbation theory:

U(Υ ,Υ ∗) =


dtdt0dt2dΓ dΦe−ηt2∆(Φ − Φ̃)δ(t0 − t)δ(t2 − ε2t)Υ ∗X(Γ ,Φ, t0, t2;Υ ), (38)

where X is a function of Γ ,Φ, t0 and t2, and is a functional of Υ (Φ, t2). The goal is to compute the functional derivative
of U with respect to Υ ∗(Φ, t2). First carry out the straightforward integration with respect to t , leaving only t0 and t2 time
integrations. The remote time factor e−ηt2 requires special attention since itwill bemost convenient to express the integrand
of (38) only in terms of t2. To this end, rewrite it as e−ηt22 /ε

4
. Since η is smaller than the square of the longest inverse time,

and this time is O

ε−2


, then it is convenient to write η = ε4η′. With this,

U

Υ ,Υ ∗


=


dt2dΦΥ ∗e−η′t22 Ũ (Φ, t2;Υ ) ,

Ũ (Φ, t2;Υ ) =


dt0dΓ∆


Φ − Φ̃


δ

t2 − ε2t0


X (Γ ,Φ, t0, t2;Υ ) .

(39)

Thereby, t0 and Γ integrations can be folded into the surviving Φ , t2 integrations so that the remaining functional
dependence on Υ ∗ becomes transparent, as follows. Since X in (38) is independent of Υ ∗, then the functional derivative
of U with respect to Υ ∗ follows by inspection:

δU/δΥ ∗
= e−η′t22 Ũ (Φ, t2;Υ ) . (40)

4.5. Kinetic equations

Using the trial function (34) and the technique of Section 4.4, a kinetic equation for Υ is implied by the extrema of C , as
follows from setting the functional derivative of C with respect to Υ ∗ to zero. In light of Section 4.2 and the expression for
action (35), the variational problem can be cast in terms of the analysis of Section 4.4 with X of (38) given by

X (Γ ,Φ, t0, t2;Υ ) = iε2Ψ̂ ∗
{∂Ψ0/∂t2 − L1Ψ1} , (41)

withΨ0 andΨ1 as in (24) and (27), and the operator L1 as in (19). Since ε ≪ 1, the lower limit of the integration in (27) can
be set to −∞ and the kinetic equation for Υ becomes

∂Υ

∂t2
=


k,k′

Dkk′


∂

∂Φk
−
β

2
fk

 
∂

∂Φk′
−
β

2
fk′


Υ −

δZ
δΥ ∗

, (42)

Z(Υ ) =


k


dΦdt2e−η′t22Υ ∗


dΓ∆


Φ − Φ̃


Ψ̂ ∗Πk

∂Ψ o
1 (Γ ,Φ;Υ )

∂Φk
. (43)

In obtaining (42) the following was used:

∂Ψ̂

∂Φk
= −

β

2
fkΨ̂ . (44)

The thermal-average force fk is given by (28). The diffusivities Dkk′ are related to correlation functions of the momenta
conjugate toΦ via

Dkk′ =

 0

−∞

dt ′0


dΓ∆


Φ − Φ̃


Ψ̂ 2ΠkeL0t ′0Πk′ =

 0

−∞

dt ′0

ΠkeL0t ′0Πk′


. (45)

The notation ⟨· · ·⟩ implies a Ψ̂ 2-weighted,Φ-constrained phase space average:

⟨· · ·⟩ =


dΓ∆


Φ − Φ̃


Ψ̂ 2 (· · ·) . (46)

The initial termΨ o
1 is folded into the Z term. In the above, it was assumedΨ o

1 is independent of Υ ∗ and lies in the null space
of L0, as is shown below.
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Using the symmetry rule (31), one may obtain a dynamical equation for Υ ∗ as the complex conjugate of (42). Inserting
the equations for Υ and Υ ∗ in (37) yields

∂W
∂t2

= Υ
δZ
δΥ

− Υ ∗
δZ
δΥ ∗

−


k,k′


∂

∂Φk


β

2
fk′ {Dkk′ + Dk′k}W


+ Υ

∂2 (Dkk′Υ
∗)

∂Φk∂Φk′
− Dkk′Υ

∗
∂2Υ

∂Φk∂Φk′


, (47)

a kinetic equation for the CG probability densityW . Defining G such that,

Ψ o
1 = Ψ̂G (Φ;Υ ) , (48)

yields

Z =


k


dΦdt2e−η′t22Υ ∗


Πk

∂G
∂Φk


. (49)

4.6. Closure of the kinetic equation for W: identifying initial statistical states leading to Smoluchowski behavior

For a closed system, the N-particle position-momentum density ρ maintains normalization, as can be verified via
integration of the LE over allΓ . This does not guarantee that conservation is maintained for the reduced densityW of (36). It
is shownhere that a closed, conserving equation forW does exist under appropriate restrictions on the initial statistical state.
Earlier, a conserving and closed equation of the Smoluchowski form was derived for stochastic CG dynamics starting with
the LE and using a multiscale perturbation method [20,32,33,41]. Here, we investigate the emergence of the Smoluchowski
equation forW that follows from a particular class of initial data Ψ o

1 .
Consider a condition on the initial statistical state for which W (36) displays Smoluchowski behavior. In the multiscale

framework, this state (denoted ρo) is given by

ρo(Γ ) = ρ

Γ , Φ̃(Γ ); tn = 0 with n = 0, 1, . . . ; ε


. (50)

To O (ε), the initial state of the associated auxiliary function is given by

Ψ o
= Ψ̂ Υ (Φ (Γ ) , t2 = 0)+ εΨ o

1 (Γ ,Φ (Γ ) , t2 = 0) . (51)

With this, the initial statistical state question reduces to a consideration of Ψ o
1 for which W satisfies a Smoluchowski

equation.
The rate equation for W (47) can be reduced to Smoluchowski form for a specific choice of the initial term Ψ o

1 . In the
present notation, the Smoluchowski equation has the form

∂W
∂t2

=


k,k′

∂

∂Φk


Dkk′


∂

∂Φk′
− βfk′


W


. (52)

From the comparison of (47) and (52) one obtains the following condition on the initial term

Υ
δZ
δΥ

− Υ ∗
δZ
δΥ ∗

=


k,k′


∂

∂Φk


∂

∂Φk′
−
β

2
fk′


(Dkk′W )+ Υ Dkk′

∂Υ ∗

∂Φk′


+

∂

∂Φk′


β

2
fkDkk′W − Υ ∗Dkk′

∂Υ

∂Φk


.

(53)

Since the LHS of (53) involves an integral over Γ , there is a rich class of initial statistical states Ψ o
1 satisfying this restriction.

The above development opens theway to understanding the relationship between the initial statistical state and the closure
of a reduced description. Non-closure of the kinetic equation for W arises due to the incompleteness of a chosen set of CG
variables. The existence of slow variables not included in the description wouldmanifest itself in long-time behaviors of the
correlation functions underlying the diffusion coefficients (45).

That this result was also obtained using multiscale perturbation theory [45], provides a validation for the variational
approach. The above demonstrates how the variational approach can yield closed conserving equations for the probability
of the CG state.

5. Conclusions

A variational approach for time-dependent classical many-particle systems is presented and shown to imply the LE. This
variational approach can be used to optimize trial functions generated, e.g., via intuitive arguments or perturbation theory.
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The key to the variational approach is an auxiliary function Ψ that depends on the 6N particle positions and momenta.
The approach is based on a quadratic functional in Ψ and has a form similar to that of the quantum least-action principle.
It is only when Ψ is complex-valued that the variational principle yields non-trivial results, i.e., enables the derivation of
approximations for nonequilibrium many-particle systems.

There aremany functionals whose extrema satisfy the LE. That presented here is expressed in terms ofΨ and its complex
conjugate. It has a number of interesting properties. First, it yields known results such as the Vlasov and Smoluchowski
equations when appropriate trial functions are used. The question remains as to whether the form (12) is, in some sense,
more fundamental than others, or does it simply have technical advantages in deriving approximate solutions to the LE? Its
analogy with the quantum least-action principle does not necessarily indicate that it is fundamental. However, both the LE
and the Schrödinger equation are linear so that there may be merit in casting variational approaches in terms of bilinear
functionals. To accomplish this, we introduceΨ for which |Ψ |

2 is the N-particle position-momentum probability density ρ,
further continuing the analogy with the quantum least-action principle. The multiscale character of many-particle systems
suggests that ρ, and hence the auxiliary function Ψ , has multiscale structure. It was shown in Sections 3 and 4 that the
multiscale perturbation method facilitates the development of trial functions to be optimized by the variational principle.
A method to facilitate the use of multiscale trial functions was presented.

Results show that the variational principle can lead to an equation for the reduced probability of CG variables that is
not conservative, unless restrictions are placed on the initial statistical state of the system. One of the origins of this non-
conservation is the existence of additional CG variables not included in the model, but which couple to those which are
included. The question of probability conservation is shown to be related to the initial statistical state of the system. For
example, if the system was initialized with a shock wave, then inertial behavior would be important and therefore a non-
inertial Smoluchowski dynamics would be inappropriate. A specific example of these restrictions is givenwhich leads to the
conserving Smoluchowski equation for a set of CG variables.

The introduction of the specific variational functional, integrationwithmultiscale perturbation theory, andmean-field or
other intuitive argumentsmakes the present variational approach of great potential value for deriving approximate solutions
to nonequilibrium problems in many-particle classical systems.

If Ψ is an exact solution to the LE, then the variational functional is zero. Thus, the value of the variational functional
provides an assessment of the quality of an approximation based on an optimized trial function. This measure can be used
via a sequence of trial functions to determine if there is a sense of convergence, e.g., for trial functions based on multiscale
perturbation theory of various orders in the perturbation parameter.

The trial functions proposed here are based on multiscale perturbation theory. Such trial functions lead naturally to a
mean-field argument at the CG, and not at the single-particle scale. Coarse-grained mean-field approximations account for
realistic damping, and not that of Landau [46]. This is seen for the calculations of Section 3 via the appearance of the diffusion
factors in the expression for Ψ1 (27) provided in (45) (Section 4.5).

As an example, consider a mean-field approximation for the coarse-grained factor Υ of Sections 3 and 4. In particular,
take the CG variables Φ to be the scaled positions of each atom in a liquid argon droplet. This scaled position variable is
defined so that it undergoes a unit displacement as the atom traverses the million-atom droplet. Thus, the dependence of Υ
on scaled atomposition describes the long space–time dynamics of the droplet. On these long scales, each particle has ample
time, and traverses sufficiently long distances, to interact with many others. This suggests that, to good approximation, Υ
can be written as a product of factors, one for each atom. Unlike for the N-particle density directly, it is arguable that each
particle interacts with an average environment, the ‘‘mean field’’. Thus, based on this mean-field coarse-grained picture one
may use the variational approach to derive an equation for the density of a viscous many-atom droplet. It is concluded here
that the variational approach with multiscale trial functions holds great promise for arriving at novel equations describing
the kinetics of nonequilibrium condensed classical systems.
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Appendix

Consider the effect of complex-valuedness of Ψ in the polar representation, i.e., Ψ = R exp (iΘ) for Γ , t-dependent
factors R andΘ . Using the same arguments as in Section 2.2, one obtains

C (R,Θ) = i


dtdΓ e−ηt2R exp (−iΘ)ΩR exp (iΘ) = −


dtdΓ e−ηt2R2ΩΘ. (A.1)

Thus, δC/δR = 0 leads to the LE for the phase.
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Using integration by parts and the fact that R vanishes at the boundaries of Γ space, (A.1) can be rewritten in the form

C (R,Θ) = −


dtdΓ e−ηt2


∂

∂t


R2Θ


−ΘΩR2


. (A.2)

The first term in (A.2) does not contribute as can be seen after its integration over t by parts. Thus, δC/δΘ = 0 leads to the
LE for R.
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