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S U M M A R Y
We present a seismic waveform inversion methodology based on the Gauss–Newton method
from pre-stack seismic data. The inversion employs a staggered-grid finite difference solution
of the 2-D elastic wave equation in the time domain, allowing accurate simulation of all
possible waves in elastic media. The partial derivatives for the Gauss–Newton method are
obtained from the differential equation of the wave equation in terms of model parameters.
The resulting wave equation and virtual sources from the reciprocity principle allow us to apply
the Gauss–Newton method to seismic waveform inversion. The partial derivative wavefields are
explicitly computed by convolution of forward wavefields propagated from each source with
reciprocal wavefields from each receiver. The Gauss–Newton method for seismic waveform
inversion was proposed in the 1980s but has rarely been studied. Extensive computational
and memory requirements have been principal difficulties which are addressed in this work.
We used different sizes of grids for the inversion, temporal windowing, approximation of
virtual sources, and parallelizing computations. With numerical experiments, we show that the
Gauss–Newton method has significantly higher resolving power and convergence rate over the
gradient method, and demonstrate potential applications to real seismic data.

Key words: finite difference methods, Frechét derivatives, synthetic seismograms, wave
equation, waveform inversion.

1 I N T RO D U C T I O N

Seismic waveform inversion can be defined as an iterative proce-

dure for obtaining physical properties of the Earth from pre-stack

seismic data. It is well known that the inversion of seismic data is

a computationally demanding task. Early studies include those of

Lailly (1983) and Tarantola (1984) who presented a method of con-

structing the gradient (or steepest descent) direction for the inversion

of the acoustic problem without computing the partial derivatives

explicitly. This method constructs the gradient direction by cross-

correlating forward propagated wavefields from a seismic source

with backward propagated wavefields from the data residuals. As

each iterative loop of the inversion requires only several forward

simulations for each seismic source, it made seismic waveform in-

version feasible in the 1980s. Mora (1987) applied this method to

elastic problems in the time domain, whereas Pratt (1990) and Pratt

et al. (1998) applied it to elastic and acoustic problems, respectively,

in the frequency domain.

Tarantola (1984) also presented the Gauss–Newton algorithm

called ‘total inversion’ (Tarantola & Valette 1982), although it was

not possible to implement when it was presented because of limited

computational resources. In recent years, however, it has become

feasible. Pratt et al. (1998) used ‘virtual source’ terms to obtain

partial derivative seismic wavefields which had been used for elec-

tromagnetic problem (Rodi 1976), and solved seismic waveform in-

version with the Newton method. The partial derivative wavefields

are obtained from new wave propagation simulations driven by the

virtual sources at the grid points where model parameters are deter-

mined. In other words, the number of required forward simulations

is equal to the number of model parameters.

Shin et al. (2001) used an efficient method for calculating partial

derivative wavefields using the reciprocity relation between the vir-

tual sources and the receivers. The reciprocity theorem is proven

in Aki & Richards (1980) for an elastic anisotropic continuous

medium. This theorem allows the source–receiver locations to be

interchanged. The recorded seismograms are identical if the sources

and receivers are located inside the domain or on its boundary

(Eisner & Clayton 2001). Thus, the computation of the partial deriva-

tive wavefields doesn’t depend on the number of model parameters

but depends on the numbers of shots and receivers.

Although developments in computer technology have been im-

pressive, it has been impractical to make use of a Newton type

method for high-resolution seismic inversions. To avoid extremely

expensive computation of the Jacobian or the Hessian matrix, Hicks

& Pratt (2001) proposed a two-step inversion procedure. The back-

ward propagation method is used for finding reflectors consisting

C© 2006 The Authors 1373
Journal compilation C© 2006 RAS



1374 D.-H. Sheen et al.

of a large number of parameters, and then the Newton method is

applied to background velocities with a much smaller number of

parameters. Shin et al. (2001) took advantage of the diagonally

dominant nature of the ‘approximate’ Hessian matrix (Pratt et al.
1998). Diagonal elements of the approximate Hessian were used as

a pre-conditioner for an iterative inversion. In all of these studies,

the finite element method was used to solve the forward acoustic

problems.

Pratt et al. (1998) and Shin et al. (2001) used a frequency domain

method to carry out the inversion with discrete frequencies. By

selecting a few frequencies, the method allows a significant re-

duction in computational burden. However, success of the method

requires a careful selection of frequencies, which highlights the ro-

bustness of the time domain approach over the frequency domain

approach (Freudenreich & Shipp 2000). Temporal windowing in the

time domain approach, like discrete frequencies in the frequency

domain approach, is proven to have an important role in reducing

computation (Shipp & Singh 2002).

In this work, we apply the Gauss–Newton method to elastic wave-

form inversion in the time domain. The Gauss–Newton method is

known to show local quadratic convergence. Local minimization

algorithm, such as a gradient or Newton method, requires us to set a

initial model close to a true model. Such inversions, therefore, may

converge to a local minimum (Gauthier et al. 1986; Mora 1987).

Several approaches have been proposed to overcome this difficulty.

Traveltime analysis precedes and gives a initial background veloc-

ity model to the inversion (Shipp & Singh 2002). Decoupling the

high and low wavenumber of velocity variation has also been used

to make the solutions to converge to the correct model (Snieder

et al. 1989; Symes & Carazzone 1991; Clément et al. 2001; Hicks

& Pratt 2001). They used different types of the misfit function to

avoid falling into local minima: the simplex method, the differen-

tial semblance optimization, the migration based traveltime, and

the adaptive depth stretching. Following Shipp & Singh (2002) and

Sirgue & Pratt (2004), we assume that the initial model is close

to the global minimum, which can be obtained from the traveltime

analysis.

Because seismic waveform inversion is the systematic fitting of

synthetic to observed seismograms, it is important to generate ac-

curate seismogram which can account for subsurface elastic fea-

tures. Thus, we use the velocity-stress staggered-grid finite differ-

ence method (Levander 1988) to solve the elastic wave equation in

the time domain and implement the perfectly matched layer (PML)

method (Berenger 1994) as an absorbing boundary condition. The

solution of the elastic wave equation allows us to use multicompo-

nent data. The major obstacle to seismic waveform inversion is the

explicit calculation of the Jacobian and the approximate Hessian ma-

trices. To overcome this, we utilize the reciprocity principle and the

convolution theorem. A Newton type seismic waveform inversion

still requires huge amounts of memory and computation. For elastic

problems, much more resources are required than those for acous-

tics. We surmount the limitation by using different sizes of grids

in the spatial and time domains for the inversion stage, temporal

windowing, approximation of virtual sources, and parallelizing the

method for massively parallel computers using the message pass-

ing interface (MPI) approach. Integration of all these features make

it possible to implement the classical seismic waveform inversion

scheme presented in Tarantola (1984).

This paper is organized as follows: we recap the inverse problem

and show how to use the reciprocity principle and the convolution

theorem for calculating partial derivatives explicitly. We then present

the more detailed inversion scheme used in this work and illustrate

how the Gauss–Newton method outperforms the gradient method.

We conclude by showing several numerical examples illustrating

the application of seismic waveform inversion.

2 I N V E R S E P RO B L E M

Seismic waveform inversion is the problem of finding properties

of the Earth from seismic data. In order to infer a set of model

parameters which represent the Earth, the inverse problem seeks

to minimize the residuals between the model response obtained by

forward simulation and the observed seismic data.

In general, the seismic responses d of the Earth represented by

model parameters m would be recorded at receivers. This relation-

ship can be expressed with the non-linear functional F:

d = F(m). (1)

The residual error is defined as the difference between the model

responses and the observed data:

�d = F(m) − dobs4
, (2)

where dobs is the observed data. We now introduce the least-squares

problem:

Sd (m) = 1

2
‖�d‖2 = 1

2
�dt�d, (3)

where Sd means the data misfit function, the factor 1/2 allows sub-

sequent simplifications, and the superscript t represents the matrix

transpose. The inverse problem becomes the minimization of Sd .

Thus, our purpose is to find a model m∗ which minimize Sd (m∗).

2.1 Gradient method

The gradient method minimizes Sd by updating model parameters

in the opposite direction of the gradient of Sd (m) iteratively:

mn+1 = mn − α∇Sd , (4)

where the superscripts represent iteration numbers and α is a step

length. The gradient direction can be obtained by taking partial

derivatives of eq. (3) with respect to model parameters m:

∇Sd =
[

∂Fi (m)

∂m j

]t

�d = Jt�d,

(i = 1, . . . , NS × NR; j = 1, . . . , M), (5)

where Jt is a transpose of the Jacobian matrix, the subscripts i and j
indicate indices for seismograms and model parameter, respectively,

and NS, NR and M are the numbers of shots, receivers and model

parameters, respectively.

It is not necessary to compute the Jacobian explicitly so as to find

the gradient direction. The backward propagation method requires

only several forward computations to construct the gradient direc-

tion. Formal derivations for the backward propagation method are

given by Tarantola (1984) and Mora (1987).

2.2 Newton method & Gauss–Newton method

It is well recognized that the Newton and Gauss–Newton meth-

ods are effective and robust techniques for numerical optimization

of non-linear problems and guarantee faster convergence rates than

the gradient method when the initial model is close enough to a local

or the global minimum. In geophysical inverse problems, however,

the Newton method has not been often used because it is difficult to
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compute the Hessian matrix and the cost usually surpasses the gain.

The Hessian matrix is the analogue of the second-order derivative.

Pratt et al. (1998) calculated the second-order derivative using the

second order virtual source which requires as many additional for-

ward simulations as the number of model parameters. In this work,

we use the Gauss–Newton method which neglects the second-order

derivative.

The Newton method (Tarantola 1987) is given by

mn+1 = mn − H−1Jt�d, (6)

where H is the Hessian matrix. Each element of the Hessian matrix

can be expressed in differential forms:

H = ∇2 Sd (m) = ∂

∂m p

[
Jt�d

] = Jt J + ∂Jt

∂m p
�d. (7)

Because the second term of eq. (7) is usually small and negligible

(Tarantola 1987), we obtain the Gauss–Newton formula

mn+1 = mn − [Jt J]
−1Jt�d = mn − [Ha]−1Jt�d, (8)

where Ha is the approximate Hessian matrix. The elements of the ap-

proximate Hessian are obtained from the zero-lag crosscorrelation

of the partial derivative wavefields and, specifically, the diagonal el-

ements of the matrix are obtained from the zero-lag auto-correlation

of the derivatives. The partial derivative wavefields are mostly un-

correlated with each other in the high-frequency limit. However, the

wavefields from adjacent nodes are more or less correlated because

the frequency content is finite. Thus, in general, the approximate

Hessian matrix will be diagonally dominant due to auto-correlation,

and banded due to finite frequencies. It is also known that the inverse

approximate Hessian matrix operates like a sharpening or focusing

filter (Pratt et al. 1998).

In the application of the Gauss–Newton method to geophysical

inversion, regularization is particularly useful for stabilizing the sys-

tem and incorporating a priori information to the problem (Tarantola

1987). The regularized misfit function S can be defined as,

S(m) = Sd (m) + λSm(m), (9)

where Sm is the model objective function that contains a priori
information of the model and λ is a scalar value that globally controls

the relative importance of the model objective function Sm . The

model objective function can be written as combinations of discrete

linear operator L:

Sm(m) = 1

2
‖L�m‖2. (10)

Then the regularized Gauss–Newton formula can be written as,

mn+1 = mn − αn
[
Jt J + λLt L

]−1
Jt�d, (11)

where α is a step length. We use the conjugate gradient method to

invert the regularized approximate Hessian to calculate the model

updates mn+1. If L = I (the identity matrix), eq. (11) yields the

damped least-squares method (Levenberg 1944; Marquardt 1963). If

L is a discrete spatial differential operator, the model objective func-

tion controls the roughness of spatial variations among the model

parameters. Sasaki (1989) used discrete 2-D Laplacian operator:

Pi�m = (�mi )
E + (�mi )

W + (�mi )
N + (�mi )

S − 4(�mi ),

(12)

where the superscripts E, W , N , and S refer to the four neighbours

of the ith model parameter and P i is the ith row of the Laplacian

operator matrix whose elements are either 1, −4, or 0. In this work,

these model objective functions are used simultaneously:

mn+1 = mn − αn
[
Jt J + λ1Pt P + λ2It I

]−1
Jt�d. (13)

A choice of λ value between 0 and infinity produces a compromise

result. After several computations, appropriate values of λ are cho-

sen asλ1 =0.05 andλ2 =0.0005. This means that 5 and 0.05 per cent

of the maximum value of diagonal elements of Jt J are added (Shin

et al. 2001), respectively.

The simplest way of choosing the step length is to take it as a

constant through all the iterations, which can be obtained by trial and

error. In this work, an optimal value of the step length is determined

by a linearized approach. The optimal value for αn is given by

αn ∼= [Jt gn]t [
F(mn) − dobs

]
[Jt gn]t [Jt gn]

, (14)

where

gn = [
Jt J + λLt L

]−1
Jt

[
dn − dobs

]
. (15)

For more details, see Gauthier et al. (1986) and Pica et al. (1990).

3 PA RT I A L D E R I VAT I V E S

Partial derivatives of seismic waveform inversion represented by the

Jacobian matrix J can be directly obtained from a residual wave-

field from two forward simulations with and without perturbations

of model parameters. For magnetotellurics data, Rodi (1976) showed

that partial derivatives can be obtained from solving forward prob-

lems with virtual sources at the perturbation locations. Pratt et al.
(1998) applied this to acoustic waveform inversion. This approach

is appropriate for the case in which there are many stations and a

few model parameters. Rodi also proposed a more efficient method

when the number of model parameters exceeds the number of the

data using the reciprocity principle. Shin et al. (2001) adopted this

approach for acoustic waveform inversion. In all previous studies,

the forward problems were solved in the frequency domain. In this

paper, we formulate the wave propagation simulation in the time

domain which is based on the finite difference method (Levander

1988), and use the PML boundary condition (Berenger 1994) as an

absorbing boundary condition. The convolution theorem is used to

utilize the virtual source and the reciprocity principle.

3.1 Partial derivative wavefields from virtual sources

In 2-D Cartesian coordinates, for an isotropic, linearly elastic

medium, the equations of motion can be written as a set of first-

order hyperbolic equations:

ρ v̇i = τi j, j + Fi ,

τ̇i j = μ (vi, j + v j,i ) + λ δi j vk,k + Gi j , (16)

where the symbols are given in Table 1.

In this formulation, the model parameters will be density, ρ, or

one of Lamé’s moduli, λ and μ. In the case of density as the model

Table 1. Definition of symbols.

Symbol Definition

v Velocity

τ Stress tensor

ρ Density

λ, μ Lamé’s moduli

δ i j Kronecker delta,

δ i j = 0 for i �= j and δ i j = 1 for i = j
F i , G i j Body force and traction source

,k Spatial derivative, ∂/∂xk

˙ Temporal derivative, ∂/∂t
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p q

m

F D

(a)

p q

m

F R

(b)

Figure 1. Schematic diagram for general reciprocal relation for partial

derivative wavefields. Partial derivative wavefields from a virtual source

(a) and a reciprocal source (b). Symbols p, q and m denote the indices for

a source, receiver and model parameter, respectively. F, D and R represent

the forward wavefield, differential wavefield from the virtual source and

reciprocal wavefield from the receiver, respectively.

parameter, eq. (16) is differentiated with respect to a ρp:

ρ
∂v̇i

∂ρp
= ∂τi j, j

∂ρp
− ∂ρ

∂ρp
v̇i ,

∂τ̇i j

∂ρp
= μ

(
∂vi, j

∂ρp
+ ∂v j,i

∂ρp

)
+ λ δi j

∂vk,k

∂ρp
, (17)

where−(∂ρ/∂ρp)v̇i is a virtual source for the partial derivative wave-

fields ∂v i/∂ρp propagated from the location of a particular model

parameter, ρp . The virtual source in eq. (17) is obtained from solu-

tions of eq. (16). Partial derivative wavefields with respect to Lamé’s

moduli, are given in Appendix.

Simple Earth model can be represented by three parameters, such

as density and Lamé’s moduli or density, and P and S-wave veloc-

ities. Tarantola (1986) showed that the choice of model parameters

for elastic inversion of seismic data affects the performance of the

inversion. From numerical experiments, he chose density and P- and

S-wave impedances as adequate parameters for seismic waveform

inversion. In this paper, we choose density and P and S-wave veloc-

ities as the parameters. Expressions for partial derivatives in terms

of density and velocities, and density and impedances are also given

in Appendix.

3.2 Seismic reciprocity principle & convolution

Fig. 1 shows how the partial derivative wavefields are generated. The

virtual source m samples the wavefield driven by the source p. Then,

the partial derivative wavefield propagates from the virtual source to

the receiver q. Using the virtual source, thus, explicit computation

of the partial derivative wavefields requires as many as the number

of model parameters of the forward simulation.

Seismic waveform inversion is usually an underdetermined prob-

lem which means the number of parameters exceeds the data. A

more efficient way of evaluating partial derivatives is to use the reci-

procity principle. The reciprocity principle (Aki & Richards 1980)

allows the source–receiver locations to be interchanged. Thus, we

can get the same partial derivative wavefield at the virtual source m
which is propagated from the receiver q with the forward wavefield

F recorded at the virtual source m. This can be calculated by convo-

lution of two wavefields, F and R, at the virtual source m. Then, the

number of forward simulations for the derivatives doesn’t depend

on the number of parameters but depends on the number of shots

and receivers.

In the frequency domain, the partial derivative wavefield can be

obtained by convolution of the forward wavefield F with the recipro-

cal wavefield R which is the impulse response of the delta function.

This approach, however, is based on the time domain finite differ-

ence method and can only use limited frequency band of a source

function. In a sense, thus, it is a bandpass filtered partial derivative

wavefield that we can obtain from this approach. Because the seis-

mic data for digital processing and numerical analysis are discrete

and they can’t carry information above a threshold frequency, for

example, Nyquist frequency, our limited frequency band of partial

derivative wavefields still guarantee the resolution of the problem.

We can decompose the Jacobian matrix J into virtual sources and

reciprocal wavefields:

J m
p,q = Fm

p ∗ Dm
q = Fm

p ∗ Rm
q , (18)

where ∗ means convolution.

It should be noted that the reciprocal wavefields are identical only

if the orientations of the source and the receiver match (Arntsen &

Carcione 2000; Sheen et al. 2004). Fig. 2 shows how to generate the

partial derivative wavefields with the reciprocity principle. Config-

uration (i) can be decomposed into (ii) and (iii). By the reciprocity

principle, those configurations can be replicated by (iv) and (v). The

relations between configurations (iii) and (v) of Fig. 2(a) and be-

tween (ii) and (iv) of Fig. 2(b) show that the locations of source and

receiver should be reciprocal as well as the orientations. Thus, for

example, the reciprocal simulation of the horizontal motion from

the source can be generated by summing horizontal and vertical re-

sponses from a horizontal source (see Fig. 2a). This suggests that

eq. (18) becomes

J m
p,q = (

J m
p,q

∣∣
x
, J m

p,q

∣∣
z

)
, (19)

where

J m
p,q

∣∣
x

= Fm
p

∣∣
x
∗Rm

q x

∣∣
x
+ Fm

p

∣∣
z
∗Rm

q x

∣∣
z
,

and

J m
p,q

∣∣
z
= Fm

p

∣∣
x
∗Rm

q z

∣∣
x
+ Fm

p

∣∣
z
∗Rm

q z

∣∣
z
,

where |x and |z represent the orientation of recorded wavefields and

x and z mean the orientation of the source component.

3.3 Jacobian & approximate Hessian matrix

The gradient direction in eq. (5) can be obtained by

Jt�d = J m
p,q ⊗ �dp,q , (20)

where ⊗ means zero-lag crosscorrelation and �dp,q represents the

residual at the receiver q of the shot gather with the source p. Before

crosscorrelating the Jacobian and the residual, the residual should

be convolved with the source function used for the reciprocal wave-

fields R. The procedure to compute the Jacobian matrix, the gradient

direction and the approximate Hessian matrices for multi shots is

summarized below:

(i) Simulate all forward wave propagations from the sources and

sample forward wavefields at the model parameter m. Compute the

residuals;

(ii) Simulate reciprocal wave propagations from the horizontal

and vertical component of the receiver q, respectively. Sample re-

ciprocal wavefields at the model parameter m;

(iii) Convolve the source function of step (ii) and the residuals

from step (i);

(iv) Construct the Jacobian matrix consisting of partial derivative

wavefields obtained from convolving wavefields from steps (i) and

(ii);
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(a) Horizontal receiver (b) Vertical receiver

(i)

(ii)

(iv)

(iii)

(v)

(i)

(ii)

(iv)

(iii)

(v)

Figure 2. Reciprocal reconstructions of horizontal response (a) and vertical response (b). Star and triangle denote seismic source and receiver, respectively.

Black arrows represent source orientations and white arrows receiver orientations, respectively.

(v) Calculate the gradient direction by zero-lag crosscorrelation

of the wavefields from step (iv) and (iii).

(vi) Calculate the approximate Hessian matrix by zero-lag cross-

correlation of the Jacobian matrix from step (iv).

The explicit calculation of the Jacobian requires NS + 2NR simula-

tions.

The drawback of the Gauss–Newton method, exclusive of the

computational demands, is a huge memory requirement to store

the Jacobian and the approximate Hessian matrices. Furthermore,

the procedure for constructing the Jacobian already costs huge

amounts of the memory [see step (i), above]. However, it turns out

that the Jacobian matrix does not have to be computed and stored

as a whole. Because we can divide the Jacobian matrix into sub-

matrices, it is possible to compute the approximate Hessian matrix as

follows:

Ha = Jt J = [
Jt

1 · · · Jt
NR

] ⎡⎢⎣ J1

...

JNR

⎤⎥⎦ =
NR∑
p

Jt
pJp. (21)

Therefore, the full Jacobian matrix does not have to exist at one

time. The approximate Hessian matrix can be computed by sum-

ming a series of elements. Each element in Ha is a zero lag cross-

correlation of two partial derivatives at the receiver locations. At

the high-frequency limit, these wavefields would be perfectly un-

correlated with each other. However, the partial derivatives from

adjacent nodes are correlated to some extent at finite frequencies.

Thus Ha is diagonally dominant, due to the auto-correlation on

the diagonal and banded due to the finite frequency effects (Pratt

et al. 1998). In addition to this, the approximate Hessian ma-

trix is symmetric so that it’s not necessary for all elements to be

computed.

Because the full Jacobian matrix is not used, Jt gn in eq. (14) can

be obtained by a finite difference approximation:

Jt gn ∼= 1

ε
[F(mn + ε gn) − F(mn)] , (22)

where ε is a sufficiently small value. Then each iteration step of the

inversion requires 2NS + 2NR simulations.

3.4 Computational aspects

Although eq. (11) has been proposed several decades ago, it is still

a challenging work to solve this problem. The algorithm presented

here is implemented with the MPI on an IBM cluster which contains

two PowerPC970 2.2 GHz processors and 2 GB of memory in a node

and a total of 968 processors. Shipp & Singh (2002) parallelized the

backward propagation method so that each simulation runs on differ-

ent processors simultaneously. In this work, domain decomposition

is used for parallelizing the forward and reciprocal simulation. Each

processor solves the problem within its small subdomain, commu-

nicates with neighbouring processors to update wavefields at each

time step and samples forward or reciprocal wavefields within target

area in which model parameters are updated.

The resolution required by an accurate forward simulation and

the resolution that can be achieved by an inversion are quite dif-

ferent. Numerical stability criteria for wave propagation simula-

tions require smaller grid sizes in the spatial and time domains than

those for the inversion. Thus, we use different sizes of grids in

the spatial and time domains: a fine grid for forward and recipro-

cal simulations, and a coarse one for seismic inversion. After both

simulations, a virtual source for the inversion is generated by sum-

ming wavefields recorded at grid points inside the block for a model

parameter.

Because of block parametrization, partial derivatives of each vir-

tual source consist of a large number of partial derivatives inside a

block. As the number of grid points describing a virtual source in-

creases, the accuracy of the partial derivative seismogram increases

as well. However, there are no significant discrepancies, although

derivatives at only 4 grid points are used. Therefore, memory and

computation for the Jacobian matrix can be reduced by more than

90 per cent.

In the spatial domain, a model parameter is taken as a block and

in the time domain, longer sampling interval and time window of

wavefields are used. Required time window for wave propagation

simulations is determined to receive all possible reflected waves

from the subsurface. The simulation over the entire time window is

not necessary for the derivatives but for the residuals because the

derivatives are obtained from convolution of waves from a source

with those from a receiver. Thus we determine the time window

length (NTp) for the partial derivative by

N Tp = N T/2 + (DT + 2/C F)/dt + TP,
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(a) (b) (c)

Figure 3. Inversion results from 1-D model: (a) P-wave velocity structures of the true model and the initial model and (b and c) updated velocity structures

from the gradient method (b) and the Gauss–Newton method (c).

where NT and dt are the number of time step, the time increment

for wave propagation simulations, respectively, DT and CF repre-

sent a delay time and central frequency of a source time function,

respectively, and TP is a cosine tapering length. Consequently the re-

ciprocal simulations require about 70 per cent of computation of the

forward simulations, which reduces the computational and memory

burden significantly.

4 N U M E R I C A L R E S U LT S

In this section we present some inversion results of synthetic seismic

data to examine the resolving power of the Gauss–Newton seismic

waveform inversion. In all examples, the source is assumed to be

known and the synthetic data have been generated from the same

kernel as that used for the inversion.

4.1 Example 1

First, we use a simple layered model in which P-wave velocity varies

only with depth whereas density and S-wave velocity are assumed to

be constant and known. P-wave velocity of a initial model linearly

increases with depth (see Fig. 3). Only the vertical components of

seismogram are used as the observed data. Both source and receiver

are located at the free surface. The synthetic data has 5 shot gathers

which are generated by a point body force of the first derivative of

Gaussian function with a dominant frequency of 30 Hz. Each shot

gather has 20 receivers with a spacing of 100 m. The minimum and

maximum offsets are 100 and 1800 m, respectively. The grid spacing

and the time step for wave propagation simulation are 4 m and 0.4

ms, respectively, whereas, for the inversion, vertical and horizontal

grid spacings are different which are 20 and 40 m, respectively, and

the time step is 4 ms.

Fig. 3 shows the inversion results from the gradient and the Gauss–

Newton methods. The result from the gradient method is obtained

after 100 iterations and the residual error decreases to 1.0 per cent of

its initial value whereas the residual error from the Gauss–Newton

method, even only after 10 iterations, achieves 0.4 per cent reduc-

tion of the initial. As shown in Kolb et al. (1986), the model tends

to converge to the true model from the surface downward and the

resolution is decreasing with depth. As a rule, deeper part of the

model can be resolved after shallower part has been resolved. The

low-frequency content of the model is already given by the initial

model. In both inversions, the high-frequency content represent-

ing the discontinuity converges more rapidly than that of the inter-

mediate frequency representing the layer. As expected, the Gauss–

Newton method shows a good convergence rate and the gradient

method need much more iterations to resolve the deepest part of the

model.

Pre-conditioning of the gradient can improve the convergence

rate of the gradient method. However, the choice of pre-conditioner

significantly affects its efficiency. Here, a simple pre-conditioner is

considered in which we multiply the gradient by an arbitrary power

of depth. From several numerical experiments, the pre-conditioner

improves the convergence rate as much as about 20 per cent of the

gradient method. However, the Gauss–Newton method still shows

much faster convergence rate than the gradient method.

Fig. 4 shows the seismograms and the residuals. The scale of the

final residuals (Figs 4d and e) is twice as the others. The seismo-

gram from the true model (Fig. 4a) contains significant reflections

and multiples, all of which contribute to the inversion, whereas the

seismogram from the initial model (Fig. 4b) doesn’t show signifi-

cant events. Thus, the initial residual (Fig. 4c) shows most of events

from the true model. In the final residuals from the gradient method

(Fig. 4d), there are still intermediate frequency discrepancies gen-

erated from the intermediate spatial frequency content at shallow

and deep region of the model. The excellent recovery by the Gauss–

Newton method is shown in the final residuals (Fig. 4e). All events

are well recovered and, consequently, the final model is very close

to the true model (see Fig. 3c).

The inverse of the approximate Hessian matrix is known as a fo-

cusing filter or a normalizing pre-conditioner. The artefacts in the

model update from the gradient method can be effectively removed

by the Gauss–Newton method (Pratt et al. 1998). Shin et al. (2001)

showed that a diagonal approximation of the approximate Hessian

normalizes the gradient direction so that it improves a poorly scaled

image. Fig. 5 shows the model updates after the first iteration of

the gradient and the Gauss–Newton methods. The update of the

gradient method discriminates the shallow region more clearly than
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Figure 4. Comparison of vertical component seismograms and residuals from a shot-gather of five shot-gathers: (a) seismogram from the true model, (b)

seismogram from an initial model, (c) initial residuals, (d) final residuals from the gradient method (100 iterations) and (e) final residuals from the Gauss–Newton

method (10 iterations). For clarity, direct arrivals of (a) and (b) are removed. The scaling factor of the final residuals, (d) and (e), is 2 relative to the others.

Figure 5. Model updates from the first iterations by the gradient (a), and the Gauss–Newton method (b and c) corresponding to the gradient direction

(Jt�d) and the filtered gradients ([Jt J + λIt I]−1Jt�d and [Jt J + λ1Pt P + λ2It I]−1Jt�d), respectively. All images are scaled by its own maximum

value.

the deeper region whereas that of the Gauss–Newton method dis-

criminates the whole region. It is clearly shown in Fig. 3(c) that,

even after the first iteration, the Gauss–Newton method reveals the

velocity structure at deep region of the model. Also the former

mostly accounts for the high spatial frequency contents of the up-

date information but the latter contains the intermediate frequency

contents where is partly because of the Laplacian regularization op-

erator. The damping regularization operator stabilizes the inversion

but artefacts from shortage of source–receiver coverage still remain

in the update (Fig. 5b). This is reduced by the Laplacian operator

(Fig. 5c).

At each iteration, in this example, 5 simulations for the for-

ward simulation, 21 simulations for the reciprocal simulation with

a source at the receiver location and 5 simulations for finding an op-

timal step length were required. The backward propagation method

would only need 15 simulations at each iteration because it requires

the solution of three times as many forward simulations as the shots

(i.e. one to generate synthetic data, another to make the gradient, and

the third to compute the step length). Considering the convergence

rate and the resolving ability, the Gauss–Newton method is more

attractive than the gradient method or the backward propagation

method.

4.2 Example 2

The second example has complex geological structures consisting

of a fold, discontinuity and dipping layers (Fig. 6a). The model has

variations on density and S-wave velocity which were assumed to

be constant in the previous example. The relationships (Castagna

et al. 1993) between density, S-wave velocity and P-wave velocity

are assumed to be known as

β (km s−1) = −0.055 α2 + 1.017 α − 1.030,

ρ (g cm−3) = 1.5 α0.225. (23)

After updating P-wave velocities, the other two elastic parameters

are updated using these relationships.

The configurations, such as source properties, grid spacing and

time step, for the simulation and the inversion are same as before,
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Figure 6. Inversion results of example 2: (a) The true P-wave velocity model and (b) inversion result after 5 iterations. Note that the images are at the same

scale. Remnant of the initial velocity model can be seen from outsides of updated area of (b) which has vertical velocity variation monotonically increasing

with depth.
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Figure 7. P-wave velocity profiles of example 2 at three locations (see Fig. 6). The locations of profiles are at −0.4 km (a), 0.0 km (b) and 0.4 km (c) of the

model. The final models are obtained after 5 iterations.

including the initial model. However, the inversion requires more

information on the model than that on the previous model because

the level of complexity is significantly increased. Therefore, we

increase the number of observed data. We use 9 shot gathers and a

shot gather has 46 or 47 traces with a spacing of 40 m. The minimum

and maximum offsets are 80 and 1920 m, respectively. Both of the

horizontal and vertical components of the observed data are used

for the inversion.

Fig. 6(b) shows that the structures are correctly resolved within

the region of interest. The velocity profiles of the model are plotted

in Fig. 7 which compares these to the true model and the initial

model, showing that the velocities also agree with the true model.

Thus, it may be concluded that the inversion with the Gauss–Newton

method can identify a 2-D velocity structure very well and also

the properties of the model can be accurately estimated after a few

iterations. In this example, the inversion using both of the horizontal

and vertical components does not show a notable contribution to

the resolving power. Although we do not show the result from the

inversion considering only the vertical component of the observed

data, the velocities are also recovered accurately.

In this example, 4200 blocks of model parameters are consid-

ered. To solve this problem, 9 forward simulations, 98 reciprocal

simulations and 9 simulations for the step length are required at

each iteration which takes about 14 min on the IBM cluster, de-

scribed previously, with 48 CPUs. Forward and reciprocal simula-

tions take 3 and 27 per cent of total computing time, respectively, and

constructing the Jacobian and approximate Hessian matrix spends

66 per cent. Note that the reciprocal simulation requires about

70 per cent of computation of the forward simulation. The prin-

cipal memory requirements are about 1.0 GB for saving the for-

ward wavefields, Fm
p in eq. (18), about 75 MB for the Jacobian

matrix, J p in eq. (21), and about 67 MB for the approximate Hes-

sian matrix, Jt J in eq. (21), respectively. By virtue of the approxi-

mation of virtual sources, the largest memory requirement, 1.0 GB

for the forward wavefields, is reduced to 78 MB without any loss of

accuracy.

In order to invert the noise-corrupted data, we added 5 per cent

of Gaussian noise to the synthetic data. Fig. 8 shows seismograms

without and with Gaussian noises. In example 1, density and S-wave

velocity are assumed to be constant so that only P-wave arrivals are
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Figure 8. Vertical component seismograms of a shot-gather from example 2:

(a) original seismogram and (b) noise-corrupted seismogram. Direct arrivals

are removed.

observed. In this example, we consider all parameters have varia-

tions and, thus, it shows diverse P and S-wave arrivals. The inversion

of the noise-corrupted data was performed in the same way as be-

fore. The result of the inversion, Fig. 9, shows that the noise slightly

contaminates the model, but still yields an accurate identification of

the model.
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Figure 9. P-wave velocity profiles using noise-corrupted data of example 2 at three locations. The locations of profiles are at −0.4 km (a), 0.0 km (b) and

0.4 km (c) of the model. Density and S-wave velocity are updated by using eq. (23).

As shown by Tarantola (1986), the choice of model parameters is

not neutral in the inversion. From numerical experiments, variation

in density doesn’t affect the inversion much. In order to compare

convergent rates of P- and S-wave velocities, these velocities are

updated independently of each other, but density is fixed during the

inversion. Noise-corrupted data is used as observed data. Fig. 10

shows P and S-wave velocity profiles of the model. P-wave velocity

of the model is recovered well up to the last reflector, whereas the

inversion couldn’t recover S-wave velocity profile at depths larger

than 1 km as the data has limited information of S-wave velocity

beyond this depth.

4.3 Example 3

In this example, we consider a more realistic case instead of apply-

ing this method to real data. The data consists of 20 shot gathers

collected with a total of 125 receivers and has 50 per cent of Gaus-

sian noise (Fig. 11). The shot and receiver spacings are 600 and

120 m, respectively. The maximum offset of each shot gather is

6 km. The time step for wave propagation simulation is 0.001 s,

total record length is 2.25 s, and a dominant frequency of 8 Hz of

source is used. The length and depth of region of interest is 14 and

3.5 km, which consists of 9800 blocks of model parameters. The re-

lationships between density, S- and P-wave velocities are assumed

to follow eq. (23).

The inversion results are obtained after 3 iterations and shown

in Fig. 12. The result from noise-free data (Fig. 12b) shows ex-

cellent recovery of the true model and that from noise-corrupted

data (Fig. 12c) also shows good recovery. Higher contamination

in deeper region can be explained by relatively low signal to

noise ratio of late arrivals. Fig. 13 shows the velocity profiles

of the model. The agreement with the true velocity profile is

quite satisfactory, considering the crudeness of the noise-corrupted

data.

The inversion is performed with 48 CPUs and each iteration takes

3 hr mainly because of construction of the Jacobian and approximate

Hessian matrices, taking 83 per cent of computing time. The for-

ward and reciprocal simulations take 3 and 12 per cent, respectively.
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Figure 10. P- and S-wave velocity profiles using noise-corrupted data of example 2: (a)–(c) P-wave profiles, and (d)–(f) S-wave profiles. S-wave velocity is

updated independently of P-wave velocity but density is forced to be constant. The locations of profiles are at −0.4 km (a and d), 0.0 km (b and e), and 0.4 km

(c and f) of the model.

Comparison with the previous example indicates that the percent-

age increase of the computation time for the matrices is due to the

increase of number of model parameter.

5 C O N C L U S I O N S

Huge computational and memory requirements have prevented

solving the Gauss–Newton seismic waveform inversion (Tarantola

1984). Unfortunately, it is still a difficult problem. In this pa-

per, we have implemented a seismic waveform inversion scheme

based on the Gauss–Newton method. We used the velocity-stress

staggered-grid finite difference method (Levander 1988) for sim-

ulating seismic wave propagation in elastic media and the PML

method (Berenger 1994) as an absorbing boundary condition. This

approach allows us to accurately simulate seismic wavefields, use

multicomponent data, and resolve subsurface elastic features cor-

rectly and efficiently. Explicit computations of the Jacobian and

the approximate Hessian matrices have been carried out by the

reciprocity principle and the convolution theorem, which signifi-

cantly reduces the number of forward simulations. To overcome the

computational and memory limitation, we used different sizes of

grids in the spatial and time domains for the inversion, temporal

windowing for the partial derivative and approximation of virtual

sources, and parallelized all these approaches on massively parallel

computers.

In numerical experiments, the Gauss–Newton seismic waveform

inversion has been successfully applied to resolve the high and in-

termediate spatial frequency content of the model. In particular,

the results show that the Gauss–Newton method has faster conver-

gence rate than the gradient method for seismic waveform inver-

sion. Furthermore, not only does the method recover the structure

correctly, but also estimates velocities accurately. Further work

is required to study the effect of the choices of model param-

eters and, most importantly, to test the method for real seismic

data.
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Figure 11. Vertical component seismograms for example 3: (a) original seis-

mogram and (b) noise-corrupted seismogram. Direct arrivals are removed.

Figure 12. Inversion results of example 3: (a) The true P-wave velocity

model, (b) inversion result from noise-free data, and (c) from noise-corrupted

data. Both inversion results are obtained after three iterations. Note that the

images are at the same scale.
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A P P E N D I X A : PA RT I A L D E R I VAT I V E S

In this Appendix we present the differentiations of the wave equa-

tion with respect to model parameters for different choices of pa-

rameters. In the case of model parameters of density, ρ, and one of

Lamé’s moduli, λ and μ, the differential equations are given by

ρ
∂v̇i

∂ρp
= ∂τi j, j

∂ρp
− ∂ρ

∂ρp
v̇i ,

∂τ̇i j

∂ρp
= μ

(
∂vi, j

∂ρp
+ ∂v j,i

∂ρp

)
+ λ δi j

∂vk,k

∂ρp
, (A1)

ρ
∂v̇i

∂λp
= ∂τi j, j

∂λp
,

∂τ̇i j

∂λp
= μ

(
∂vi, j

∂λp
+ ∂v j,i

∂λp

)
+ λ δi j

∂vk,k

∂λp
+ ∂λ

∂λp
δi j vk,k, (A2)

and

ρ
∂v̇i

∂μp
= ∂τi j, j

∂μp
,

∂τ̇i j

∂μp
= μ

(
∂vi, j

∂μp
+ ∂v j,i

∂μp

)
+ λ δi j

∂vk,k

∂μp

+ ∂μ

∂μp
(vi, j + v j,i ). (A3)

where eq. (A1) is equvalent to eq. (17). For model parameters of

density, ρ, and P- and S-wave velocities, α and β, the equations are

given by

ρ
∂v̇i

∂ρp
= ∂τi j, j

∂ρp
− ∂ρ

∂ρp
v̇i ,

∂τ̇i j

∂ρp
= μ

(
∂vi, j

∂ρp
+ ∂v j,i

∂ρp

)
+ λ δi j

∂vk,k

∂ρp
+ 1

ρ

∂ρ

∂ρp
τ̇i j ,

(A4)

ρ
∂v̇i

∂αp
= ∂τi j, j

∂αp
,

∂τ̇i j

∂αp
= μ

(
∂vi, j

∂αp
+ ∂v j,i

∂αp

)
+ λ δi j

∂vk,k

∂αp

+2 ρ α
∂α

∂αp
δi j vk,k,

(A5)

and

ρ
∂v̇i

∂βp
= ∂τi j, j

∂βp
,

∂τ̇xx

∂βp
= (λ + 2μ)

∂vx,x

∂βp
+ λ

∂vz,z

∂βp
− 4 ρ β

∂β

∂βp
vz,z,

∂τ̇zz

∂βp
= λ

∂vx,x

∂βp
+ (λ +2μ)

∂vz,z

∂βp
− 4 ρ β

∂β

∂βp
vx,x ,

∂τ̇xz

∂βp
= μ

(
∂vx,z

∂βp
+ ∂vz,x

∂βp

)
+ 2

β

∂β

∂βp
τ̇xz .

(A6)

For model parameters of density, ρ, and P- and S-wave impedances,

IP and IS, the equations are given by

ρ
∂v̇i

∂ρp
= ∂τi j, j

∂ρp
− ∂ρ

∂ρp
v̇i ,

∂τ̇i j

∂ρp
= μ

(
∂vi, j

∂ρp
+ ∂v j,i

∂ρp

)
+ λ δi j

∂vk,k

∂ρp
− 1

ρ

∂ρ

∂ρp
τ̇i j , (A7)

ρ
∂v̇i

∂ I Pp
= ∂τi j, j

∂ IPp
,

∂τ̇i j

∂ IPp
= μ

(
∂vi, j

∂ IPp
+ ∂v j,i

∂ IPp

)
+ λδi j

∂vk,k

∂ IPp

+2
IP

ρ

∂ IP

∂ IPp
δi jvk,k,

(A8)

and

ρ
∂v̇i

∂ ISp
= ∂τi j, j

∂ ISp
,

∂τ̇xx

∂ ISp
= (λ +2μ)

∂vx,x

∂ ISp
+ λ

∂vz,z

∂ ISp
− 4

IS

ρ

∂ IS

∂ ISp
vz,z,

∂τ̇zz

∂ ISp
= λ

∂vx,x

∂ ISp
+ (λ +2μ)

∂vz,z

∂ ISp
− 4

IS

ρ

∂ IS

∂ ISp
vx,x ,

∂τ̇xz

∂ ISp
= μ

(
∂vx,z

∂ ISp
+ ∂vz,x

∂ ISp

)
+ 2

IS

∂ IS

∂ ISp
τ̇xz .

(A9)
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