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Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms
of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability
density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set
of stochastic equations for the order parameters whose dynamics is driven by thermal-average
forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other
supramillion atom nanosystems. This algorithm allows for sampling of a wide range of
configurations without creating an excess of high-energy, improbable ones. It is implemented and
used to calculate thermal-average forces. These forces are then used to search the free-energy
landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of
Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems
whose properties are described by the CHARMM or other interatomic force field. Our
implementation, denoted SIMNANOWORLD , achieves calibration-free nanosystem modeling.
Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall
character is provided via predicted values of order parameters. Applications from virology to the
computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for

nonenveloped viruses are envisioned. © 2010 American Institute of Physics.

[doi:10.1063/1.3316793]

I. INTRODUCTION

The behavior of nanosystems like viruses and nanocap-
sules has recently been described in terms of order param-
eters (OPs), which coevolve with a quasiequilibrium distri-
bution of atomistic conﬁgurations.l_4 The OPs describe
nanoscale features and evolve via stochastic equations. In the
present context, OPs describe overall features of a nanosys-
tem such as shape, global orientation, or large scale structure.
A necessary requirement for an OP is that it be obtained by
averaging over a large number of atomic variables, i.e., is a
collective variable. This use of the term OP is distinct from
that of some other authors (see papers in Ref. 5), notably
which are not collective variables (e.g., torsional angle or
reaction coordinate that are highly fluctuating and incoher-
ent). The driving forces for OP dynamics are a coherent
thermal-average contribution and a random one. The key to
our approach is an automatable formalism for constructing
OPs and a rigorous framework for deriving equations for
their stochastic dynamics. The overall logic of the physical
picture is suggested in Fig. 1. Here, we focus on the compu-
tation of the thermal-average forces which must be executed
with great efficiency considering that the nanosystems of in-
terest are supramillion atoms in scale.

OPs describe larger-scale features involving many atoms
and hence they evolve on timescales much longer than
10~'* s characteristic of atomic collisions/vibrations. Hence,
a novel multiscale analysis was used to derive rigorous equa-
tions for the stochastic dynamics of OPs.>™*% These equa-
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tions are driven by thermal-average forces that are the gra-
dient of the free energy constructed from an ensemble
constrained to fixed OP values. Here, we present an algo-
rithm for constructing these thermal-average forces and dem-
onstrate it for determining the thermal structure of a virus.

Many nanosystems like viruses undergo structural tran-
sitions that take place on timescales much greater than that
of atomic collisions/vibrations.”'? Multiscale analysis is a
natural way to understand these phenomena.n’15 In the
present approach, OPs are used to capture the slow overall
transformation of a system from one state to another. These
OPs are introduced and our deductive multiscale analysis
indicates that they determine the characteristics of the en-
semble of atomic configurations. In turn, the latter drives the
evolution of the OPs via thermal-average forces (Fig. 1). In a
deductive multiscale approach, the Liouville equation is
solved via a perturbation expansion in a ratio of characteris-
tic masses, lengths, or times. The solution to the Liouville
equation for the N-atom probability density is undetermined
to lowest order unless, as with classic ensemble theory, an
entropy maximization hypothesis is adopted. This theme has
been explored in detail in the context of nanosystems,3 In the
next order in the multiscale theory, an equation of stochastic
OP evolution is obtained wherein the coherent dynamics is
driven by a diffusivity matrix and thermal-average forces,
and by a random force whose correlation properties are de-
termined by the same diffusivities. To apply this multiscale
methodology, the thermal-average forces and diffusion fac-
tors for a set of OPs must be calculated. As these factors
change with the values of the OPs, they must be computed
dynamically as the system evolves.

© 2010 American Institute of Physics
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FIG. 1. OPs characterizing nanoscale features affect the probability of ato-
mistic configurations which, in turn, determine forces driving OP dynamics.
This is an essential feature of the dynamics of a nanosystem and our mul-
tiscale approach as implemented in SIMNANOWORLD .

Our long-range goal is to predict bionanostructure via a
quantitative, calibration-free approach. To do so, we use an
underlying all-atom description which enables us to use an
interatomic force field (e.g., CHARMM, AMBERY6) to avoid
recalibration with experimental data. To construct the
thermal-average forces within this framework requires a
Monte Carlo approach and an efficient algorithm for gener-
ating a representative sample of atomistic configurations
constrained to fixed OP values. Difficulties in ensemble gen-
eration and free energy computation are discussed exten-
sively in Refs. 16—18. Here, we present a novel approach
based on a set of structural OPs and calculate the forces
driving their dynamics by efficient sampling of atomistic
configurations. We briefly mention other multiscale ap-
proaches and compare our method with them.

First, none of the other multiscale methods use our OPs.
Our approach in this regard provides self-consistency/
completeness criteria in terms of the relative magnitude of
the correlation function for the OP velocities. If this correla-
tion time is too long, it signals that key OPs have been omit-
ted. Since our OPs are automatically generated, this enables
an algorithm which can then be triggered to introduce addi-
tional OPs and restart the simulation. Model-free methods'
have the advantage that the diffusion factors and thermal-
average forces occurring in the Langevin equation of OP
dynamics need not be computed (unlike our multiscale ap-
proach). However, fluctuations are not treated rigorously and
the full coupling across scales in space and time is not main-
tained. Projection operator methods®*?! are often used as the
basis of a multiscale scheme. This approach involves
memory functions. If the latter have no long-time tails, then
the formalism is equivalent to our fully coupled multiscale
perturbation scheme. If the memory functions have long-
time tails, then they are not practical to compute via molecu-
lar dynamics (MD). This raises doubts as to the merit of
projection operator techniques versus our approach. If the
memory functions have long-time tails, then it is known that
more OPs should be added. This suggests another advantage
of our approach, i.e., automated generation of OPs. Force
matching22’23 represents a system by lumped elements and
uses MD data to calibrate the effective force field between
them, thus needing recalibration with each new system or
condition (e.g., pH). Our approach is calibration free because
it explicitly calculates thermal-average forces for each OP
introduced, only requiring the interatomic force field such as
CHARMM or AMBER. More fundamentally, force matching (1)
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ignores the dynamical updating of the relation between the
thermal-average forces and the OPs as the system evolves,
(2) ignores the highly frictional character of the internal pro-
cesses within each element and the stochastic forces on them.
Much of these difficulties stem from the dilemma that if the
lumped elements are too small, there is little computational
advantage, while if they are too large the internal degrees of
freedom/dissipative effects are ignored despite their likely
importance. Similar difficulties occur for simulating a mac-
romolecule embedded in a membrane, where the role of dis-
sipative and nonlinear effects in the continuum is ignored. In
metadynamics,24 the free energy surface is explored by ap-
proximating the local free energy as a running sum over
Gaussians and then traveling in the direction of decreasing
free energy. The free energy derivatives are calculated by
imposing these Gaussian constraints. However, this method
has only been demonstrated in small systems like alanine
dipeptide and not larger ones like viral capsids.
Milestoning25 uses local ensembles at specified points in a
given reaction pathway to calculate first-passage time distri-
butions that are then integrated to determine the overall time
scale of the system. Both milestoning and metadynamics re-
quire prior knowledge of the reaction coordinate. In our for-
malism, no such prior information is needed and thermal-
average forces for each OP value are calculated by sampling
the fixed OP ensembles, and the system evolves in the direc-
tion of decreasing free energy.

In Sec. II, we present OPs relevant for the analysis of
structural transitions in a nanosystem. It was shown that they
provide a natural starting point for a multiscale amatlysis.l’3
The end point of this analysis is a Smoluchowski equation
for stochastic OP dynamics driven by thermal-average forces
(Sec. IIT). In Sec. IV, we present a sampling algorithm for
computing the thermal-average forces. Our formalism pro-
vides the probability density for atomic configurations and a
stochastic (Langevin) dynamic for the OPs. We also provide
an algorithm for finding deep minima of the free-energy
landscape, and in Sec. V we present results using an imple-
mentation of our OP thermal-average forces as applied to
viral capsid structural transitions. Conclusions are drawn in
Sec. VL.

Il. ORDER PARAMETERS

In the present context, OPs are variables that character-
ize nanometer-scale features of a nanosystem.26 In our ap-
proach, a mapping is introduced that transforms a starting
point 7° into a new one 7 via

F=2 OUP). (1)
k

In our implementation, the basis functions U are products of
Legendre functions for the x, y, and z _directions, i.e.,
U,_((F")=uk1(x”)uk2(y”)uk}(z") with indices {k;,k,,k;} and 7°
=(x?,y%,z°). However, other basis functions can be used. The
OPs @, generate the deformation of space and, as shown
below, structural changes in a nanosystem. As one may
implement the construction of the OPs in a general way, only
the limits must be specified on the k sum of Eq. (1) to fix the
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detail of the coarse-grained description.1 The transformation
in Eq. (1) can be formulated such that it takes a reference
state (e.g., X-ray structure) to that for conditions of interest.
The @, determine the mix of the deformations that the nano-
structure can undergo. In contrast to coarse-grained bead
models (where one conjectures which structural subunits are
rigid and can be represented by structureless beads), our
method keeps track of the deformation of all space in the
system, including alterations within all subunits.

In our method, the transformation Eq. (1) accounts for
the coherent, large-scale deformation of the system. A re-
sidual displacement ¢; for each atom i=1,...,N is used to
track the more random movement of atoms over and beyond

the coherent motion induced by the ®,. With this, the posi-
tion 7; of atom i is written

Fi= 2 QU + 3. 2)
k

This mixed coherent-residual representation takes atom i
from an initial position r; (e.g., an input structure) to an
evolved one. To define the @, more concretely, we construct
them to have the maximum information by minimizing the

mass-weighted total square residual."™*® One finds ®, is the
solution of

N
E Bl_cl_c’q)l_c’ = E miUI_c(;?);ia (3)
k' i=1

N
By = 2 mUy(7) Uy (7). (@)

i=1

This expresses the @, in terms of the positions 7; of the N
atoms. With this and the basic physical (N-atom) description,
deductive multiscale techniques imply rigorous equations for

the stochastic dynamics of the ®.

For convenience, one may choose the basis U, to be
orthogonal. In that case, the B-matrix (Eq. (4)) is diagonal.
The orthogonalization can be carried out using a standard
Gram—-Schmidt procedure starting from any nonorthogonal
basis set. Multiplying each element of U, by \,'%, inputting
the resulting modified basis into a GS package, and dividing
the output component-by-component by Vm; yields orthogo-
nal base functions. Thus, the resulting vectors are mass-
weighted orthonormalized. In this basis, the B-matrix is the
identity; thus, Eq. (3) simplifies. Unlike the original basis,
the orthonormal one has the advantage that, when the basis is
enlarged to include more OPs, the pre-extension basis-
derived OPs are not affected as the GS method creates the
orthogonal basis in an incremental fashion. The GS orthogo-
nalization preserves the physical nature of the three largest
OPs (100X, 010Y, and 001Z) because they are always cho-
sen to be the first three members of the basis. These OPs
continue to directly track the overall radius and shape of the
nanosystem.

Thermal nanostructure: An order parameter multiscale ensemble approach
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lll. DEDUCTIVE MULTISCALE ANALYSIS

The above description of the OPs does not provide a
complete theory since no closed equation for their dynamics
is provided. However, deductive multiscale analysis does
provide such a theory wherein the OPs are coevolved with a
quasiequilibrium probability for the atomic state.>*?7 Ac-
cording to Liouville’s picture, the N-atom probability density
p characterizes the evolving statistical state of the system. As
the OPs are slowly varying and the atomic degrees of free-
dom fluctuate rapidly, the system arrives at a quasiequilib-
rium state consistent with the OPs. A key parameter is ¢, the
ratio of the mass of a typical atom to that of the nanoscale
feature of interest. As € —0, p has the form

p=pwW, (5)
with
p=exp(- BH)/Q(P), (6)

where Q is the reduced partition function for fixed values of
the OPs @, and H is the energy expressed in terms of the set
of positions and momenta (I") of all atoms, and

0(®) = f dT*A(D — *)e PH', (7)

A, a product of functions shaped like II in each direction in
® space, is centered about zero and has a width dictated by
the small range of & included in the I'* integration. The
factor W is the reduced probability density for @, i.e.,

W= f dT*A(D — &%) p(T™,1) (8)

for time 1.

Since the OPs evolve slowly, it is convenient to intro-
duce time 7=g%. Multiscale techniques3 (notably solving the
Liouville equation for small &) imply that as e—0 W de-
pends on 7 and satisfies

ow J = J -
PEbD i [Dkk{f—ﬁf,«]W]. )
T P | 9Dy -

The diffusivity factors Dy are related to the correlation

function of the time derivatives of the OPs. The thermal-
average force f,_( is given by

f=- (10)
D,
Z= f dM® exp(— BF(D,B)). (11)

The equation for the evolution of W is of the generalized
Smoluchowski form. Equivalent to it is an ensemble of time
courses of Langevin equations
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oD = . R
(9_& = ,32 [Dl_ck’fk’] + gl_c‘ (12)
T k_’ -

The coherent part of the evolution is determined by the prod-
uct of the diffusion factors and the thermal-average forces;
the stochastic evolution is determined by the random noise

& The random noise is constrained by requiring the integral
of its autocorrelation function to be equal to the diffusion
coefficient.

From the above equation, evolving the OPs requires cal-
culation of the thermal-average forces and the diffusion fac-
tors. The most probable equilibrium state of the OP is when

the f vanish. The equilibrium probability distribution for the
OPs is W from which one can compute RMS fluctuations,
and is calculated from

W = exp(- BF)/Z, (13)

Z= f dMT* exp(- BH™). (14)

The atomistic fluctuations, i.e., of I', is given by p. This
conditional probability p (i.e., for I' at given ®) is A(PD
—®%)exp(-BH")/ (D).

IV. AN EFFICIENT MONTE CARLO SCHEME FOR
CONSTRUCTION OF THERMAL-AVERAGE FORCES

The thermal-average forces are expressed as high-
dimensional integrals. Consider a quantity A; its thermal av-
erage (A) in the ensemble represented by p is given by

<A>=Jd6NF*A((P—(P*)ALQIBI{*), (15)

where @ is the set of OP values and A is a function of I'. The

* on a quantity indicates evaluation at I"* over which inte-
gration is carried out. High-dimensional integrals are often
calculated via a Monte Carlo sampling technique.zs*31 To
make the computations feasible requires constructing an en-
semble of atomistic states for which the A factor is appre-
ciable, i.e., a representative set of I'* for which ®* is near ®.
Thermal ensembles of states can be generated using many
well-known me:thods,16_18’32’33 but simultaneous imposition
of the A factor makes ensemble generation more difficult.
Unlike in other methods, we need to generate ensembles
with given OP values and sample the OP space efficiently,
requiring us to develop a new method for ensemble genera-
tion. Methods for generating other types of constrained en-
sembles have been presented in Refs. 5, 16, and 34-36.
However, the present method is tailored to the type of con-
straints and OPs used here.

From the definition of the OPs, the associated forces f,:

at T™* are obtained from atomic forces F ¥ via
N
2 By fir = 2 UdR)F;, (16)
K’ T =l

where Uy, 7, and By, are as in Eqs. (2)—(4). With the above
equation, the Monte Carlo approximation to f; becomes

J. Chem. Phys. 132, 075102 (2010)

. SA@ - PMhA exp(- BHY)
Je= "5 M@ - 0™ Dexp pHM)

(17)

where A labels the configurations. A configuration I'* chosen
at random will not usually contribute either (1) because the
A- or (2) the Boltzmann-factor is small. Thus, a method for
choosing the '™ that avoids these improbable states is re-
quired if the thermal-average forces for the supramillion
atom systems of interest are to be constructed on a practical
computational time frame. This is even more critical since

solving the Langevin equations requires that the f; be calcu-
lated at every time step. _

To generate an ensemble of atomistic configurations for
given @, one might randomly vary the residuals in Eq. (2).
However, this usually yields high energies as a result of
overlapping configurations or bond length/angle distortions.
Thus, an alternative approach to ensemble generation is
used. In our approach, some coherent character in the moves
from one sample to the next is used and the resulting all-
atom configurations do not alter bond lengths/angles appre-
ciably, while a significant movement of local clusters is
achieved. This sampling strategy is based on the use of co-
ordinated atomic moves generated by a sum over OP-like
terms for k not in the set labeling the chosen OPs ®. These

residuals Yk are chosen at random, and thereby the residuals
o; are sampled in a partially coherent, yet random manner.
Thus, we adopt the prescription

Gi= > YU, (18)
(Re s)

where (Re s) indicates the set of k taken and does not include
those labeling the OPs ®. In this manner, the ®, that are true

OPs are kept constant over the ensemble. For the Y, (which
generate the residuals), one can take for example,

Y_\ _ C§(|]_c|_kmax)2 b2
7 @2 4 (K] = kgnan)? D% + (ko — [K])?
k= ki + k5 + K3, (19)

where ¢ is a random vector whose components are in (—1,1).
Parameters a and b determine the range over which the ran-

dom variation in Y, is applied and both are roughly (k.
+kpmax) /2. The amplitude of the randomness is fixed by ¢ and
is several angstroms to a nanometer; a, b, and ¢ are positive.
The goal is to enrich the ensemble by making ¢ as large as
possible without creating many large energy configurations.
To minimize CPU time, k. should not be too large to avoid
evaluating many U,. Several values of k., k. a, b, and
c,were explored by numerical experimentation to determine
ranges of values that lead to a rich ensemble of configura-
tions, yet minimizing the number of high energy ones. The
important point to note in Eq. (19) is that the residuals for
larger modes must decrease with wave number, just as the
higher order Fourier components of a smooth function must
fall to zero. High frequency modes correspond to local mo-
tions that could otherwise result in atom overlaps or exces-
sive bond stretching, and these motions must be avoided by
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FIG. 2. (a) An all-atom bead representation of the CCMYV capsid. The pentamers are shown in a lighter shade, whereas the hexamers filling the spaces between
pentamers are shown in a darker shade. (b) The OPs 100X,010Y, and 001Z as a function of time for the first 10ns in an MD simulation. The OPs decrease

slowly with time and track the overall shrinking of the capsid.

choosing suitable forms. Also, a simpler prescription using

cé
2’

— 20
b*+ |k (20)

Y= k2= + 12+ K2,

with b=1 and ¢=0.005 worked very well to generate OP
configurations (for 23 OPs) having low energies. The value
of ¢ depends on the number of OPs varied; as more higher
order OPs are changed, ¢ must be made smaller to counter
the effect of the highly oscillating basis functions (U,). Ad-
ditional minimization of high energy configurations i)y an-
nealing the bond lengths/angles before calculating their con-
tribution to the thermal-average forces was used to improve
sampling. The thermal-average forces obtained for different
values of these parameters are then compared to see if they
remain unchanged, i.e., if the sample is sufficiently rich.

We tested our method for calculating thermal-average
forces associated with various OPs to better understand OP
dynamics they would generate. Large forces change the over-
all structure of the nanosystem, whereas small ones are
present when the system is near a free energy minimum. The
relation between OP dynamics and thermal-average forces is
not direct since values of the diffusion matrix and the ran-
dom force both drive the OPs.

The thermal average forces can also be calculated di-
rectly by doing short MD runs as the OPs only vary appre-
ciably over longer time scales [Fig. 2(b)]. The instantaneous
OP forces for the set of configurations generated during an
MD run can be ensemble averaged to obtain the thermal-
average forces. Both approaches were used, but a hybrid
method was found to be more efficient in which multiple
short MD runs are performed starting from configurations
generated by the enhanced sampling method. This retains the
advantages of both approaches; higher order OPs are well
sampled in the first method, while a short MD trajectory
minimizes the number of very high energy configurations.

Having calculated the thermal-average forces for a given
OP configuration, one may determine free energy minimiz-
ing structures (i.e., structures for which the thermal-average
forces on all OPs are negligible). Thus, one may map out
conditions under which a given thermal structure is stable.

OP free energy minimization (OPFM) starts from an ini-
tial structure and performs dynamics with the Langevin noise

set to zero in Eq. (12). Thus, the only factor driving the OPs
is the product of the thermal-average forces and the diffusion
matrix. A steady state is reached when the thermal-average
forces vanish. The thermal-average force and the diffusion
matrix define this dynamics by

-

ab, .
— =B Dyl (21)
(97' k' - -
Multiplying by f,_{ and summing over k we get
JoF E SN
== /32 [D]_ck’flgfk’]- (22)
aT ]Sk, - -

Since the diffusion matrix is positive definite, the free energy
decreases with time and reaches its minimum value at the
end of the minimization. Free energy minimization is based
on the observation that exploring the OP space using thermal
average forces is more efficient than exploring the complete
phase space, as will be shown in the next section.

V. RESULTS

The system studied was the swollen capsid of Cowpea
chlorotic mottle virus (CCMV) in vacuum at 300 K. The
solvent was not included since the purpose of the present
work is to test the new methodology and to get a coherent
physical picture of the results and advantages using our
method. However, the capsid in vacuum is a good starting
point for developing new ideas and methodologies for viral
systems. Furthermore, the CCMV capsid already exhibits in-
teresting behavior seen in other well-studied viral structural
transitions’ '>*"° that can be analyzed using our multi-
scale framework.

The CCMV capsid consists of 180 identical protomers
organized as 12 pentamers and 20 hexamers arranged in an
icosahedron, having in all 432, 120 atoms. An all-atom bead
representation of the virus (created using vmd software) is
shown in Fig. 2(a). In vacuum, the swollen structure (radius
140 A) is unstable and shrinks to reach a native configuration
(radius 118 A). A 10 ns MD trajectory beginning from the
swollen X-ray structure’’ was initiated and the configura-
tions generated were stored for later analysis and benchmark-
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OPX111

t(ps)

FIG. 3. The higher order OP 111X for the same period as in Fig. 2. Note the
much smaller values and the absence of any coherent trend as in the previ-
ous graph. The large short-time scale fluctuations suggest that this OP is not
suitable for long-time scale Langevin evolution.

ing. Thermal-average forces were calculated for some of
these structures using Eq. (16) and our sampling method dis-
cussed earlier. Configurations were stored every 5 ps for cal-
culation of OPs, OP velocities, and thermal-average forces.
OPs and OP velocities were calculated using Eq. (3). The
largest OPs are the X, Y, and Z components of the 100, 010,
and 001 modes, respectively. The other OPs like 111 are
much smaller in magnitude and correspond to local motions
in the capsid. Cases with 23 and 3® OPs were both studied.

After obtaining the thermal-average forces, we explored
the approach to the free energy minimum along a trajectory
in the OP space of the capsid, starting from the swollen
structure using Eq. (21). The solution of this equation we
refer to as OP free energy minimization (OPFM). Each step
of OPFM requires calculation of thermal-average forces that
are calculated by short atomic scale simulations, as described
in Sec. IV. At each step, the forces were calculated by sam-
pling the fixed OP atomic configuration space and the Lange-
vin equation was used to evolve the OPs to their new values.
Multiple short MD runs 0.5 ps (50 samples) long after a 1 ps
step equilibration were used to enhance the ensemble for
calculating OP forces. The new atomic coordinates were cal-
culated from Eq. (2) and these were then used to calculate
new forces, and the process was repeated. The time step in
the Langevin evolution was chosen optimally so that modest
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-0.4

t(ps)

FIG. 4. The OP velocity 100X during the first 2ns of the MD simulation.
The negative average velocities correlate with the decrease in the OPs ob-
served in Fig. 2 and the overall shrinking of the capsid.
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FIG. 5. Correlation plot for the thermal-average OP forces and OP velocities
for the 001Z component. The lack of a good correlation is due to the fact
that the MD effectively includes the random force not included in the
present calculation.

energy configurations are generated after each evolution step.
A very small time step will cause very slow exploration of
the OP space while a very large one will lead to unphysical
configurations with higher energies when we revert back to
atomic coordinates in Eq. (2). 2000-5000 steps of energy
minimization were used to reduce high energy Van der
Waal’s contacts that arise after going from OPs to atomic
coordinates. In OPFM, the diffusion constants are taken to be
typical values to give an appropriate time scale to the dy-
namics, although temporal evolution was not the objective
here (i.e., we seek only free energy minima). However, as a
consistency check the diffusion constant was also calculated
to ensure that the time scale matched that of MD dynamics.

The time course of the larger OPs (100X, 010Y, and
001Z) over a 10 ns MD trajectory starting from the swollen
capsid is shown in Fig. 2(b). At first the OPs change rapidly
and continue changing even after 10ns. Some higher order
OPs(111X) are shown in Fig. 3 and they fluctuate more rap-
idly than the lower order ones and do not show any coherent
trend. These OPs correspond to more localized motions of
the capsid during its MD evolution and are small in magni-
tude compared to the major ones in Fig. 2(b). OP velocities
for the 100, 010, and 001 modes are negative on the average
during this period (Fig. 4). Although the OP velocities are
fluctuating, a closer analysis reveals that they are negative on
the average and this behavior is consistent with the decrease
in OPs in Fig. 2(b). OPs and OP velocities do not decrease
monotonically because of the Langevin noise term present
implicitly in the MD simulation. Also, at the initial rapid
stage of capsid evolution inertial effects may be important
and thus a Fokker—Planck, and not a Smoluchowski, descrip-
tion of the dynamics might be more appropriate. The sign of
the thermal-average forces was negative when the lower or-
der OPs were decreasing and the capsid shrinking. The
thermal-average forces fluctuate just as the OP velocities do,
but the forces and velocities shown are for OP configurations
separated by 5 ps and their fluctuation is much smaller than
that of atomic forces and velocities. Figure 5 shows the cor-
relation between OP forces and OP velocities for the 0017
component. This shows that the OP velocities are not always
in the direction of the OP forces because of the random noise
term implicit in the MD. However, the OP velocities are
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FIG. 6. OPFM trajectory after 200 cycles. The capsid radius has dropped by
almost 14 A. Note the decrease in the rate of shrinking after the rapid initial
decrease. The time axis shows that the effective time of the simulation is
over 14ns.

negative on the average as is seen in the downward trend of
the OPs. These results are similar to those of simple Brown-
ian motion where there is no instantaneous correlation be-
tween the velocity of the Brownian particle and the random
forces in the system even if the Brownian particle shows an
overall drift in the direction of a persistent externally applied
force.

In Fig. 6, we show a long OPFM trajectory (200 cycles)
that starts from the swollen capsid, with resulting shrinkage
of more than 14 A during minimization. The time step used
in the Langevin evolution was 10000 in units of (KT/D) and
corresponds to a physical time of about 80 ps. The rate of
shrinking is rapid at first and then decreases. A closer exami-
nation shows that electrostatic energy decreases with radius,
lowering the value of the associated thermal-average forces
causing it to shrink at a lower rate as time progresses. This is
an indication that the structure is slowly approaching its new
shrunken state. We have also compared the initial part of the
trajectory obtained by OPFM to that obtained by conven-
tional MD. If we match the radius of the structures obtained
by OPFM to those from MD, we can reproduce our MD
trajectory by assuming that each cycle of OPFM is approxi-
mately 80 ps. This is the same number one gets by calculat-
ing the diffusion factor from the OP velocity autocorrelation
function.*’ By choosing this unit of advancement for OPFM,
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FIG. 7. Comparison of capsid radius over a 4ns period obtained with MD
and OPFM with both trajectories showing the same rate of contraction. This
shows that OPFM captures the nanoscale dynamics.

FIG. 8. Progress of capsid RMSD from its initial state over a 4ns period
obtained with MD and OPFM. The RMSD increases as the capsid shrinks
and both trajectories almost overlap.

we made more detailed comparisons of our trajectory with
that obtained by MD. Figure 7 shows the radius of the capsid
obtained with the two methods and Fig. 8 shows the progress
of the RMSD as a function of time. Agreement of the radius
and the RMSD between MD and OPFM is excellent up to
4ns and this further confirms that OP minimization is gener-
ating configurations consistent with the same value of the
OPs that arise in MD. By extending the OPFM even further,
we can reach much longer time scales than we can in MD.
This is shown in Fig. 6 where the capsid shrinks by almost
14 A, and using the unit of time determined earlier corre-
sponds to a MD simulation of almost 14 ns. We note that
even after 14 ns the capsid continues shrinking. The com-
plete shrinking of the capsid is expected to take hundreds of
nanoseconds. In our OPFM study, smaller and larger time
steps of 2500-20000 were used to check for consistency of
the results and an optimum value was chosen as a compro-
mise between speed and numerical stability. The thermal-
average force for the 001Z component is shown as a function
of time in Fig. 9 for the first 4ns. The OP force, large ini-
tially, makes the capsid shrink rapidly at first and then de-
creases in magnitude causing a more gradual reduction in
size. The potential energy of the system decreases with de-
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FIG. 9. Thermal-average (001Z) force as a function of time over a 4ns
period. The forces are large and negative at first when the capsid is large and
then become smaller in magnitude as it shrinks. The units are as in Fig. 5.

Downloaded 07 Jun 2012 to 129.79.136.116. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



075102-8 S. Cheluvaraja and P. Ortoleva
250000
200000
150000
Energy
(Kcal/mol) noa
50000

0

ORS00 0000CGOO0D00 900 890
T OONWOVOOTONOOTOONLWOITNIT O
OANOOWNANOTANTOOUMOLANNO ™MV

AHANMMT DN ORNNOOOOOODO O A A
™ o
t(ps)

FIG. 10. Potential energy as a function of time during OPFM. The system
energy decreases as expected showing that OPFM shrinks the capsid and
results in lower energy structures.

creasing radius and is shown in Fig. 10. This shows that the
structures generated by OPFM have not only the physically
correct geometry but are also energetically more probable in
the ensemble sense. As expected, the energies and forces
decrease rapidly at first and then decrease more gradually as
the capsid keeps shrinking.

In summary, OPFM reproduces the crucial features of a
4ns MD trajectory like, shrinking of the capsid, progress of
the RMSD, and decrease in energy that are all observed and
expected features of CCMV capsid behavior. By extending
our simulations we see further contraction of the capsid by a
total of almost 14 A, a feature observable only in long CPU
intensive MD runs. Note that in OPFM each cycle is about
80 ps, a factor of 80, 000 over the step size of Ifs used in
MD. We have achieved a considerable acceleration over con-
ventional MD by following Langevin moves in OP space.
However, OPFM requires calculating thermal-average forces
and solving the Langevin equation, but these operations can
be considerably optimized to yield a significant speed-up in
overall wall-clock computational time. Our calculations also
provide us with thermal-average forces, yielding insights
into the complex free energy landscape of the bionanosystem
and this information is useful in understanding the overall
structural changes in the system. Furthermore, for our OP
generated trajectory the appropriate comparison is with an
ensemble of replica MD trajectories since we use multiple
samples (50) to calculate thermal-average forces and this
makes our method even more efficient.

Our simulations were performed using our newly de-
signed SIMNANOWORLD platform which incorporates
NAMD"*! and by running our programs on the BigRed clus-
ter at Indiana University. For comparison, an ordinary
NAMD simulation takes about 1.0day/ns on 128 processors,
while our SIMNANOWORLD " runs at roughly 0.5 days/ns un-
der the same environment. Much further reductions in com-
puter time are possible by further optimizing and integrating
our code with NAMD and reducing I/O overheads. Further
acceleration is expected when the set of OPs is limited to
001, 010, and 100, as OPs such as 111 are still highly fluc-
tuating, limiting the Langevin step used in this study.

VI. CONCLUSIONS

A novel method for constructing thermal-average forces
was demonstrated and these forces were used to explore the

J. Chem. Phys. 132, 075102 (2010)

free energy landscape of CCMV capsid. The key to the meth-
odology is the generation of an ensemble of atomistically
resolved configurations consistent with the instantaneous
values of OPs characterizing the nanometer-scale features of
a system. The efficiency of the method was demonstrated,
opening the possibility for modeling systems as diverse as
viruses, ribosomes and nanocapsules for the delivery of
therapeutic agents, all with great generality and without the
need for recalibration with each new application. The ap-
proach was implemented by accounting for the coupling of
OPs and the probability of atomic configurations. This pre-
serves the coupling of processes across scales in space time
that is the hallmark of nanosystem dynamics. Our methodol-
ogy is encoded in the SIMNANOWORLD " software to be made
available at sysbio.indiana.edu and other open source reposi-
tories. We have shown that calculation of thermal-average
forces, an essential facet of multiscale analysis, can be used
to understand large-scale structural changes in viruses and
other bionanosystems. More specifically, we have followed
the structural transition in the CCMYV capsid as it contracts
from its swollen state. The multiscale simulation method
yields results consistent with an ordinary MD simulation but
is faster by a factor of over 100, and has great potential for
further optimization.

In ongoing work, we are including the aqueous microen-
vironment solvent degrees of freedom and the random noise
term in the Langevin equation. The inclusion of the solvent
is key as it may qualitatively change the behavior of the
system.
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