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ABSTRACT

Modeling approaches to the dynamics of a living cell are presented that are strongly based
on its underlying physical and chemical processes and its hierarchical spatio-temporal or-
ganization. Through the inclusion of a broad spectrum of processes and a rigorous analysis
of the multiple scale nature of cellular dynamics, we are attempting to advance cell model-
ing and its applications. The presentation focuses on our cell modeling system, which inte-
grates data archiving and quantitative physico-chemical modeling and information theory
to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly
growing mess of genomic, proteomic, metabolic, and cell physiological data can be auto-
matically used to develop and calibrate a predictive cell model. The discussion focuses on
the Karyote® cell modeling system and an introduction to the CellX® and VirusX® models.
The Karyote software system integrates three elements: (1) a model-building and data archiv-
ing module that allows one to define a cell type to be modeled through its reaction network,
structure, and transport processes as well as to choose the surrounding medium and other
parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell sim-
ulator that solves the equations of metabolic reaction, transcription/translation polymeriza-
tion and the exchange of molecules between parts of the cell and with the surrounding
medium; and (3) an information theory module (ITM) that automates model calibration and
development, and integrates a variety of data types with the cell dynamic computations. In
Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of
enzymes and other minority species yielding steady-state cycles of arbitrary complexities are
accounted for. These features of the dynamics are handled via rigorous multiple scale analy-
sis. A user interface allows for an automated generation and solution of the equations of
multiple timescale, compartmented dynamics. Karyote is based on a fixed intracellular struc-
ture. However, cell response to changes in the host medium, damage, development or trans-
formation to abnormality can involve dramatic changes in intracellular structure. As this
changes the nature of the cellular dynamics, a new model, CellX, is being developed based
on the spatial distribution of concentration and other variables. This allows CellX to cap-
ture the self-organizing character of cellular behavior. The self-assembly of organelles,
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viruses, and other subcellular bodies is being addressed in a second new model, VirusX, that
integrates molecular mechanics and continuum theory. VirusX is designed to study the in-
fluence of a host medium on viral self-assembly, structural stability, infection of a single cell,
and transmission of disease.

INTRODUCTION

THE COMPLEXITY OF THE CELL has led to the development of models that focus on a subset of the oper-
ating processes. Examples include glycolytic models and maps of relationships between specific genes

and enzymes. However, the availability of gene sequence, metabolic network, structural, and other data
gives credence to the notion of comprehensive cell modeling. In this manuscript, we briefly review the his-
tory of cell modeling, present progress attained in the last few years at the Center for Cell and Virus The-
ory and conclude with new directions in the development of mesoscopic cell and virus models that bridge
the molecular-to-whole-cell scales of processes in an attempt to develop a predictive and comprehensive
cell model. Our most well-developed model is Karyote®; through a web-based implementation, it integrates
cell modeling with a variety of data types to arrive at an automated calibration and risk assessment method-
ology. In our next generation cell model, also part of these larger efforts (denoted CellX®), we are ac-
counting for an even wider range of physical and chemical processes than those included in the Karyote®

package. Both Karyote® and CellX® can be run as stand-alone cell modeling packages. They also will have
interfaces with, and can be disassembled for use in, other efforts or for directly accepting their experimen-
tal data formats.

Finally, we briefly present the VirusX® simulator. This effort, independent of Karyote® and CellX®, is
being undertaken to explore the mesoscopic nature of cellular and sub-cellular dynamics—that is, the in-
terplay between atomic and overall cell scale behaviors. Our goal is to provide a selection of models that
address the various length and timescales relevant for predicting the behavior of cells. Applications include
the discovery of drugs and treatments, methods for monitoring design of microbes for biotechnical func-
tions, stem cell research, and predicting emergent bacterial and viral strains for security and global health
considerations.

Activity in quantitative cell modeling dates back over half a century. Rashevsky (1960) described sim-
ple cell models with reaction and transport. Turing (1952) showed that compartmentalized models could
display self-organizational behavior (see also Prigogine and Lefever, 1968). A two-box model of cell divi-
sion was used to show how asymmetric differentiation could occur upon division (Ortoleva and Ross,
1973a,b). It was shown that irreversible transitions in the state of a cellular reaction-transport system could
occur in association with disconnected branches of multiple steady states of a metabolic network (Hahn 
et al., 1973) (Fig. 1). Metabolic control analysis was introduced at this time (Kascer and Burns, 1973) and
many metabolic simulators for steady-state conditions were developed based on this approach (e.g., Gepasi
[Mendes 1997] and SCAMP [Sauro 1993]). Models were developed to account for intracellular diffusional
gradients; early results illustrated calcium waves and electrophysiological self-organization (Larter and Or-
toleva, 1981, 1982; Ortoleva 1981a,b, 1992).

Interest in the stochastic nature of reaction-transport systems dates back to McQuarrie (1976), who set
forth a master equation for the analysis of fluctuations in reacting systems. Early studies showed how fluc-
tuations could significantly modify rate laws (Brennig et al., 1976). Fluctuations were shown to affect the
nonlinear dynamics of small systems using a molecular dynamics approach (Ortoleva and Yip, 1976; Delle
Donne and Ortoleva, 1978). A cellular metabolic network that supports multiple steady states in the macro-
scopic (i.e., fluctuation-free) equations could experience limit cycle behavior in the fluctuation-renormal-
ized system (Hahn et al., 1974). A variety of authors have investigated the influence of fluctuations in re-
action-transport systems (Gillespie, 1976, 1977; McAdams and Arkin, 1997; Firth and Bray, 2000; LeNovere
and Shimizu 2001; Shimizu and Bray, 2001); also, the role of spatial dimensionality and deviations from
local mean field theory due to fluctuations was delineated (Delle Donne and Ortoleva, 1978).

Accounting for the complexity of the cellular metabolic network was pioneered in work on glycolosis
(Chance et al., 1964; Chance et al., 1973) and early development at the single-cell stage (Larter and Or-
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toleva, 1981, 1982). More recent investigations focused on the detail at which the metabolic network was
described (Goldbeter, 1996).

Integration of metabolic models with genomic and proteomic ones has resulted in the beginnings of com-
prehensive cell simulators: E-Cell (Tomita et al., 2001); Virtual Cell (Schaff et al 2001); JigCell (Tyson,
2001); and Karyote® (Weitzke and Ortoleva, 2003; Navid and Ortoleva, 2003; Sayyed-Ahmad et al., 2003).
The Karyote model and its extensions are the focus of this article; it is the only model wherein transcrip-
tion and translation are described by a polymerization chemical kinetic formulation so as to naturally inte-
grate the genome and proteome with the metabolic chemical kinetics (Fig. 2). Other unique aspects of Kary-
ote are the rigorous handling of reactions that occur on a wide range of timescales to arrive at a very general
equilibrium and steady-state effective rate laws. In the latter case, our multi-scale formulation accounts for
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FIG. 1. The existence of isolated branches of steady-states in the cellular reaction-transport network introduce the
possibility of irreversible cell transformation (e.g., the normal cell state could be on the isolated branch).

FIG. 2. The family of cell models being developed at the Center for Cell and Virus Theory accounts for the inter-
play of a complete set of subsystems. These include the following: genome (replication and transcription through tem-
plated polymerization kinetics); proteome (translation through templated polymerization kinetics and post-translational
processes to make proteins); metabolome (reaction-transport biochemical kinetic theory); protein complexing to form
enzymes, ribosomes, fibrils and other meso-structures through mixed all-atom and field theory approaches); and or-
ganelle structure (self-assembly and division of nuclei, mitochondria, lysosomes, proteomes, etc. through mesoscopic
field evolution equations).



the conservation of mass of low concentration molecules that mediate enzyme activity or gene control. As
the Karyote model is fully kinetic, it can capture cellular oscillatory dynamics, phenomena not captured in
MCA or MFA simulators.

In the sections to follow, we present more details on the Karyote modeling system as depicted in Figure
3. Our self-organizing cell model, CellX, and simulator for viruses and subcellular bodies, VirusX, are also
presented.

DISCUSSION

The Karyote® compartmentalized physico-chemical model

The physico-chemical processes on which the Karyote cell simulator is based are summarized in Figure
2. We have tested our model for glycolosis in Trypanosoma brucei. Our results are in better agreement with
experimental results than previous studies (Navid and Ortoleva, 2003). Since the cell simulator is fully ki-
netic, as opposed to a Metabolic Control Analysis formulation, Karyote can capture nonlinear dynamics
phenomena such as the complex metabolic oscillations of Figure 4.

Karyote accounts for an extensive set of processes and incorporates many features:

� General finite rate and fast (equilibrated) reactions
� Minority species (e.g., enzymes) with the associated steady-state cycles (Fig. 5) of arbitrary complex-

ity (including cofactors and side branches)
� Compartmentalization whereby processes take place in appropriate zones (e.g., cytoplasm or organelles)

and exchange of molecules between them
� Genomic and proteomic modules wherein gene sequence data is used to generate transcription and

translation via templated polymerization kinetics, which, for prokaryotes, accounts for the coupling of
transcription and translation (Fig. 6)

� Control and regulation of gene expression (Fig. 7)
� Equations for computing the electrical potential in each compartment and passive as well as active

transport between them
� Membrane-localized processes (e.g., ion pumps or membrane-bound enzyme reactions) that involve

molecules on both sides of the membrane and within it
� Multiple timescale techniques
� Web-based graphical I/O (http://biodynamics.indiana.edu)
� Integration into the cell modeling system (Fig. 3)

As the Karyote system is a work in progress, further features are continuously being added.
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FIG. 3. Flowchart for our web-based cell model. The model can be run remotely (http://biodynamics.indiana.edu).



Karyote accounts for the multiple timescale nature of cell dynamics. The multiple timescales have sev-
eral origins. The most obvious is the existence of reactions that have large rate coefficients so that they are
maintained close to equilibrium (e.g., H1 1 OH2Ûwater). Cycles of fast reactions may be in steady state
balance as suggested in Figure 5; for such reaction networks, generalized steady-state rate laws are con-
structed automatically via a rigorous multiple-scale analysis.

The multiple timescale analysis built into Karyote proceeds as follows. Let « be the ratio of the short to
long timescales or the typical minority to majority species concentrations. In a series of studies (e.g., Or-
toleva and Ross, 1973; Ortoleva, 1992; Weitzke and Ortoleva, 2003; Fan et al., 2003), we examine the be-
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FIG. 4. Oscillatory dynamics in a 59 species metabolic network including 28 fast and 11 slow reactions for a muta-
tion of T. brucei. The graph illustrates the associated orbit in the space 13BPG, ATP and FBP concentrations (in mM).
(Adapted from Navid and Ortoleva, 2003.)

FIG. 5. (a) In a complex biochemical network, an enzyme or other factor (here a ribosome) can undergo a many-
step cyclic sequence of transformations. (b) In Karyote®, the kinetic cycle can have a multi-lobed or more complex
structure that leads to generalized steady-state kinetics automatically determined from the structure of the stoichio-
metric matrix associated with fast equilibrium/steady-state reactions. (Adapted from Weitzke and Ortoleva, 2003.)



havior of reaction-transport systems in the asymptotic limit « R 0. A set of equations is obtained that can
be efficiently solved numerically, while the full equations for finite but small « cannot be solved with di-
rect numerical approaches for practical execution times.

Transcription and translation are modeled using a polymerization kinetics approach. Simple polymeriza-
tion of amino acids takes place by monomer addition (i.e., (AA)n 1 AA R (AA)n11). However, in transla-
tion, this process is guided by mRNA catalyzed by ribosomes, facilitated by tRNA, and controlled by co-
factors. This complexity is accounted for in Karyote® (Weitzke and Ortoleva, 2003). As translation and
transcription involve the consumption of nucleotides and amino acids, these processes are strongly coupled
to the metabolome in Karyote (Figs. 1, 6, and 7).

Model-building and data archiving

Data on the wide variety of processes needed to run a Karyote simulation is entered through a web-based
interface (Fig. 3). Input parameters are of two types (i.e., those for the reaction-transport laws and those
needed to specify the structure of the cell). Input data includes the following:

� Metabolic reaction rate and equilibrium constants (fast or slow and with or without minority control
species)
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FIG. 6. Karyote® predicted dependence of nucleotide concentration on time during transcription for the gene TTCT-
TATACGGGACT. As nucleotides are depleted, mRNA synthesis slows down, illustrating an important feature of cou-
pled cellular dynamics captured in Karyote®. (b) Evolution of concentration of DNA, RNA Polymerase II and com-
plexes involved in transcription/translation as well as mRNA and protein (before post-translational modification) created
under the same condition as seen in a. (Adapted from Weitzke and Ortoleva, 2003.)



� Rate and equilibrium constants that may be different for each compartment
� Compartment structure (volume, surface area, connectivity to other compartments)
� Membrane transport properties
� Chemical species charge
� A method for archiving the data for the specific cell type of interest accomplished by entering cell type-

specific data and graphically manipulated universal reactions
� Preserving the integrity of an individual user while allowing others the ability to share data in a dy-

namically growing database of the above cell properties

The last feature provides a platform for networking a community of biological, medical and biotechnical
researchers.

To make the data archive dynamically integrated with the other Karyote modules, information can be au-
tomatically harvested and formatted as a cell simulator input file. For example, in running the cell simula-
tor one may choose a specific cell type and the system automatically gathers all data from the Karyote®

archive needed to run a simulation. Also, new rate or other parameter values obtained from calibration us-
ing information theory may be automatically added to the database along with information on the individ-
ual who carried out the calibration and the experimental data used for it (Fig. 3).

Information theory module (ITM): automated calibration, uncertainty analysis, and addressing
model incompleteness

Considering the complexity of the network of reactions and of intracellular structure, as well as uncer-
tainty in the rate laws for the participating reaction and transport processes, it seems evident that a model
of cell behavior must, in some way, be cast in terms of probability theory. Furthermore, the small numbers
of macromolecules or their complexes (e.g., enzymes and ribosomes) implies that key aspects of cellular
modeling must be carried out within a statistical framework. Thus, the Karyote cell modeling system in-
cludes an information theory component for constructing the probability of cell state and model parameters
for calibration, model development and risk/uncertainty assessment. In the information theory formulation,
we construct the probability of cell reaction-transport parameters and the time course of given user-speci-
fied concentrations. The maximum of this probability gives the most likely value of these quantities while
the overall shape of the probability can be used to assess the uncertainty of the predictions of descriptive
variables and phenomenological parameters.
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FIG. 7. Time-dependence of the concentration of Protein One and Two during gene controlled coupled transcription
and translation. Gene One produces Protein One, which, in turn, activates Gene Two; Protein Two represses Gene One,
ultimately resulting in a steady-state of the coupled genome/proteome dynamics in this two-gene system. (Adapted from
Weitzke and Ortoleva, 2003.)



The starting point for the ITM is the entropy S set forth as a measure of overall uncertainty (Shannon
and Weaver, 1949; Jaynes 1957; Ortoleva, 2003):

S 5 2kSrlnr (1)

where k is a positive constant, r(G) is the probability, G is a set of variables that are considered uncertain,
and S denotes functional integration. In the Karyote system, these include the following:

� Reaction rate and equilibrium constants
� Membrane reaction/transport properties
� Gene control, translation/transcription parameters
� The time-dependence of chemical species for which the mechanism of creation and destruction are yet

unknown

Due to the last factor, r is seen to be a function of the time course of these concentrations as they change
over the cell cycle or in response to modifications in the surrounding medium (Sayyed-Ahmad et al., 2003).

The information theory prescription is to admit the greatest uncertainty (i.e., maximum S) constrained
only by the available information. For cells, these include those suggested in Figure 8. Constraints on the
maximization of S are of several types:

� Measures of error between model-predicted and observed NMR, spectroscopy, and other data
� General information we have on the range of rate coefficient and other physico-chemical parameters
� Regularization conditions on the rate of change of chemical species concentrations
� Statistical mechanical constraints on the magnitude of thermal fluctuations

Let C1, C2, . . . CNC be the set of NC constraints, which by construction have zero average. Then r is the
functional that maximizes

S 2 ^
NC

l51 
blCl (2)

for Lagrange parameters b1, b2, . . . , bNC. The latter are determined from the constraints (Sayyed-Ahmad
et al., 2003). Having constructed r(G ) we then seek the value of G that maximizes r. The associated un-
certainty G in is also computed in the ITM. For example, let C(t) be the set of unknown concentration time
courses whose dynamics are not accounted for in the model (i.e., in the reaction network). The most prob-
able C(t) is that which maximizes r:

5 0 (3)
dr

}
dC(t)
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FIG. 8. Multiple types of data are integrated via our information theory methodology to automatically yield im-
provements as new data becomes available. This is already implemented in Karyote® and will also be extended to
CellX® and VirusX®.



This functional differential equation is solved numerically as is the uncertainty envelope via a functional
Gaussian approximation (Sayyed-Ahmad et al., 2003). Technical difficulties arising from the paucity of
data and conflicting data are surmounted by building expertise into the constraints. Ideal experimental data
to be built into the constraints are time series data on the proteome or metabolome.

The CellX® simulator

Improvement of cell modeling beyond that of the spatially uniform, fixed compartmented approach al-
ready implemented in Karyote requires several advances:

� Allowing the compartmental structure to be dynamic—that is, membranes can emerge, move or dis-
appear via laws of structural self-assembly

� The description must be augmented to account for greater detail in molecular structure and orientation
� Composition within each compartment must be allowed to be non-uniform and to evolve via equations

of mass conservation

As an example of the type of phenomena that are to be accounted for in our next generation cell model,
the life cycle of Caulobacter crescentus is shown in Figure 9. Caulobacter cells undergo morphological
changes that allow visual tracking of cell cycle progression. Many cellular events can only occur in the ses-
sile stalked cell including DNA replication, flagellum synthesis, and cell division.

In CellX, we adapt a continuum approach that accounts for phenomena involving the wholesale reorga-
nization of structural elements within a cell. In a companion study, we implement molecular structure into
an intracellular self-organization model based on a free energy functional minimization approach.

The ability of a cell to reorganize its internal structure in response to damage, changes in the host medium,
division or mutation indicates the presence of several behaviors that play a key role in cellular and viral life:

� Self-assembly, wherein molecular-scale building blocks organize into membranes, fibrils, viruses and
other structures, a process driven by the second law, that is, the tendency to minimize free energy in
an iso-volumetric, iso-thermal system (Ortoleva, 2003)

� Self-organization and other nonlinear dynamical phenomena, wherein a system subject to far-from-
equilibrium conditions (e.g., the influx of nutrients and elimination of waste products) can sponta-
neously develop patterns of non-uniform concentration or other variables (Ortoleva 1992, 1994)
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FIG. 9. Cell cycle of Caulobacter. Also shown is the localization of some of the major proteins that are the object
of this proposal. Polar localized proteins are shown above or below the poles where they localize. PleC and CckA are
distributed throughout the membrane of cells where they are not shown. DivL follows the same pattern as CckA (New-
ton, pers. com.). The letter C inside of cells indicates the presence of CtrA. N indicates the new pole of the cell, formed
by the previous cell division. SW, swarmer cell; ST, stalked cell; F, flagellum; P, pili; S, stalk; H, holdfast.



� Templated polymerization (notably replication, transcription and translation) and gene repair, wherein
information stored at the molecular scale can be copied or interpreted/functionalized (Weitzke and Or-
toleva, 2003; Ortoleva, 2003).

To arrive at a cell model capable of accounting for these processes, one must integrate descriptive vari-
ables that capture both atomic and macroscopic quantities and the processes that underlie their dynamics.
We are implementing several cell simulators that accomplish this. In essence we are developing an atom-
istic model of a cell that takes advantage of these situations that can be treated in an average manner (e.g.,
using variables such as concentrations, while other aspects of the dynamics are treated using discrete vari-
ables (e.g., all-atom descriptions). In this section our CellX simulator is described that allows for gradients
within each intracellular compartment (an approach started by Larter and Ortoleva 1981, 1982 in the con-
text of differentiation) (see also Ortoleva 1981a,b; Feinn 1981). The all-atom aspects of our modeling are
discussed in later sections under the VirusX® simulator.

In CellX, a cell is divided into compartments labeled a 5 1, 2, . . . separated by membranes. Within com-
partment a, a set of Ba majority species have concentrations Ca 5 {Ca

1,Ca
2, . . . C a

Ba} that vary continu-
ously in space (r ) and time (t). Similarly, a set of Ba* concentrations ca describes the spatial distribution
of the Ba* enzymes and other minority species in the medium within compartment a. Along the membrane
separating compartments a and a9, on the a side, there is a spatial distribution Gaa9 (r ,t) of Baa9 membrane-
localized molecules; Gaa9 does not necessarily equal Ga9a. A cell is criss-crossed by a network of fibrils to
which molecules can adhere and along which they may move via diffusion or directed, active processes.

A reaction-transport cell model must reflect the duality of bulk species within a compartment and those
localized to membranes or fibrils, as well as the exchange of molecules between these zones. In particular,
to reflect the difference in spatial dimensionality between the bulk and the surfaces or fibrils, C a is mea-
sured in molecules/volume while G aa9 is in molecules/membrane area (and similarly, gan, the concentra-
tions of species in compartment a along fibril n, is in molecules/distance). As a result of these dimension-
alities, molecules may change character from minority to majority status with the consequent change in the
timescale of their dynamics.

Key aspects of cell dynamics involves guided molecular and organelle motion along membranes and fibrils.
These lower spatial dimensional domains improve the efficiency of signaling and the targeting of key compo-
nents of reactions. The interplay of bulk medium and surface-localized species and their role in self-organiza-
tion was explored earlier in the context of self-organization and development (Larter and Ortoleva, 1981, 1982;
Ortoleva, 1981a,b; 1992). Thus a model for cellular dynamics required that accounts for the chemical physics
of the exchange between, and reaction-transport within, domains of various spatial dimensionalities.

The evolution of cell models toward greater comprehensiveness should, in part, be measured in terms of
the degree to which they incorporate variables describing molecular-scale features. In the context of the
above description, one may set forth models that capture the dynamics of populations of molecules within
(and not only those at the surface of) membranes. If these molecules are asymmetric (e.g., an ion pump),
then models must account for molecular orientation (e.g., pointing from a to a9 versus from a9 to a). In a
kinetic model, rates of transition between the above types of species (membrane- or fibril-localized or bulk)
can be set forth. In what follows, we present a cellular model cast in terms of macroscopic variables (e.g.,
concentrations), while in the context of our virus simulator VirusX, we introduce the notion of mixed mod-
els which preserve key aspects of atomic-scale features.

Conservation of mass on the a side of aa9 the membrane implies

5 2 ¹i ? J i i
aa9

1 ^
Naa9f

k51

vik
aa9f Wk

aa9f/« 1 ^
Naa 9s

k51

vik
aa9sWk

aa9s, i 5 1, 2, . . . Baa9 (4)

where

J ii
aa9 5 flux of membrane-bound species i along the aa9 membrane

Wk
aa9f,s 5 rate of fast or slow aa9 reaction k

vik
aa9f,s 5 stoichiometric coefficient for i in fast or slow aa9 reaction k

¹i 5 gradient operator parallel to the membrane

¶Gi
aa9

}
¶t
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The parameter « (,,1) is included to emphasize the separation in timescale between the fast and slow
processes that always exists in biochemical networks.

For the Ba major components residing in the bulk, conservation of mass implies 

5 2¹ ? Ji 1 ^
Naf

k51
vaf

ik W af
k /« 1 ^

Nas

k51
vas

ik W as
k 1 ^

N̂a f

k51
va*

ik R̂af
k , i 5 1, 2, . . . Ba (5)

The R-term is explained below. The boundary conditions on Ca capture the exchange with the membrane-
bound species and the transmembrane processes:

n a ? J a
i 5 ^

Naa9f

k51
lik

aa9f Wk
aa9f /« 1 ^

Naa9s

k51
lik

aa9s Wk
aa9s 1 ^

Naa9

k51
lik

aa9* Ŵk
aa9f *1 ^

Naa9

k51 
lik

aa9tWk
aa9t (6)

where n a is the local normal to the membrane bounding compartment a pointing into the interior of com-
partment a. The Wk

aa9t are rates of transfer across the aa9 membrane, assumed positive when molecules
pass to the a side. There are many transmembrane processes associated with various channels, active
processes or reactions that involve species on both sides of the membrane.

The minority species must be treated carefully. By definition, their concentrations are low; we empha-
size this by writing ca 5 «ĉa where, as « ,, 1, the ĉa are comparable to the concentrations of the ma-
jority species ca. We write their Ba* concentrations ĉa

i. With this, the flux of a minority species is written
«Ĵ a

i. We consider the minority species to only be generated by slow reactions of rate Ras
k ; however, they

may facilitate cycles that replenish them (e.g., the enzyme mechanism E 1 S Û ES R E 1 P), all of which
are fast but which establish a steady-state balance. These reactions are taken to have rates Rk

af /«; however,
they involve a factor of a minority concentration in their forward and reverse rate, so they imply a term R̂af

k
in the majority dynamics (6) where stoichiometric coefficients v̂a

ik are introduced. With this, minority mass
balance implies

52¹ ? Ĵ a
i 1 ^

N̂af

k51
v̂ a

ik R̂af
k /« 1 ^

N̂as

k51
v̂as

ik R̂k
as (7)

The last term arises from rates of very slow reactions (of rate «R̂k
as) that produce or consume the minority

species (e.g., from protein or enzyme synthesis). The boundary conditions for the minority species imply

«n a ? Ĵ a
i 5 ^

Naa9s

k51
l̂ik

aa9s Wk
aa9s 1 ^

Naa9f

k51
l̂ik

aa9f Ŵk
aa9f (8)

Similar equations for the concentrations g
+

an of species localized to fibrils. Solution of the above equations
yields the dynamics of the cell. As « ,, 1, this leads to computational difficulties that are addressed in
the next section.

Multiple scale analysis

The present objective of the rigorous asymptotic (« R 0) analysis of the model of the previous section
is to obtain a set of well-behaved equations (e.g., ones that do not have the singular behavior in «). As 
« ,, 1, straightforward simulation is impractical due to numerical instability and the small time steps re-
quired for numerical simulation.

Our approach is similar to that used in the analysis of other multiple timescale reaction-transport systems
(Ortoleva and Ross, 1975; Ortoleva, 1992, 1994; Weitzke and Ortoleva, 2003). The development here is
more complex due to both the number of types of equations involved and the exchange of molecules be-
tween the bulk and the membrane surface or fibrils.

To facilitate the discussion, we recast the problem in terms of its spatially discretized form. Thus, there
are sets of Ca and ĉa at every grid node in the interior of compartment and in the bulk close to the aa9

membrane (i.e., the boundary of the a-th continuum domain). Similarly, there are sets of Gaa9 at each node
along the aa9 membrane and similarly for the g i

an along fibril n in compartment a. Let these variables for
all compartment interiors, fibrils, and membranes be written as a column vector uX&. The entire problem

may be written in the symbolic form uX& 1 uF& 5 }
1
«} uW f &. Here is a square matrix whose size is the

same as uX&, uF& is a column vector which depends on uX&, is a rectangular matrix, and uW f & is a column

¶ĉa
i

}
¶t

¶Ca
i}

¶t
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vector formed from all the W a f
k, Wk

aa9f, R̂k
aa9f, Wk

aa9s, and Wk
aa9f * at all discretization nodal points (in all com-

partments and on all fibrils and membrane surfaces). To see why Wk
aa9s is included, see equation (8). Note

that has the form 9}
¶
¶
t
} so that it is a differential operator for the nonzero components of 9 (e.g., bound-

ary conditions do not involve time derivatives).
To start the analysis, introduce a set of row vectors ^s u ( 5 1, 2, . . . L, L being the number of such

linearly independent row vectors as determined by the structure of ) that are orthogonal to the columns of :

^s u 5 u0&, 5 1, 2, . . . L (9)

u0& being the null column vector. Assuming that uX . has N components, this yields the well-behaved equa-
tions

^s u uX& 1 ^s uF& 5 0, 5 1, 2, . . . L (10)

Thus, N 2 L additional equations are needed to solve the problem.
To conclude, let ^j u be a row vector with the same number of components as uW f &. By construction, ̂ j u

is one of the N 2 L independent rows of v. The N 2 L equations needed to solve the problem take the form

^j uW f & 5 0, 5 1, 2, . . . N 2 L (11)

These are generalized subequilibrium or steady-state conditions of the cell system. They are the general-
ization of similar equations arising in simpler compartmentalized cell models (Weitzke and Ortoleva, 2003).
This formulation has been implemented in our CellX simulator (Fan et al., 2003a).

Furthermore, we are developing a reformulation of the intracellular reaction-transport dynamics that takes
into account the separation of timescales between the transport of small molecules and larger entities and
its interplay with fast and slow reactions. Our approach involves the introduction of a timescale ratio « fol-
lowing from the ratios of rate and transport coefficients. The procedure leads to a set of modified reaction-
transport equations that can be computed efficiently (Fan et al., 2003b).

Self-assembling systems and the VirusX® simulator

We are building a simulator, VirusX, for modeling key atomic-scale features of enzymes, viruses, and
other subcellular features needed for drug discovery and to construct membranes, fibrils, and other subcel-
lular features is a self-organizing cell model. The challenge addressed is that these features are commonly
supra-million–atom objects. Thus, how can we simulate their overall dynamics (e.g., conformation changes,
self-assembly), and yet preserve all the atomic-scale features as needed for drug discovery? In VirusX, we
address this challenge via the integration of atomistic and continuum approaches.

In VirusX, efficient all-atom molecular mechanics simulation techniques are used that allow us to model
processes that operate on the long timescale of interest. These include space-warping (Jaqaman and Ortol-
eva, 2002), tree codes, multiple timescale, and other methods (Jarymowycz et al., 2003). A VirusX simu-
lation is seen in Figure 10. In ongoing work, we are embedding the all-atom computations in a continuum
mesoscopic model to capture the host medium (bioelectrolyte or target cell surface) or virus-encasing lipid
membrane or other features of lesser molecules (as in the supra-hundred million–atom HIV system).

The new version of VirusX presently under development is based on a set of field variables that describe
the evolution in time of the spatial distribution of the position/orientation densities for a representative set
of molecular species in two and three dimensions. The simulator utilizes finite element and multiple timescale
techniques. The underlying equations contain mesoscopic corrections, enabling VirusX to mix atomic-scale
and macroscopic reaction, transport and mechanical effects. When considering the carefully orchestrated
activities of a cell (e.g., distribution of genetic material and organelles among progeny at cell division), one
arrives at the conclusion that the cell should be conceived of as a giant, highly structured molecular asso-
ciation that exploits the balance of (or integrates) atomistic and macroscopic phenomena to achieve its im-
pressive functionality and survivability. Thus, methods developed for the VirusX simulator will also be ap-
plied to the advanced version of CellX.

For large viruses (e.g., HIV), we are developing a continuum model as follows. Much of the structure of
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the continuum description of VirusX follows from a free energy functional and a finite element simulation
approach. Let F be the free energy constructed in the form

F 5 F0 2 TDS 1 DE (12)

where F0 is a free energy that accounts for the isotropic behavior (i.e., neglects molecular orientational or-
der). However, F0 contains correction terms due to the formation of large gradients associated with inter-
faces or the interaction of macromolecules or other bodies with the aqueous intracellular medium. DS and
DE are corrections to F0 arising from molecular orientational order and energetics. In this way, F is a func-
tion of the spatial distribution of the position/orientational probability density for each type of molecule in
the system.

CONCLUSION

In our view of the current state of cell physiology, a comprehensive cell model must capture the cou-
pling of the genome, proteome, metabolome and infrastructural elements as in Figure 2. We believe we
have made significant advances in all these elements. We are presently completing our program through
the development of CellX and Karyote for whole cell modeling, and VirusX for viruses and other intracel-
lular features. In particular, we are integrating the features of CellX and the mixed all-atom/continuum self-
assembly formulation of VirusX with the transcription/translation polymerization, multiple timescale
methodologies and the electro-physiological formulation of the compartmented Karyote model. With this
integration and the completion of the post-translational kinetic and gene control modules, we will have com-
pleted what we believe to be the essential structure wherein we can use gene sequence data and protein or
protein aggregate structure/function rules to predict cell behavior. The calibration and augmentation of the
incomplete aspects of the model with cell data is being addressed using information theory. As we have
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FIG. 10. Three-dimensional structure of Poliovirus (Type 1 Mahoney) capsid showing 713,580 atoms in CPK shad-
ing predicted using a preliminary version of our VirusX® simulator (Jarymowycz et al., 2003).



tested all individual elements of our cell modeling approach, we believe that we are poised to deliver on
the great promise that cell modeling has presented since the 1950s. Our progress can be followed at http://
biodynamics.indiana.edu.
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