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ABSTRACT: Coarse-grained features of macromolecular assem-
blies are understood via a set of order parameters (OPs)
constructed in terms of their all-atom configuration. OPs are
shown to be slowly changing in time and capture the large-scale
spatial features of macromolecular assemblies. The relationship of
these variables to the classic notion of OPs based on symmetry
breaking phase transitions is discussed. OPs based on space
warping transformations are analyzed in detail as they naturally
provide a connection between overall structure of an assembly
and all-atom configuration. These OPs serve as the basis of a
multiscale analysis that yields Langevin equations for OP
dynamics. In this context, the characteristics of OPs and PCA
modes are compared. The OPs enable efficient all-atom
multiscale simulations of the dynamics of macromolecular assemblies in response to changes in microenvironmental conditions,
as demonstrated on the structural transitions of cowpea chlorotic mottle virus capsid (CCMV) and RNA of the satellite tobacco
mosaic virus (STMV).

I. INTRODUCTION
A hallmark of macromolecular assemblies is the emergence of
collective modes from rapidly fluctuating atomistic degrees of
freedom (DoF). These systems exhibit dual macroscopic/
microscopic behavior thereby reflecting the interplay of
equilibrium and nonequilibrium processes across multiple
time and length scales. Biologically relevant examples that
display such coupling include processes affecting the structure
and dynamics of macromolecular assemblies like viruses,
ribosomes, liposomes, and intracellular granules.1−4 These
systems are typically composed of multimillion atoms. They
function on length scales of nanometers involving processes
that occur on time scales ranging from nanoseconds to
milliseconds. While molecular dynamics (MD) has been widely
used to simulate macromolecular structures at an atomistic
level, the simulation time for large nanoscale assemblies has
been limited to tens or sometimes few hundreds of nano-
seconds.5,6 Feasibility of such simulations also depends on the
extent of computing resources available. Recently, billion atom
MD simulations have been accomplished.7,8 However, these
simulations neglect Coulomb interactions, bonded forces, and
the rapidly fluctuating hydrogen atoms. All the latter are central
to biomolecular structure and dynamics. Thus, capturing
bionanosystem behavior across diverse temporal and spatial
scales presents great challenges in structural biology,
fundamental mathematics and physics, and theoretical and
computational chemistry.
Significant effort has been devoted to reduce the

dimensionality of many-atom systems and accelerate their

simulations by projecting the equation of motion in a low
dimensional space.9−13 This is accomplished via modeling a
system in terms of its collective DoF. The number of such DoF
is often much lesser than the all-atom ones. Thus, macro-
molecular models based only on collective modes involve
tracking much smaller number of dynamical variables than the
all-atom description. Consequently, computational cost of
implementing these reduced dimensional models is moderate.
A list of relevant approaches would include bead- and shape-
based coarse-graining models,14−16 rigid region decomposi-
tion,17 symmetry constrained18 and curvilinear coordinate19

models, as well as principal component analysis (PCA)20,21 and
normal-mode analysis guided approaches.22,23 These models
have been successful in investigating structural transitions in a
very rich set of biomolecular systems including BPTI, lysozyme,
ligand-binding proteins,24 trans-membrane proteins,25 RNA
segments,20,26 GRoEL,27 and viral protein capsids of different
symmetries.15,28 However, they suffer from one or more of the
following difficulties in the context of bionanosystem
simulations: (1) characteristic variables are not slowly varying
in time, (2) nonlinear motions like macromolecular twist is not
readily accounted for, (3) internal dynamics, and hence
inelasticity of collisions is neglected, (4) symmetry-breaking
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processes cannot be accounted for, (5) the forces involved must
be calibrated for most new applications, and (6) generating
intermediate all-atom trajectories for “on-the-fly” dimension-
ality reduction becomes very expensive for large systems.
A coarse-grained theory of macromolecular assemblies is

statistical in character since specifying the coarse-grained
variables leaves great uncertainty in the detailed all-atom
state. Thus, the theory should provide an algorithm for evolving
the coarse-grained variables and another for coevolving the
probability of the detailed all-atom states. Acknowledging this
multiscale perspective, we have discovered novel theoretical
techniques that probe the cross-talk across scales in time and
space, yet preserve the key all-atom aspects of the assembly
dynamics.29−35 The result is a set of stochastic equations for the
evolution of coarse-grained variables, and those for constructing
the coevolving probability of the all-atom states.
This is achieved via the introduction of a set of order

parameters (OPs) that describe the overall organization of a
system. These OPs capture changes in symmetry that follow
large-scale structural transitions. Such transitions emerge from
the interplay of long-range organization and order-destroying
effects of thermal fluctuations. To account for this cross-talk
between variables on different time and length scales, OPs
enable generation of an ensemble of all-atom states. This
ensemble, in turn, affects evolution of the overall structure
through the thermal forces and diffusivities. Thus, emergence of
new structures resulting from changes in conditions imposed
on the macromolecular assemblies is probed. All these
properties are critical for the practical implementation of a
multiscale molecular dynamics/order parameter extrapolation
(MD/OPX) approach32,36,37 and more recently a fully self-
consistent multiscale approach and software deductive multi-
scale simulator (DMS).38 These approaches have captured
polyalanine folding from a linear to a globular state,39 Ostwald’s
ripening in nanocomposites,31 pathways of structural transition
and disassembly in virus capsids,38 counterion induced collapse
in viral RNA, and stability of RNA−protein complexes.33

In this article we review several examples of OPs in the
context of modeling macromolecular assemblies (section II.A).
A special class of macromolecular OPs, notably the space
warping ones, is shown to account for slow collective DoF
relegating the high frequency fluctuations to all-atom ensembles
(section II.B). An attempt is made to place these coarse-grained
variables within the classic notion of OPs that indicate
symmetry breaking in phase transition theory40 (section
II.C). This analysis further reveals the physical significance of
several of the space warping OPs (section II.D). These OPs
serve as the basis of a multiscale simulation algorithm that
captures the slow dynamics of macromolecular assemblies
simultaneously preserving all-atom details (section II.E). In this
context, the applicability of these OPs is compared to that of
the PCA modes (section II.F). The OPs are used to simulate
structural transitions in cowpea chlorotic mottle virus (CCMV)
capsid and the free and protein bound states of RNA in satellite
tobacco mosaic virus (STMV) over a range of temperature and
salinity (section III). These simulations yield key insights on
macromolecular structural transitions and identify a regime of
physical conditions over which the OP mediated multiscale
simulations are applicable.

II. METHODOLOGY
A. Types of Order Parameters. OPs are coarse-grained

variables characterizing the large-scale spatial organization of a

system. Several types of OPs have been identified. Examples
and the phenomena they have been used to describe are as
follows.

• Scaled coordinates: Collective and single-particle behav-
iors in quantum systems,41 and scaled center-of-mass
coordinates for proteins in macromolecular assem-
blies.42,43

• Curvilinear coordinates: Macromolecular conformational
dynamics.19

• Density-like variables: Release of drug molecules from a
nanocapsule, the dynamics of enveloped viruses,35 and
liquid crystal phase transitions.44,45

• Space warping parameters: Overall size, shape and state
of deformation of viruses and other macromolecular
assemblies.30,33,34

• Subsystem OPs: The asymmetric motions of different
subunits of a complex macromolecular assembly.31,35

• Hierarchical OPs: Disassembly/collapse dynamics of the
icosahedral or other structures of viruses.46

Other examples of OPs in the theory of macromolecular
structures commonly used are system diameter, end-to-end
distance, radius of gyration, solvent accessible surface area
(SASA), and measure of similarity to a reference structure in
molecular biophysics (e.g., root-mean-square deviation of
atomic positions between simulation and reference structures).
However, these do not form a complete set, facilitate the
construction of all-atom configurations, or evolve much slower
than the typical time scale of atomistic fluctuations. Therefore,
unlike the space-warping variables, these OPs cannot underlie a
multiscale methodology (section II.E). Furthermore, space-
warping OPs subsume the slowly varying parameters from the
aforementioned list.33 A central property of the space warping
OPs is that they evolve slowly. The origins of slowness include
(a) inertia associated with the coherent dynamics of many
atoms evolving simultaneously, (b) migration over long
distances, (c) stochastic forces that tend to cancel, and (d)
presence of high free energy barriers involving collective
motion. In the following, discussion on structural space warping
OPs is extended.

B. Construction of Space Warping Order Parameters.
We construct space warping OPs to capture coherent motions
of many-atom systems as follows. Consider a macromolecular
assembly described via the positions of its N constituent atoms
ri⃗ labeled i = 1, ..., N. In our approach, ri⃗ is related to a reference
position ri⃗

0. Deformation of space taking ri⃗
0 to ri⃗ is continuous

and is used to introduce OP ϕ⃗k via the transformation

∑⇀ = ϕ⇀r ui
k

ki k
(1)

where ϕ⃗k denotes the kth OP and the factor uki is defined in
terms of a basis function uk(ri⃗

0) for reference position ri⃗
0 of atom

i. Index k labeling the ϕ⃗ is a set of three integers {k1k2k3} such
that uki ≡ uk1k2k3(ri⃗

0) = uk1(Xi
0)uk2(Yi

0)uk3(Zi
0) is a product of

Legendre polynomials of orders k1, k2, k3 for the X, Y, Z
components of ri⃗

0 respectively. As the ϕ⃗k change, space is
deformed, and so do the macromolecules embedded in it. Since
we seek a dimensionality reduction, the number of ϕ⃗k is much
less than the number N of atoms. Thus, we take a finite
truncation of the k sum in (1); this necessitates introduction of
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a residual (denoted σ⃗i) to correct the coherent deformation
generated by the ϕ⃗k. With this

∑⇀ = ϕ⇀ + σ⇀r ui
k

ki k i
(2)

An explicit expression for the ϕ⃗k is obtained by minimizing
the mass-weighted square residuals (m1σ1

2 + ... + mNσN
2) with

respect to the ϕ⃗k.
32 This yields

∑ϕ⇀ =
∑ ⇀

μ
μ ==

=

m u r
m u;k

i
N

i ki i

k
k

i

N

i ki
1

1

2

(3)

With the above formulation, dimensionality reduction for
many-atom systems from the N-atom configuration to M OPs
is achieved through

⇀ = ··· ϕ⇀ = ···H Ioor i N k k k, { 1, , } , { , , }i
u

k M1
k

(4)

Next, we make use of the Liouville equation to elucidate the
rate of OP dynamics. The Liouville operator is defined L =
−∑i = 1

N (p ⃗i/mi) (∂/∂ri⃗) + F⃗i·(∂/∂p ⃗i), where pi⃗ and F⃗i are the
momentum of and net force on atom i. Given eq 3, one may
compute (dϕ⃗k)/dt as −Lϕ⃗k. This yields

ϕ⇀
=

∑ ⇀

μ
=

t

u pd

d
k i

N
ki i

k

1

(5)

By definition, the basis functions uki vary smoothly across the
system. Thus, near equilibrium, linear combinations of rapidly
fluctuating atomic momenta tend to cancel, thereby reducing
the rate of OP evolution. As a result, these OPs can be
extrapolated over longer periods in time relative to individual
atoms. For the various choices of k, evolution of the
corresponding ϕ̅ tracks collective (correlated) motions on
different time scales. With this, eq 5 provides mathematical
basis for the simulation approach implemented in MD/OPX.32

C. Role of Symmetry. The concept of OPs originated in
the theory of phase transitions. In that context, they are
variables that are zero in one phase (usually above the critical
point), and nonzero in another.47 More generally, they change
discontinuously across a first-order transition and their
derivatives change across a second-order case indicating a
change in the physical state of the system. For example, a
magnetic system above the Curie temperature is isotropic, but
anisotropy emerges below this temperature as atomic-scale
magnets tend, on the average, to have a preferred direction.40

Net magnetization of the system serves as an OP capturing the
emergent order of atomic-scale magnets that underlie this
symmetry breaking transition. Similarly, the space-warping OP
here provides a framework that captures the emergent order
observed in viruses and other macromolecular assemblies under
appropriate conditions in the host medium. For example, if
uk(ri⃗

0) is independent of i then the OP ϕ⃗k is proportional to the
center-of-mass of the assembly.46 Some of the space warping
OPs defined in this way constitutes a strain tensor accounting
for compression-extension-rotation, while others describe more
complex deformations like tapering, twisting and bending
(section II.D). Furthermore, the effective OP masses, μk as
defined in eq 3, decrease for larger values of k. This suggests
that OPs with higher k probe deformations of smaller regions in
space. Thus, a model based on this set of OPs captures a
spatially diverse range of coherent deformations through the

various choices of k. Thereby, such a model can describe the
emergence of structural order and accompanying symmetry
changes in macromolecular systems.
A typical example of macromolecular structural transition

that resembles classical phase transition from isotropic to
anisotropic states is now discussed. Consider a nanoscale
assembly consisting of a spherical nanocore with a number of
surface-attached viral capsid protein pentamers. In the absence
of nanocore, pentamers often self-assemble into icosahedral
structures of different T-numbers depending on the host
medium conditions.28 However, in the presence of the
nanocore, arrangement of the surface-attached proteins may
differ dramatically from those of the icosahedral structures in a
nanocore free solution.48 In particular, symmetry of the surface
assemblies can be strongly influenced by the size and surface
properties of the nanocore. If the core particle is of radius
equals to the cavity of a T = 1 structure, then the pentamers
would likely assemble in a T = 1 symmetry.48 However, if the
core particle diameter is increased beyond the cavity size (but
less than the diameter of the next T number structure) then a
point is reached wherein bare spots appear on the core.
Consequently, some preferred pentamer-to-neighbor-pentamer
interactions are lost and these pentamers undergo Brownian
motion over a range of temperatures. With this, the
orientational order defining a T = 1 icosahedron can be
disturbed and a symmetry breaking transition resulting in an
assembly of randomly oriented pentamers is realized.
The above example can be placed more explicitly in the

context of the classic relationship between symmetry breaking
and emergence of OPs as follows. First, express the distribution
of the pentamer density in terms of spherical harmonics and
associated weights. At high temperature, the symmetric
structure of pentamers is lost and hence the surface density is
uniform (wherein weights of all harmonics except those for the
lowest order ones are zero). Depending on the structure that
emerges, at lower temperature, the weights of certain
harmonics can depart from their values in the uniform state.
In this case, weights of the spherical harmonics following the
emergent geometry pattern (e.g., T = 1 icosahedron) serve as
OPs in a manner similar to that used in the theory of
ferromagnetism. When uk(ri⃗

0) are spherical harmonics, the ϕ⃗k in
eq 3 provides a way to capture this transition. From this
example it is seen, the space warping OPs are directly analogous
to those appearing in the classical theory of phase transition for
cases where simple symmetry can be identified.
The classical phase transition theories, like that for

magnetization, are built on the properties of infinite systems,
e.g., renormalization group concepts.49 In contrast, macro-
molecular assemblies are finite, in fact small in extent and hence
cannot completely follow the theory of macroscopic phase
transitions. Furthermore, macromolecular assemblies can be in
conformational states without a simple, readily identifiable
symmetry, e.g., ribosomes. Nonetheless, as pH and other
conditions in the host medium change, the system can switch
to a different conformation.50 Such a system experiences
structural transition between two states, neither of which has a
readily identifiable symmetry. This suggests that often OPs in
macromolecules cannot be readily associated with the breaking
of symmetry even if they signify a dramatic change of order.
Therefore, other metrics are required to signal the emergence
of new order in macromolecular systems when there are no
readily identifiable symmetries involved.
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For the space warping OP formulation of eq 3 such metrics
include

• The onset of long-time tails in correlation functions of
OP momenta indicating the coupling of a proposed set
of OPs to emergent ones.46

• The systematic growth of residuals in eq 2 during
structural transitions indicating the emergence of new
types of organization from rapidly fluctuating atomistic
processes.46

Numerical procedures for constructing the emergent OPs are
provided in section III. With this, the space warping OPs can be
used for the classical symmetry breaking type transitions in
macromolecular systems and also provide an approach in cases
where symmetries are not readily identifiable.
D. Structural Characterization of Macromolecular

Systems. Macromolecular assemblies display a rich array of
structural organizations. For example, simple nonenveloped
viruses often show an icosahedral arrangement of pentameric or
hexameric protein subunits. However, under certain conditions
they may exist in capsular, twisted and conical shapes.28

Transition between these structures occurs via symmetry
breaking pathways that account for changes in overall assembly
organization. As shown below, the set of space warping OPs is
rich enough that many types of symmetry are embedded in
them. As in nature, observed symmetries for a given system
emerge due to the underlying interatomic forces. This feature
of the present approach enhances the capability to discover
pathways of structural transition or self-assembly.29,31

Considering a T = 7 virus capsid as shown in Figure 1, it is
demonstrated that specific combinations of space warping OPs
capture the deformation of the symmetric T = 7 virus capsid
into conical, capsular and twisted capsular forms. Trans-
formations captured via these OPs are understood below in
terms of a set of fundamental global and local deformations.51

Consider the example of a tapering deformation (Figure 1).
Take Uk, k = 100, 110, 101 to be x0, x0y0, and x0z0, respectively.
Neglecting residuals, eq 1 becomes xi = ϕ100xxi

0 + ϕ100xxi
0yi

0 +
ϕ101xxi

0zi
0, and similarly for yi and zi (where xi,yi,zi are the three

Cartesian components of r⇀ vector and ϕkα is the α-th

component of OP ϕ⃗k). This relationship can be written in the
tensorial form

= =

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
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⎞

⎠
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

x
y

z
J

x

x y

x z

J;
i

i

i

i

i i

i i

x x x

y y y

z z z

0

0 0

0 0

100 110 101

100 110 101

100 110 101 (6)

For the choice of ϕk as specified in Figure 1 (i.e., ϕ100x, ϕ100y,
ϕ110x, ϕ110z = 0 and ϕ100x, ϕ110y, ϕ101z, ϕ101y, ϕ101x ≠ 0), J is the
Jacobian matrix for tapering along the X axis.51 Thus, these OPs
capture structures that are tapered with respect to the reference
configuration ri⃗

0. Similar matrix transformations can be
constructed using other combinations of OPs to explain the
twisting and bending transitions of Figure 1. In this context,
examples of OPs that enable motions like extension-
compression-rotation were provided earlier.39,46 Thus, the
space warping variables are coarse-grained in character and, in
addition, are rich enough to capture the emergence of overall
order and symmetry breaking in macromolecular assemblies.
With this, they enable a multiscale methodology as follows.

E. Deductive Multiscale Analysis. Equation 3 implies that
for a given set of atomic positions the corresponding OPs ϕ⃗k

are uniquely defined. However, the converse is not true, i.e.,
there exists multiple all-atom configurations consistent with a
given set of OPs ϕ⃗k. Thus, the OP construction scheme
constitutes a many-to-one mapping from the all-atom to the
coarse-grained description. As a consequence, the OP
description retains overall structural information, losing all-
atom details. Atomistic structures are reconstructed via a
procedure called deductive multiscale analysis (DMA) that
evolves the OPs with an ensemble of all-atom configurations as
follows.
The description adapted starts with the probability density ρ

of the N atomic positions and momenta Γ. However, this
formulation masks the underlying hierarchical organization of a
macromolecular assembly. To address this, in DMA ρ is
hypothesized to depend on Γ both directly, and via a set of
OPs, indirectly. With this ansatz, a multiscale analysis of the

Figure 1. Normalized space warping OPs with specified k-indices are shown to deform a T = 7 capsid into conical, capsular, and twisted capsular
forms. Cartesian components of only 33 OPs are chosen for this analysis as they are sufficient to capture these transformations.
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Liouville equation yields sets of coupled Langevin equations for
the OPs31,52

∑
ϕ⇀

τ
= ⇀⎯⇀ ⇀ + ξ⇀

′
′ ′D f

d

d
k

k
kk k k

(7)

where τ = ε2t and ε is a smallness parameter, e.g., ratio of
typical atomic mass to that of the entire assembly. The variance

of noise ξ ⃗k is bound by diffusivity ⇀⎯⇀
′D kk . The factors ⇀⎯⇀

′D kk are
related to the ensemble average of correlation functions
between hierarchical OP momenta Π⃗k via

∫⇀⎯⇀ =
μ μ

⟨Π⇀ Π⇀ ⟩′
′ −∞

‐
′D t e

1
dkk

k k
k

L t
k

0
0 0 0

(8)

where μk is the effective mass associated with ϕk as defined in
eq 3 and L0 = −∑i = 1

N (p ⃗i/mi) (∂/∂ri⃗) + F⃗i·(∂/∂p ⃗i) is the lowest
order Liouville operator. The thermal-average force fk⃗is given by

∑⇀ = − ∂
∂ ϕ⇀

= ⇀

=
f

F
u Fk

k i

N

ki i
1 (9)

for OP-constrained Helmholtz free-energy F, where

= −
β

ϕ βF Q
1

ln ( , )
(10)

Q(ϕ,β) is the partition function constructed from config-
urations consistent with the set of ϕ⃗k (denoted ϕ collectively).
In the above formalism, thermal average forces fk⃗ are

constructed at each Langevin time step via Monte Carlo
integration of atomic forces F⃗i obtained from interatomic force
fields (e.g., CHARMM53). Note that this does not require any
assumption on the form of the dependence of the thermal
average forces on the OPs; this is automatically incorporated
because the all-atom ensembles used to carry out the thermal
averaging are constructed for the values of the OPs at the given
Langevin time step. Furthermore, this formalism accounts for
the full impact of fluctuations ξk⃗ as the random forces in the
Langevin equations are constructed to be consistent with the
diffusivity factors D⃗kk′.
The thermodynamic forces involved are small so that the

state is captured by the slowly varying OPs. As the system
evolves toward equilibrium the thermodynamic forces vanish
and the system is fluctuation dominated. Both these cases are
accounted for in our multiscale OP approach since the intensity
of fluctuations is chosen to be consistent with the diffusion
factors. Finally, if the thermodynamic forces are extremely large
then the time scale of OP evolution approaches that of
atomistic fluctuations. With this, the time scale separation
between fast and slow variables is violated and the theory does
not hold.
Inherent in our DMA approach is the capability to

reconstruct atomistically resolved states given the evolving
coarse-grained dynamics. Any coarse-grained theory carries an
inherent uncertainty in the fine scale states.54 DMA addresses
this by providing the conditional probability density for the
atomistic configurations given the instantaneous values of the
OPs. These configurations are generated by a procedure
denoted hybrid sampling in which the all-atom structures are
reconstructed from the coarse-grained description via randomly
varying the residuals σ⃗i at constant values of OPs (eq 2).34

Therefore, the OPs constrain the ensemble of atomic states,

while the latter determine the thermal average forces and
diffusivity factors that control OP evolution (eq 7). Thus, the
OPs imply a multiscale simulation algorithm that accounts for
cross-talk between coarse-grained and atomic DoF. All these
ideas are implemented as the DMS software.

F. Use of PCA and Legendre Basis Functions for Order
Parameter Construction. Bionanosystems undergo large-
scale conformational changes involving collective motions of
strongly interacting clusters of atoms. Such structural changes
often correspond to the functionally relevant motions of
macromolecular systems.4,21 Collective DoF can be observed
through calculating the autocorrelations of the normalized 3N-
dimensional atomic displacement vectors from consecutive
time windows as

Δ = Δ⇀ δ ·Δ⇀ δx t x t( ) ( )lm
t tl m (11)

where Δx ⃗tl(δt) denotes the normalized 3N-dimensional atomic
displacement vector during the l-th time window of size δt for l
= 1, ..., L.
There is a variety of coarse-grained variables in the literature

that are used to analyze coherent motions in biomolecular
systems (section I). Here, we test the suitability of using the
basis vectors obtained from PCA for constructing the slow
variables used in the multiscale analysis of section II.E. To
address this issue, consider using the PCA modes (or
eigenvectors) as the basis functions for constructing OPs (see
the Appendix). Correlations between the PCA derived basis
functions Uk are compared to those of the Legendre polynomial
ones uki at selected time intervals. Strong correlation in the long
time behavior of these variables implies slow evolution of the
functions used to construct the basis vector which, in turn,
underlies coherent OP behavior. With this, define a correlation
matrix C for the basis vectors via

= ·C U Uqk q
t

k
tm l

(12)

where Uk
tl denotes the kth PCA or Legendre basis vector (k = 1,

..., M) from the l-th time window (l = 1, ..., L). In analogy with
the PCA modes, the Legendre polynomials are constructed
here using atomic displacements of a given time interval tl (and
not absolute positions as in eq 1, Appendix). The average
structure required to calculate these PCA modes is changed
with each time window, and similarly for the reference
coordinates needed to construct OPs. This treatment of the
Legendre polynomials enables a fair comparison with PCA
modes in the context of analyzing basis function behavior as
both variables are then expressed in terms of atomic
displacements for a given time interval. This particular
construction of uki is used for PCA comparisons only.

III. RESULTS AND DISCUSSION
A. Suitability of Coarse-Grained variables for Deduc-

tive Multiscaling. PCA has been applied to reduce the
dimensionality of MD trajectories for analyzing large-scale
structural changes.21,55 Their behavior is compared with that of
the space warping OPs for dimensionality reduction and
deductive multiscaling. For demonstration, we choose the
CCMV capsid as our model system because of its extensively
studied structural transition phenomena.56,57 The crystal
structure of wild-type CCMV is solved at 3.2 Å resolution by
X-ray crystallography.57 Its capsid consists of 180 chemically
identical protein subunits that form a 286-Å-diameter
icosahedral shell with a T = 3 quasi-symmetry.
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Macromolecular assemblies (e.g., virus capsids) evolve in
stochastic fashion, and therefore simulating their long-time
behavior should account for an ensemble of atomic positions
and momenta. Thus, an analysis aimed at extracting low-
frequency modes (e.g., space warping OPs or PCA) from MD
should in principle be performed with an ensemble of
trajectories. Here, 30 replica NAMD58 runs with different
random atomic velocity initializations are executed starting with
the swollen CCMV capsid. Since the characteristic time of OP
evolution is expected to be ∼O(N) times longer than that of
atomistic fluctuations (see eqs5 and 7), each MD trajectory is
run for 105 fs (100 ps) for investigating the low-frequency
modes.
While it is ideal to study the time evolution of all atoms in

the system, it is impractical to perform PCA diagonalization of
the large 3N × 3N atomic positional covariance matrix for the
400 000 atom capsid. Thus, only data on 10% of Cα atoms
(every tenth residue, 2940 in total) in the CCMV capsid
backbone is extracted for our PCA study. We divide the 100 ps
ensemble-averaged trajectory of swollen CCMV capsid into 10
time windows, each of which is input to the MD analysis
program carma59 for PCA. Every calculation yields 8,820

eigenvectors and their eigenvalues. The first 20 PCA
eigenfuctions are found to capture about 95% of structural
changes in swollen CCMV capsid. We then choose these 20
modes from each time window and calculate their correlation
matrix C from consecutive time windows using eq 12 to
compare their similarities and thereby monitor coherence.
Figure 2a shows dot products of atomic displacement vectors

Δx ⃗, i.e., the Δ matrix expressed via eq 11 using 10 ps time
windows. The overlap of Δx ⃗ from neighboring time windows
(the upper and lower diagonal entries) are found to be
significant (about 0.6). As the distance between time windows
increases, the Δx ⃗ autocorrelations decrease gradually to about
0.2. These correlations imply that the capsid undergoes slowly
evolving collective motions over time intervals of 10 ps or
longer. Figure 2b shows the correlation matrix C of PCA basis
vectors from the first two consecutive time windows calculated
using eq 12. These PCA vectors are found to display small
overlapping with their dot products distributed between −0.02
and +0.02. Basis vectors from other sets of consecutive time
windows also give similar results. In contrast, Legendre
polynomials of atomic displacements display significantly larger
correlation between the basis vectors of the two consecutive

Figure 2. Correlation matrices of (a) atomic displacement vectors of the ten consecutive time windows of 100 ps ensemble-averaged trajectory and
(b) PCA and (c) space warping basis vectors from the first two consecutive time windows. Twenty PCA and 27 Legendre basis vectors are used as
they keep the residuals σi in eqs A2 and A3 small.
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time windows (similar values as the correlations of Δ)
compared with that of the PCA (see Figure 2c). The
antidiagonal entries have switching positive and negative values
because of the odd and even properties of Legendre
polynomials used.
Space warping basis vectors constructed with Legendre

polynomials of atomic displacements at consecutive time
intervals display large similarities implying coherence of the
basis vectors uki as shown in Figure 2c, which, in turn, reflects
the slowly evolving nature of the collective motions illustrated
in Figure 2a. This suggest that the OPs constructed from these
basis vectors are suitable to project system configuration over
long time (10 ps or longer). Therefore, they can serve as a basis
for the multiscale analysis introduced in section II.E. The
comparison of Legendre with PCA derived basis vectors implies
that the latter capture correlated motions on time scales lesser
than 10 ps, not suitable to project system configuration over
long time, and do not manifest the coherence in evolution
required to construct OPs for deductive multiscaling and
related simulations. Thus, temporal scales captured through
these PCA modes are shorter than those described by OPs
constructed from the Legendre polynomials of Figure 2. In the
deductive multiscale formalism however, such local motions are
captured through the construction of all-atom ensembles that
probe events on time scales much smaller than that of OP
evolution (section II.E). Alternatively, incorporation of more
OPs in the coarse-grained description enables capturing short
scale collective motions32 (as discussed in sections III.B and
III.C). Thus, the space warping OPs when embedded in our
multiscale approach together with the implied quasi-equili-
brium ensemble of OP constrained atomic configurations
capture dynamics on shorter, similar, as well as longer scales
than PCA modes. As a result, the OPs provide an ideal and
versatile reduced description that enables the deductive
multiscaling of N-atom macromolecular assemblies.
B. Symmetry Breaking and CCMV Capsid Structural

Transition. The slowly evolving nature of OPs suggests a
multiscale MD/OPX approach to simulate bionanosystem
dynamics.32,36,37 In this approach, a set of replica MD runs with
different velocity initializations is used to estimate the rate of
OP change. Since OPs evolve coherently, they are readily
extrapolated over long time periods using this rate through eq
5. Thus, the slow overall dynamics of the system is simulated.
At every time step, the replica MD runs are repeated to reassess
the rate of OP change that enables further extrapolation in
time.
Biomolecular systems of nanoscale size provide ideal

examples for illustrating the effectiveness of an OP based
simulation methodology. MD/OPX was used to simulate the
shrinkage of a swollen CCMV capsid in vacuum for 200 ns.36 33

OPs were constructed by using Legendre polynomials of
atomic coordinates over order (0, 1, 2) in X, Y, and Z
directions. Low-order Legendre polynomials were selected
because they vary smoothly in space and thus can capture the
overall nanoscale deformation of the virus capsid. Thirty 500 fs
replica MDs were used for calculating the rate of OP evolution
and extrapolating them to evolve the system. As the OPs are
slowly varying in time, the length of MD runs used to compute
the rate of their change are typically much smaller than the
extrapolation time step. With this, adaptive timesteps in the
range of 50−60 ps are achieved to extrapolate the OPs. These
are 4 orders of magnitude larger than the typical MD timesteps
(e.g., 1 fs). As shown in Figure 3a, the CCMV shrinkage was

found to be an energy-driven, symmetry-breaking process that
involves large-scale translation and rotation of pentamers and
hexamers in the capsid. The capsomeres undergo cooperative
motions through strongly coupled allosteric interactions during
shrinkage. As a result, this viral structural transition starts locally
and then propagates across the capsid, i.e., they proceed via
intermediate states that are not constrained to the icosahedral
symmetry of the initial and final states (i.e., T = 3).
Variables that capture the symmetry breaking nature of this

CCMV capsid structural transition are the hexamer and
pentamer orientation angles (Figure 3b). Their values change
gradually during capsid shrinkage, indicating change in
orientational order of the capsid subsystems. Insight into the
nature of transitions involving these variables can be gained via
analogy with the ferromagnetic phase transitions. For example,
magnetic orientational order changes as temperature changes
across the Curie value. Similarly, the capsid structural transition
involves capsomere rotation as the pH and thus the

Figure 3. 200 ns MD/OPX simulation of the shrinkage of swollen
CCMV capsid: (a) CPK representation of Cα atoms of the resulting
structure with arrows indicating the atomic displacements from their
original positions in the starting PDB structure to their final positions
and (b) time courses of the average rotation angle for pentamers and
hexamers calculated via superimposing their structures to the initial
configurations.
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protonation state of protein residues in the system changes.37,56

However, unlike traditional examples in ferromagnetic
transitions where the crystal structure remains intact, the
orientational reordering of capsomeres accompanies shrinkage
of the T = 3 capsid. This behavior, in turn, is similar to
ferromagnetic phase transitions in alloys that simultaneously
involve negative expansion of lattice parameters.60 Thus,
transitions involving change in capsomere orientations for a
fixed T-number could occur as analogues to the change in
lattice structure accompanying some ferromagnetic transi-
tions.61 Such structural transitions are also observed in
molecular solids and liquid crystals44 where eularian angles
are used as orientational OPs.
C. Structural Transition between States of Uncertain

Symmetry. Traditionally, OPs are used to characterize
macroscopic phase transitions wherein symmetry breaking is
usually apparent since the symmetries of the states on either
side of the transition are readily identified. While transitions in
macromolecular systems often demonstrate large-scale struc-
tural reorganization, the symmetries involved can be less
apparent (section II). Here, we use DMS38 simulations to
illustrate new OP related metrics that signal the change of order
in macromolecular systems without readily identifiable
symmetry. These simulations are based on the two-way transfer
of structural information between OPs (coarse-grained
description) and atomistic configurations (characterized by
quasi-equilibrium probability densities) as described in section
II.E. The demonstration system, RNA of STMV, is chosen
because it (a) has interesting complexity, containing 949
nucleotides arranged in 30 double stranded helical stems joined
via single-stranded loops, (b) is highly flexible, (c) expresses
nonlinear motions and, (d) unlike CCMV, does not have a
readily identifiable initial symmetry.62 With this, applicability of
the space warping OPs of section II as coarse-grained variables
that efficiently probe highly complex motions is tested.
The initial state of the STMV RNA is taken to be when it

resides inside the capsid with associated protein subunits. The
simulated evolution follows after the capsid is removed
instantaneously. In a 1:1 electrolyte like NaCl, the RNA
initially expands, then shrinks due to electrostatic shielding by
the diffusive counterion cloud, and finally fluctuates among
atomistic states of similar energy.33 All-atom configurations

resulting from this simulation imply that the RNA tertiary
structure is highly disrupted, although secondary structures
remain after 50 ns.33 In contrast, in a 2:1 electrolyte like MgCl2,
Mg2+ ions tightly bind to the RNA. Thus, secondary and
tertiary structure is preserved during the 25 ns simulation (see
Figure S1). This DMS predicted RNA stability in 0.3 M 2:1
electrolyte is in agreement with previous experimental and
theoretical predictions6,63 and reconfirmed here with NAMD
simulation results at 310 K (Figure S2a).
To further test the robustness of DMS, the RNA simulation

in 0.3 M MgCl2 is repeated over a range of temperatures
between 310 and 425 K. At each temperature 25 ns all-atom
trajectories are obtained. Details of conditions and parameters
used for these simulations are listed in Tables S1 and S2 in the
Supporting Information. Increase in temperature results in the
emergence of new collective motions. To capture these
motions, OPs that were not included to the initial set of
collective variables are added to the reduced description and
subsequently evolved via Langevin equations (see section SI2
of the Supporting Information for details). Such OPs, denoted
ϕ⃗k
new corresponds to values of k for which nonlinear local

motions like tapering, twisting and bending are probed (Figure
4b). This illustrates that new space warping OPs can be readily
added to capture complex motions as they emerge in response
to change changes in the microenvironment.
Tracking the decay characteristic of OP velocity autocorre-

lation functions calculated by using eq 8 provides a criterion of
completeness for a given set of OPs. In particular, appearance
of long time tails in these correlation functions typically
suggests there are additional OPs that couple to the set
considered originally.33,46 As these “missing” modes are
accounted for via the introduction of additional OPs (ϕ⃗k

new),
the corresponding OP velocity autocorrelation functions
rapidly decay indicating completeness of the reduced
description (Figure 4a). With this, the growth of residuals σ⃗i
(Figure S3) and emergence of long tails in correlation functions
(manifested during the construction of all-atom ensembles via
hybrid sampling as described in section II.E) indicate the
necessity of additional OPs that capture a shift in structural
organization. Therefore, these quantities serve as OP related
metrics that signal the change of order in macromolecular
systems even if symmetry breaking is not readily identifiable.

Figure 4. (a) Velocity autocorrelation functions for a typical OP (Φ100X). Absence of a long-time tail indicates lack of coupling to other slow variables
not included in the set of OPs. As temperature increases, so does the area under a curve, implying greater OP diffusion. (b) Appearance of new OPs
(k = 2 and 3 here) indicates emergence of collective motions as temperature increases. Some of these OPs correspond to those for twisting and
tapering (Figure 1), thereby capturing the emergence of nonlinear deformation about thermo-labile centers of the RNA helix (inset). These
emergent OPs are obtained from the population of growing residuals as described in Figure S3 in the Supporting Information.
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The DMS results at 310 K and 425 K are benchmarked with
those of 5 ns NAMD simulations. The OP trajectories obtained
from these simulations are found to be in agreement (Figure
S2); this validates the applicability of DMS simulations over a
biologically relevant range of temperatures. However, as
temperature increases the time scale of OP evolution decreases.
This limits the size of Langevin OP timesteps and,
subsequently, the applicability of the noninertial Langevin
equations that underlie DMS simulations. Thus, simulations in
the 310−425 K range are carried out using DMS; higher
temperature simulations are performed using NAMD to
capture the inertial regime that restricts DMS applicability
(section SI2, in the Supporting Information). Comparison with
MD at multiple temperatures ensures that DMS predicted
results are free from artifacts. This also confirms that the
predicted temperature behavior of the RNA is not affected by
the switch in simulation methodology (DMS to MD) at 450 K.
The present investigation of RNA dynamics over a range of

temperatures provides insights into a macromolecular phase
transition. The essence of this transition is seen in Figure 5

where ensemble average values of three selected OPs are
plotted versus temperature. The temperature-dependent
behavior of average OP values suggests a phase transition
type phenomenon occurs between 475 and 500 K. OPs
undergo a drastic change in magnitude across this transition
region (Figure 5). Observed increase in OPs implies expansion
of the RNA structure. Thus, space warping OPs indicate a
substantial shift in order between states of RNA in which
symmetries are not distinct. Since these OPs capture overall
RNA structure, analogous transition behavior is observed for
other coarse-grained descriptors like the number of hydrogen
bonds (Figure 5), radius of gyration (Figure S4), and end-to-
end distance.
Most RNAs have a degree of heterogeneity in the nucleotide

sequence. With this, one might expect heterogeneous
nucleation sites for the transition. i.e., nucleotides are not all
equally responsible for the structural changes in RNA. In the
present simulations, the 14th and 19th nucleotide (ADE and
URA, respectively) in each of the 30 RNA helices were found

to be more thermo-labile, i.e., sensitive to changes in
temperature. As shown in Figure 6a, enhanced motion of
these nucleotides is reflected in significant shifts in their
dihedral angles as the temperature changes. A Poisson−
Boltzmann evaluation of electrostatic energies64 shows that
these two nucleotides are the most stable when RNA is
embedded inside the virus capsid (Figure S5). Strong protein-
nucleic acid interactions hold dihedral angles neighboring these
nucleotides unchanged. However, when the capsid is removed,
setting the RNA free as simulated here, the associated dihedrals
change appreciably. Consequently, these dihedrals sample a
range of values that evolve away from those of the protein-
bound RNA (Figure 6a). As the transition zone is entered the
motion of these thermo-labile centers increase until a RNA-
wide transition is expressed. For example, at these temperatures
(475−500 K), the internucleotide hydrogen bond breaks
providing additional DoF to the RNA helices (Figure 5).
This, together with enhanced mobility of the thermo-labile
centers, results in correlated nucleotide motions in their
vicinity. Emergence of such motions like twisting or bending
(Figure 4) disrupts secondary structure of the double stranded
RNA stem and mediates the propagation of an instability front
across the entire macromolecule (Figure S6) that transforms all
the helices to coils (Figure 6c). Resulting shift in order of the
overall RNA structure is indicated by the discontinuous
temperature behavior of space warping OPs across the
transition region (Figure 4). Thus, the thermo-labile nucleo-
tides provide centers of nucleation that initiate the observed
first-order like phase transition between the encapsidated and
coiled states of STMV RNA. Root mean square (rms)
fluctuations about the mean dihedrals for nucleotides of the
RNA helices are presented (Figure 6b). Such fluctuations
increase near the transition zone as expected if the analogy to
macroscopic phase transitions is to hold.
In the above, the temperature-dependent behavior of STMV

RNA is investigated from the space warping OPs, nucleation
and fluctuation perspectives. Results suggest a first-order like
phase transition occurs between 475 and 500 K. Such behavior
reflects the interplay between local and overall structures of
RNA. Although there is no experimental data available for the
transition temperature of STMV RNA, earlier simulations on
smaller RNA loops suggest a melting point between 420 to 430
K.65 Given that the present system is much larger (i.e., 949
versus 14 nucleotides and an order or 2-fold greater number of
dinucleotide bonds), the high transition temperature suggested
here is not surprising. Besides, significant discrepancies between
experimental and theoretical results on macromolecular
structure and dynamics are well-known.66 These differences
can be attributed to factors such as the finite size of all-atom
ensembles constructed at every Langevin time step for
computing the thermal forces and diffusions (section II.E),
possible incompatibility of force-fields with high temperature
simulation,65 discrepancies in thermal expansion coefficient of
TIP3P water model,67 and problems with simulating the
counterion environment as realized in the experiments.68

Nonetheless, RNA simulations in aqueous medium have been
performed for temperatures in the range 300−700 K.65,69

These simulations have provided insights into the thermo-
rigidity and functionality of multiple RNA structures. Even
though the above simulation inconsistencies might affect
computing exact transition temperatures, the behavior of OPs
across transition regions as reported here qualitatively follows
previously observed trends.66,69,70 With this, the space warping

Figure 5. Phase transition behavior of STMV RNA captured via the
quasi-discontinuous change of space warping OPs between 475 and
500 K suggesting that these OPs are appropriate indictors of a change
in organization even if the nature of symmetry breaking is not
apparent. The change in OPs indicates thermal expansion of the RNA.
Similar behavior is reflected in the average number of intranucleic acid
hydrogen bonds that rapidly decreases across this region.
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OPs used for macromolecular assemblies have properties
analogous to those used in the theory of macroscopic phase
transitions.
Our results also suggest that proteins on the inner surface of

STMV capsid greatly enhance the stability of the thermo-labile
nucleotides, i.e., suppress motion of the nucleation centers (see
Figures 6a and S7). Consequently, viruses can survive in high
temperatures (∼400 K) without losing the RNA tertiary
structure.71 Thus, the free-energy minimizing structure of a
virus can enable it to withstand severe temperatures, as
commonly observed. At very high temperatures however, these

protein−RNA interactions are lost and so the virus ultimately
loses stability.

D. Performance of Multiscale Techniques. Structural
transitions in CCMV and RNA of STMV provide examples of
phenomenon in which accounting for the cross-talk among
multiple time and length scales becomes critical. Since both
DMS and MD/OPX are based on the interplay of all-atom and
coarse-grained variables, such multiscale methodologies natu-
rally account for this cross-talk. Furthermore, application of
these techniques leads to efficient computation of slow
processes. For example, MD/OPX simulation with adaptive

Figure 6. (a) Average deviation of nucleotide dihedral angles from their initial values at t = 0 for 30 nucleotides comprising of the RNA helix for
temperatures between 310 and 500 K. At temperatures lower than the transition temperatures, nucleotides 14 and 19 show maximum deviation from
their room temperature values. At temperatures in the transition zone, a more RNA-wide motion occurs, as indicated by the increase in dihedral
deviation of neighboring nucleotides. In contrast, the protein bound RNA helix is the least mobile. (b) rms fluctuations about mean dihedral angles
showing distinct increase with temperature. Dihedral angles are calculated using the AMIGOS73 program. Only η-type dihedrals73 are plotted for
illustrative purposes. At each temperature, the ensemble average dihedrals are averaged over all the thirty RNA helices to obtain data for this plot. (c)
Global and local changes in the structure of viral RNA accompanying the transition between states of uncertain symmetry.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp2119247 | J. Phys. Chem. B XXXX, XXX, XXX−XXXJ



OP extrapolation timestepping is about 6 times faster than
direct MD. Similarly, DMS is found to be about 11 times faster
than NAMD at 310 K. This efficiency reduces by 4 fold at 425
K. This is expected as the OPs loose coherence with increase in
temperature. However, a direct comparison with conventional
MD run is not appropriate. This is because at each OP time
step 200−300 all-atom structures consistent with the
instantaneous OP values are obtained. Thus, DMS or MD/
OPX simulation corresponds to an ensemble of 200−300
conventional MD runs, for which the timecourses of the
spacing warping OPs are essentially the same, while the detailed
atomistic configuration varies among members of the ensemble.
Finally, a single MD run may not be representative of an
ensemble of possible time courses, which, in contrast is
automatically overcome in the all-atom multiscale approach.

IV. CONCLUSIONS

Space warping OPs capture key elements of symmetry breaking
manifested in structural transitions of macromolecular
assemblies. Their generality allows them to capture a variety
of symmetries that emerge as a consequence of the underlying
interatomic forces and conditions to which the system is
subjected. The space warping OPs enable a multiscale analysis
which accounts for the cross-talk between the coarse-grained
and all-atom DoF, and characterizes an ensemble of atomic
configurations coevolving with the OPs. In this context, spacing
warping OPs together with the multiscale analysis capture a
more diverse range of coherent motions than do PCA modes.
These ideas are demonstrated via simulations of symmetry
breaking accompanying CCMV capsid shrinkage, and a first
order structural transition in RNA of STMV. The multiscale
methodology presented here is robust to a range of salinity and
biologically relevant temperatures. However, high temperature
regimes reduce the multiscale simulation performance due to
the loss of time scale separation between coarse- and atomic-
scale processes. Depending upon conditions, OP-mediated
multiscale simulations are much more efficient than conven-
tional MD simulations.

■ APPENDIX

Principal Component Analysis for Dimensionality
Reduction
Principal component analysis (PCA) involves diagonalization
of the positional covariance matrix for selected atoms (like Cα

in protein backbone)

= ⟨ − ⟨ ⟩ − ⟨ ⟩ ⟩ =c x x x x i j N( )( ) , , 1, ..., 3ij i i j j (A1)

where xi and xj are atomic coordinates and the ⟨···⟩ denote
trajectory averages over a selected time window tl with l = 1, ...,
L. This generates an orthogonal set of eigenvectors (i.e., basis
vectors or modes), denoted U, each associated with an
eigenvalue that indicates the amplitude of fluctuations along
that eigenvector. Eigenvalues divided by their sum describe
relative contributions of the associated eigenvectors to major
conformational changes observed in the trajectory. For reduced
representation of the system, a subset of PCA eigenvectors with
largest eigenvalues is chosen and the number of these
eigenvectors M is normally much smaller than the total
number of atoms N,21,72 i.e.,U ≡ {Uk, k = 1, ..., M} for M ≪ N.
Simple changes in the definition of space warping OPs (eq 1)

enable its construction using the PCA basis vectors. To achieve

this, space warping OPs are recast in terms of displacements
from a mean configuration. This yields

∑− = ϕ + σ =
=

x x U i N, 1, ..., 3i i
k

M

k k i
0

1 (A2)

where xi
0 are atomic coordinates of the system reference

configuration which can be starting structure of a time window
and ϕk are the OPs tracking displacement from this structure.
Similarly, the Legendre polynomials constructing uki are defined
as functions of atomic displacements, Δxitl (i = 1, ..., 3N) from
the selected time window tl (section II.B). Introducing these uki
into eq 1 yields analogues of A2 in the Legendre basis

∑− = ϕ + σ
=

x x ui i
k

M

k ki i
0

1 (A3)

where the factor uki is constructed using functions of the form
uk(Δxitl). This treatment of the Legendre polynomials enables a
fair comparison with PCA modes in the context of constructing
basis vectors as functions of atomic displacements.
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