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Examples of quantum nanosystems are graphene nanoribbons, molecular wires, and superconducting
nanoparticles. The objective of the multiscale theory presented here is to provide a new perspective
on the coupling of processes across scales in space and time underlying the dynamics of these sys-
tems. The long range objective for this multiscale approach is to serve as an efficient computational
algorithm. Long space-time dynamics is derived using a perturbation expansion in the ratio ε of the
nearest-neighbor distance to a nanometer-scale characteristic length and a theorem on the equivalence
of long time-averages and expectation values. This dynamics is shown to satisfy a coarse-grained
wave equation (CGWE) which takes a Schrödinger-like form with modified masses and interactions.
The scaling of space and time is determined by the orders of magnitude of various contributions to
the N-body potential. If the spatial scale of the coarse-graining is too large, the CGWE would imply
an unbounded growth of gradients; if it is too short, the system’s size would display uncontrolled
growth inappropriate for the bound states of interest, i.e., collective motion or migration within a
stable nanoassembly. The balance of these two extremes removes arbitrariness in the choice of the
scaling of space-time. Since the long-scale dynamics of each Fermion involves its interaction with
many others, we hypothesize that the solutions of the CGWE have mean-field character to good
approximation, i.e., can be factorized into single-particle functions. This leads to a coarse-grained
mean-field approximation that is distinct in character from traditional Hartree–Fock theory. A varia-
tional principle is used to derive equations for the single-particle functions. This theme is developed
and used to derive an equation for low-lying disturbances from the ground state corresponding to long
wavelength density disturbances or long-scale migration. An algorithm for the efficient simulation of
quantum nanosystems is suggested. © 2011 American Institute of Physics. [doi:10.1063/1.3560450]

I. INTRODUCTION

Quantum nanosystems are assemblies of thousands or
more of Fermions or Bosons. Examples include quantum
dots,1 superconducting nanoparticles2, and graphene platelets
and ribbons.3 Droplets of 3He and 4He also display quan-
tum behavior, and for similar reasons, Li as a confined quan-
tum gas4 or in a polymeric matrix.5 Due to the size of
quantum nanosystems, their behavior lies somewhere be-
tween that of small molecules and macroscopic systems. The
objective of this study is to develop a theoretical framework
that addresses the multiscale character of these systems.

Strongly interacting quantum many-particle systems
cannot readily be analyzed via classic perturbation or path
integral methods. The difficulty stems from the coupling of
processes across multiple space-time scales and the strength
of the inter-particle forces that underlie their dynamics.
Multiscale analysis of the Schrödinger equation has been
used to derive coarse-grained wave equations (CGWE) for
Boson6 and Fermion7, 8 systems. For the latter, the lowest
order solution to the Schrödinger equation was taken to be
in the form of an antisymmetric factor (for the ground state)
times a long space-time scale factor for low-lying excitations.
The latter factor was taken to be symmetric with respect to

a)Electronic mail: ortoleva@indiana.edu.

the exchange of the labels of identical fermions and therefore
describes Boson-like excitations.

Multiscale analysis was also shown to imply that quan-
tum nanosystems can satisfy a CGWE of a form reminiscent
of the Dirac equation for the relativistic electron.8 These re-
sults follow from the Schrödinger equation and the existence
of distinct spatial scales inherent to those systems. The ratio
ε of the average nearest-neighbor distance to the size of the
nanosystem or other nanometer-scale characteristic length en-
abled a perturbation scheme that lead to the CGWE.

Earlier multiscale treatments of quantum nanosystems
left some ambiguity in the spatial scale at which coarse-
graining is to be applied. One objective of the present treat-
ment is to more directly relate the choice of scaling of space
to that arising in the various contributions to the N-particle
potential; this scale may be shorter or similar to the size of
the nanoassembly depending on the physics of the constituent
particles and, notably, the strength of their interactions.

Renormalization group methods have been used to
understand extensive Fermion systems and the emergence of
effective masses and other modified quantities.9 This tech-
nique addresses the fact that in a very large system there are
many scales. The formalism is based on scaling transforma-
tions which, when repeated many times, leave the underlying
equations invariant to further coarse-graining. However,
for a nanosystem, a multiscale approach often yields an
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excellent approximation, e.g., for the classical Liouville10–19

and the Poisson–Boltzmann20 equations.
The existence of a gap in time scales between that

of individual atomistic fluctuations and the larger-scale
coordinated motion of multiple atoms has been demonstrated
for classical systems.17–19 Furthermore, the order parameter
momentum autocorrelation function was shown to have
a short decay time; this implies that the order parameters
decouple from other intermediate timescale processes.18, 19

With this and a multiscale perturbation method, a Langevin
equation of stochastic order parameter dynamics was derived.
These results enable the simulation of macromolecules
and their complexes over long times (e.g., microseconds)
which is impractical for these supramillion atom systems
via traditional molecular dynamics simulations.18, 19 The
implication of these classical mechanical results is that for
some nanosystems one may use an approach based on a
few discrete length and time scales. Here, we explore this
notion for quantum nanosystems avoiding the need for the
complexity of the renormalization group approach.

A two-scale theory starts with the introduction of the po-
sition

⇀

r � of particle � (in units where the average nearest-

neighbor distance is 1) and a scaled position
⇀

R� = ε
⇀

r � (in
terms of which traversal across a nanoassembly or across
other long characteristic length involves a distance of one
unit). Here, ε is the ratio of the average nearest-neighbor dis-
tance to the long characteristic length (e.g., 100 nm). The
basis of the multiscale analysis that we develop is that the

wavefunction depends on
⇀

r � both directly and, through
⇀

R�,
indirectly. Although we pursue this two-scale approach in
the present study, our methodology applies to cases with a
range of intermediate scales, e.g., involving the dependence of

the wavefunction on a set of scaled positions
⇀

R�
(γ ) = εγ ⇀

r �,
where γ (γ > 0) is a space-scaling exponent. However, since
the two-scale approach was successful in establishing and im-
plementing an efficient and accurate algorithm for simulating
supramillion atom classical nanosystems (e.g., nonenveloped
viruses and RNA),18, 19 in the present study we consider it for
quantum nanosystems.

The two-scale approach presented here for low-lying ex-
citations in Fermion systems has analogies to methods used
in porous media. In the latter case, equations of fluid flow
on the pore scale are shown, after coarse-graining, to lead
to Darcy flow, i.e., overall flow driven by a coarse-grained
pressure gradient.21 Such results follow from an expansion
in the ratio of the pore size to the characteristic length of
the overall pressure gradient or of large scale nonunifor-
mities in the system. In more close analogy to the present
problem, a two-scale approach shows that Darcy flow on
one scale yields, upon coarse-graining, to Darcy flow on a
larger scale but with modified permeability.22 These find-
ings have analogy in the present problem wherein coarse-
graining of the wave equation for the N-fermion system leads
to a CGWE with modified masses, interactions, and other
characteristics.

The present study also explores the hypothesis that since
the CGWE describes the interaction of each particle along
a trajectory spanning many average nearest-neighbor dis-

tances, the CGWE yields solutions that, to good approxima-
tion, are factorizable, i.e., have mean-field character. This is
distinct from a traditional mean-field theory. The latter fol-
lows from assuming a Slater determinant of single-particle
functions and deriving equations for them via the variational
principle using the original Hamiltonian. The present ap-
proach, however, accounts for particles with modified masses
interacting with modified forces where equations are de-
rived via the variational principle using the coarse-grained
Hamiltonian.

The present theory is cast in a fully dynamical frame-
work. Thus, stationary states corresponding to low-lying ex-
citations and responses to time-dependent external fields
can be studied. For example, the dynamical response to
an applied electrical or magnetic field can be simulated
in a study of graphene or nanowires of superconducting
materials.

The multiscale approach starts with the identification of
a set of order parameters � characterizing nanoscale system
features. These parameters (e.g., mass density disturbances)
characterize the coherent behavior of many particles simul-
taneously or the long-range migration of single particles. As
such, they evolve slowly in time and underlie the time scale
separation that enables a multiscale analysis. In particular, the
wave equation and the order parameters imply the existence
of a time scale ratio η, e.g., the typical time of single-particle
collisions to that of collective oscillations or long length-scale
migration. A key step in the multiscale analysis is to relate η

to the length-scale ratio ε to provide a unified perturbation
parameter, taken to be ε here. The theory proceeds via a per-
turbation analysis in ε to capture the interplay of processes
across scales in space and time (Fig. 1). To lowest order in ε,
the solution to the wave equation takes the form of an anti-
symmetrized sum of terms such as �̂(r ,�)W (�, t̃) where �̂

is an eigenstate of the lowest order problem and W (�, t̃) is a
long-scale envelopelike factor that evolves with time t̃ = ετ t
for scaling exponent τ . The case τ = 1 was shown ear-
lier to yield CGWE behaviors similar to those of the Dirac
equation for the relativistic electron (believed to describe
graphene3). In the present study we consider a distinct “uni-
versality class,” i.e., for τ = 2.

FIG. 1. Multiscale analysis of the wave equation captures the interplay of
short and long space time dynamics.
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In this paper, a multiscale framework for strongly inter-
acting Fermion nanosystems is set forth (Sec. II) and a CGWE
is derived (Sec. III). The multiscale mean-field approximation
for Bosonic excitations is investigated in Sec. IV, various fam-
ilies of excitations are discussed in Sec. V, a crude estimate
of the effective mass factors in the CGWE is given and dis-
cussed in Sec. VI, and a multiscale computational algorithm
is suggested in Sec. VII. Conclusions are drawn in Sec. VIII.

II. THE MULTISCALE FRAMEWORK

Consider a system of N identical Fermions such as the
electrons in a quantum dot or superconducting nanoparticle.
Such systems display structure on at least two length-scales,
e.g., the average nearest-neighbor distance and the overall
size of the assembly. The objective of the following devel-
opment is to transform the Schrödinger equation into a form
that reveals the multiple scale character of the wavefunction.
First, let the system be described by the N-particle configura-
tion r = {⇀

r 1, . . . ,
⇀

r N }. In the original form, the wavefunction
ϒ(r , t) satisfies

i¯∂ϒ

∂t
= Hϒ, (2.1)

where H is the Hamiltonian

H = − ¯
2

2m
∇2 + V, (2.2)

where m is the mass of one of the N identical Fermions, ∇2

is the 3N-dimensional Laplacian for the r space, and V is the
potential energy operator.

The strategy of our multiscale approach to quantum sys-
tems involves three elements. First we identify characteristic
quantities. For electrons in an ion core lattice these include
the following:

• Masses such as the mass of the electron, an ion core, or
collections of these particles participating in coherent
motions.

• Lengths such as the average nearest-neighbor-electron
distance, the spacing of the ion-core lattice, overall
system size, and more subtle coherence lengths as for
superconductivity.

• Times such as the period of collective oscillation, tran-
sit of an electron of the Fermi velocity across one lat-
tice spacing, or period of an ion-core lattice phonon of
a given wavelength.

• Energies such as the Fermi surface, the electron–
electron repulsion at the average nearest-neighbor-
electron distance, and the attraction energy between
an electron and an ion-core separated by the lattice
spacing.

From among these characteristic quantities, one may con-
struct dimensionless ratios. When the latter take extreme val-
ues, special behaviors are expected. When one considers a
unified limit wherein various ratios are all tied to powers of
a selected ratio, the behavior of the system is found to satisfy
universal quantum dynamical laws, an example of which is
presented in Sec. III.

Before constructing the universal laws, one must intro-
duce configuration and time variables that capture the dynam-
ics of the system in the unified limit noted above. The wave-
function is then hypothesized to depend on the many-particle
configuration both directly and, via a set of “order parame-
ters,” indirectly and similarly for time variables. When this
hypothesized dependence of the wavefunction is inserted in
the Schrödinger equation, the selected dimensionless ratios of
characteristic quantities appear explicitly as in Sec. III. With
this and an examination of the unified limit, one obtains the
limit wave equation. Below we consider a particular case of
this strategy and, in Sec. III, turn this physical picture and im-
plied mathematical analyses, into a procedure to derive a limit
law quantum dynamics equation for the coarse-grained wave
mechanics of quantum nanosystems.

The wavefunction for a nanosystem has multiple possible
dependencies on r and t. Here we assume, for simplicity, that
there is only one long scale defined via R = εσ r for scaling
exponent σ , i.e., γ introduced in Sec. I has only one value σ .
To express the multiscale complexity, we introduce an “un-
folded wavefunction” � via

ϒ(r , t) = �(r , R(r ), t0(t), t(t); ε), (2.3)

where the set of times {t0, t} = {t0, t1, t2, . . .} is related to t
via tn = ετn t for a set of scaling exponents τ 0, τ 1, . . . ; and the
smallness parameter ε is a factor in the N-particle potential
V (it is the ratio of constants in the potential that weighs the
contributions to the N-fermion potential from various forces).

When the large characteristic length of interest is the size
of the nanosystem and the small characteristic length is the
average nearest-neighbor distance, then ε is related to the
number N of Fermions. For a quasi-spherical nanoassembly
constituted of N Fermions, ε is O(N−1/3) so that one expects
a multiscale perturbation expansion in ε to converge for as-
semblies of greater than 1000 particles. More generally, ε is
O(N−1/d ) where d is the dimensionality of the structure.

When the large characteristic length is associated with
the potential and is on the order of or smaller than the
system size, then ε must be imbedded in the potential V.
To motivate the discussion, write the potential in the form
Ṽ0 + β Ṽ1 + β2Ṽ2 + · · · for smallness parameter β to be re-
lated to a power of ε. If β scales with ε, then one finds in-
consistencies in the development as shown in Appendix C.
The correct relation is determined through trial and error. We
choose a particular scaling by intuition and conduct the scal-
ing analysis. If this scaling is inconsistent, it will lead to con-
tradictions in the development, which we take as an indicator
to trigger a modification to the scaling ansatz.

For concreteness, we consider the case V = V0 + ε2V2

to suggest that V has two contributions V0 and ε2V2 (higher
terms are neglected since they are not going to affect the final
results as shown in Secs. III–V). Then the analysis is found
to imply that one may self-consistently choose the σ and τ

exponents to be integers. As shown in Secs. III–V, this scal-
ing does not lead to any inconsistencies which we take as
an indicator that it is a correct scaling choice. Finally, we
have assumed that there are only two essential length scales,
so that two configuration descriptions r and R = εσ r are re-
quired. However, in principle, there can be multiple essential
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configurational variables R(n) = εσn r for a set of scaling ex-
ponents σ 1, σ 2, . . . . If there are multiple particle types (e.g.,
electrons and ion cores in a metal), then the natural spatial
scaling for various particle types may vary. Thus, for more
complex systems, the scaling approach must be modified.
Here we focus on systems of N identical Fermions and phe-
nomena involving two spatial scales such that σ can be cho-
sen to be an integer. Similarly, self-consistency is achieved if
τ n are chosen such that τ n = n. However, generalizations for
more complex cases follow via the same logic; if inconsisten-
cies emerge in the development, then the scaling exponents
are modified accordingly.

III. EMERGENCE OF THE COARSE-GRAINED
WAVE EQUATION

With the potential splitting and the scaling introduced in
Sec. II, we now use a two-scale approach to derive a CGWE
for a system of N identical Fermions. To capture the long-
scale dynamics, we introduce a set of additional variables

R = {⇀

R1, . . .
⇀

RN } where
⇀

R� ≡ ε
⇀

r � and
⇀

r � is the position of
the �th particle. The r-dependence tracks variations on the
scale of the average nearest-neighbor spacing and hence in-
dividual particle–particle interactions and thereby the exclu-
sion principle which dominates short-scale dynamics. On the
other hand, the R-dependence reflects variations in � due to
long-range correlation or migration across the N-particle as-
sembly. Note that R is not a distinct set of dynamical vari-
ables; rather, � depends on r both directly and, through R,
indirectly. Similarly, we hypothesize that � also depends
on time t both directly and, through a set of scaled times,
{t0, t} = {t0, t1, t2, . . .} for tn = εnt, indirectly where t0 = t
tracks the shortest timescale changes and tn (n > 0) tracks the
longer scale ones. In what follows, we show that these scaling
hypotheses yield a self-consistent picture for small ε.

The multiscale hypothesis [Eq. (2.3)] and the chain rule
imply the unfolded wave equation

i¯
∞∑

n=0

εn ∂�

∂tn
= (H0 + εH1 + ε2 H2)�, (3.1)

H0 = −¯2

2m
∇2

0 + V0(r ), (3.2)

H1 = −¯2

m
∇0·∇1, (3.3)

H2 = −¯2

2m
∇2

1 + V2(r , R), (3.4)

where V is written as V0 + ε2V2 (via the potential splitting dis-
cussed in Sec. II), while ∇0 and ∇1 are the r and R gradients,
respectively. In other words, ∇2

0 = −1/¯2 ∑N
�=1

⇀

p�·⇀

p�, ∇2
1

= −1/¯2 ∑N
�=1

⇀

P�·
⇀

P�, and ∇0·∇1 = −1/¯2 ∑N
�=1

⇀

p�·
⇀

P�

where
⇀

p� = −i¯∂/∂
⇀

r � at constant R,
⇀

r �′ �=� and
⇀

P�

= −i¯∂/∂
⇀

R� at constant r ,
⇀

R�′ �=�. In what follows,
we solve [Eq. (3.1)] via a perturbation expansion in ε

(i.e., � = ∑∞
n=0 εn�n) and a solution to the wave equation is

constructed at each order.
To O(ε0), the unfolded wave equation (3.1) takes the form

i¯
∂�0

∂t0
= H0�0. (3.5)

In the following, we seek excitations that are low lying dis-
turbances from the ground state of H0, denoted �̂ (assumed
to be unique); however, more general solutions can also be
considered. For example, cases wherein the ground state is
degenerate or those for which the ground state is unique for a
given particle exchange symmetry. Adopting the convention
that the ground state energy is zero (i.e., H0�̂ = 0), (3.5) ad-
mits a solution in the form

�0 = �̂(r )W (R, t), (3.6)

where the factor W is found to be related to the lowest or-
der coarse-grained wavefunction and is determined at higher
order of the ε development.

To O(ε), the unfolded wave equation implies

i¯

(
∂�1

∂t0
+ ∂�0

∂t1

)
= H0�1 + H1�0. (3.7)

This admits the solution

�1 = S(t0)�0
1 −

∫ to

0
dt ′

0S(t0 − t ′
0)

{
∂�0

∂t1
+ i

¯
H1�0

}
,

(3.8)
where �0

1 (r , R, t) is the initial value of �1 (i.e., at t0 = 0) and
S(t0) denotes the evolution operator exp(−i(H0 − i0+)t0/̄ ).
The positive infinitesimal 0+ is introduced to insure the evo-
lution operator vanishes when t0 → ∞; this has implications
for the concept of effective mass (see below).

Redefining t ′
0 and inserting Eqs. (3.3) and (3.6) in

Eq. (3.8) yields

�1 = S(t0)�0
1 − t0|0〉∂W

∂t1
− i

¯

∫ 0

−t0

dt ′
0S(−t ′

0)H1(W |0〉),
(3.9)

where the bracket notation |0〉 is used to represent �̂.
To analyze further, we use a theorem analogous to the

Gibbs hypothesis stating that the long time-average and ex-
pectation value are equal (Appendix A):

lim
t0→∞

1

t0

∫ 0

−t0

dt ′
0S(−t ′

0)�|0〉 = |0〉〈0|�|0〉, (3.10)

〈0|�|0〉 ≡
∫

d3N r�̂∗��̂, (3.11)

for any time-independent operator �.
Examination of Eq. (3.9) shows that for �1 to be well-

behaved the t0 divergent terms must be counterbalanced as t0
→ ∞, or, if there are no such counterbalancing terms, then W
must be independent of t1. Taking the inner product with 〈0|
on both sides, multiplying by 1/t0 and letting t0 → ∞, one
obtains

i¯
∂W

∂t1
= − i¯

m

N∑
�=1

〈0|⇀

p�|0〉 ∂W

∂
⇀

R�

. (3.12)
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Since H0|0〉 = 0 and thus so is 〈0|H0, the uniqueness
of �̂ for the nondegenerate case implies �̂ can be taken
as real without loss of generality. With this, 〈0|⇀

p�|0〉
= (i¯/2)

∫
d3N r∂�̂2/∂

⇀

r � . Since �̂ vanishes at infinity for
a bounded system, one finds that 〈0|⇀

p�|0〉 = 0. With this,
we conclude that W is independent of t1 (i.e., ∂W/∂t1 = 0).
Therefore, Eq. (3.9) becomes

�1 = S(t0)�0
1 − i

¯

∫ 0

−t0

dt ′
0S(−t ′

0)H1(|0〉W ). (3.13)

To O(ε2), the wave equation (3.1) implies

i¯

(
∂�2

∂t0
+ ∂�1

∂t1
+ ∂�0

∂t2

)
= H0�2 + H1�1 + H2�0.

(3.14)

This admits the solution

�2 = S(t0)�0
2 −

∫ 0

−t0

dt ′
0S(−t ′

0)

×
{

∂�0

∂t2
+ ∂�1

∂t1
+ i

¯
H1�1 + i

¯
H2�0

}
, (3.15)

where �0
2 (r , R, t) is the value of �2 at t0 = 0. In what

follows, we consider the class of initial data to be in
the form �̂W (for further discussion, see earlier work on
Newtonian systems13, 14), i.e., �0

n = 0 for n ≥ 1. Inserting
Eqs. (3.3), (3.4), (3.6), and (3.13) in Eq. (3.15) yields

�2 = −t0|0〉∂W

∂t2
+ t0

i¯

2m
|0〉∇2

1 W

− i

¯

∫ 0

−t0

dt ′
0S(−t ′

0)V2|0〉W

+ i

¯

∫ 0

−t0

∫ 0

−t0

dt ′′
0 dt ′

0S(−t ′
0)S(−t ′

0)H1

(
|0〉∂W

∂t1

)

− ¯
2

m2

∫ 0

−t0

∫ 0

−t0

dt ′
0dt ′′

0 S(−t ′
0)∇0·∇1

×{S(−t ′
0)∇0·∇1(|0〉W )}. (3.16)

The condition guaranteeing �2 is well-behaved as t0
→ ∞ yields

i¯
∂W

∂t2
= H CGW, (3.17)

H CG = V CG +
N∑

�,�′=1

3∑
α,α′=1

μ�α�′α′
∂2

∂ R�α∂ R�′α′
, (3.18)

V CG = 〈0|V2|0〉, (3.19)

μ�α�′α′ = − ¯
2

2m
δ��′δαα′ + χ̃αα′ , (3.20)

χ̃αα′ = i¯

m2

∫ 0

−∞
dt0χ�α�′α′ (t0), (3.21)

χ�α�′α′ (t0) = 〈0|p�α S(−t0)p�′α′ |0〉, (3.22)

where χ̃αα′ is shown to be independent of � and �′ (see Ap-
pendix B). The μ term corresponds to an effective inverse
mass that is tensorial in character and is a two-body term (i.e.,
depends on � and �′).

To this point we have not explored the physical interpre-
tation of W. Define a coarse-grained wavefunction �CG via

�CG =
∫

d3N r�(R−εr )�̂∗�∫
d3N r�(R−εr )|�̂|2 , (3.23)

where �(R − εr ) is a function that is narrowly distributed
around 0 and is zero otherwise. Placing the series for �

(i.e., � = �0 + ε�1 + · · ·) and the expression for �0 from
Eq. (3.6) in Eq. (3.23), one finds �CG = W when ε → 0.
With this, Eq. (3.17) can be considered a CGWE describing
the long space-time dynamics of low-lying excitations of an
N-fermion system.

The lowest order solution �0 has the form �̂(r)W (R, t).
At first sight, this seems to imply that particle � (� = 1, 2,

. . . N) can be at two places at the same time, i.e.,
⇀

r � and
⇀

R�.
Rather, the correct interpretation is that the lowest order so-
lution is �̂(r)W (εr , t), i.e., that the R-dependence in W pro-
vides a slowly varying envelope over-and-above the highly
fluctuating factor �̂(r). For example, the probability density
for ε → 0 has the form |�̂(r )|2|W (R, t)|2. While the |�̂(r )|2
factor expresses the detailed short-scale structure of the sys-
tem, |W (R, t)|2 modulates this probability density with an
overall envelope. With this, the expectation of an operator �

is given by

〈�〉 =
∫

d3N r�̂∗(r)W ∗(εr , t)�[�̂(r )W (εr , t)]. (3.24)

For example, the expectation of the momentum of parti-

cle �,
⇀

P� = −i¯∂/∂
⇀

r �, is given by

〈⇀

P�〉 = −i¯
∫

d3N r�̂∗(r )W ∗(εr , t)

×
⎛
⎝ ∂�̂

∂
⇀

r �

W + ε�̂
∂W

∂
⇀

R�

∣∣∣∣∣
R=εr

⎞
⎠ . (3.25)

In this case, the envelope factor contributes a O(ε) term. How-
ever, the full contribution of this term must be evaluated us-
ing �1 as well (since

∫
d3N r�∗

1 ��1 will contribute terms of
order O(ε) and higher).

In developing the multiscale framework, recall that
the scaled particle position configuration R = εr does not
mean that R is an additional set of variables (i.e., there are
not 6N degrees of freedom). In deriving the implications
of the theory one must return to the full description (i.e.,
�(r , εr ; t, εt, . . . ; ε)) and then arrive at the physical quan-
tities. Thus, the expectation of an operator � is given by
〈�〉 = ∫

d3N r�∗(r , εr ; t, εt, . . . ; ε)��(r , εr ; t, εt, . . . ; ε).
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Also, one must re-establish the normalization condition∫
d3N r |�(r , εr ; t, εt, . . . ; ε)|2, and similarly for other quan-

tities. The multiscale framework provides a Taylor series
approximation in ε with which these expressions may be
evaluated.

IV. CGMF APPROXIMATION: BOSONIC EXCITATIONS

The CGWE of Sec. III describes the longer space-time
scale dynamics of a Fermion nanosystem. Evolution is on the
ε−2 timescale and the ε−1 length scale. Since �0 is antisym-
metric, there are three possible cases.

Case I: �̂ is antisymmetric (Fermionic) while W is sym-
metric (Bosonic).

Case II: �̂ is symmetric (Bosonic) while W is antisym-
metric (Fermionic).

Case III: An entangled case where antisymmetry is not
attained as a simple product of �̂ and W.

A Fermionic W (case II) corresponds to a collection of N
interacting Fermion-like quasi-particles with modified forces
and effective masses. However, since W depends on R and
not r , it cannot support the richness of short-scale variations
needed to satisfy the exclusion principle. Thus, case II is un-
physical. case III will be discussed in Sec. IVA.

As W is a long-scale function (i.e., depends on R and t ,
and not r and t0), it must, to good approximation, have mean-
field character since each particle interacts with many others
in the large intervals of space-time described by W. Thus, for
case I (Bosonic W), W can be approximated by a symmetrized
product of single-particle functions. In the following, we con-
sider a CGMF approximation to the CGWE.

A. Bose condensate

The CGWE supports a Bose condensate wherein all
quasi-particles are in the same state. For stationary states of
this type, the ground state (denoted W(0)) is given by

W (0)(R) = N
�
�=1

A(
⇀

R�), (4.1)

for single-particle function A(
⇀

R). The W(0) excitations corre-
spond to all particles being similarly elevated in energy so that
the energy of excitations of that type should be proportional
to N.

In the CGMF approximation as formulated here, the sin-
gle particle functions are determined via the variational prin-
ciple. Let ECG be the coarse-grained excitation energy relative
to the ground state. The stationary states of Eq. (3.17) satisfy
HCGW = ECGW. With this, the stationary single particle func-
tions are the extrema of the functional Ẽ defined via

Ẽ[W ] = ∫ d3N RW ∗ H CGW

∫ d3N R|W |2 . (4.2)

The single-particle function A (assumed real for simplicity
here) associated with W(0) is determined by

δ Ẽ

δA(
⇀

R)
= 0. (4.3)

Taking the coarse-grained potential VCG to be a sum over two-
body terms

V CG = 1

2

N∑
�=1

N∑
�′ �=�=1

v(
⇀

R�,
⇀

R�′), (4.4)

Eq. (4.3) implies{
Q(

⇀

R) +
3∑

α,α′=1

μ̃αα′
∂2

∂ Rα∂ Rα′

}
A(

⇀

R) = Ẽ ′ A(
⇀

R), (4.5)

μ̃αα′ = −¯2

2m
δαα′ + χ̃αα′ , (4.6)

Q(
⇀

R) = (N − 1)
∫

d3 R′ A(
⇀

R ′)v(
⇀

R,
⇀

R ′)A(
⇀

R ′), (4.7)

Ẽ ′ = Ẽ − (N − 1)
∫

d3 R′ A(
⇀

R ′)
3∑

α,α′=1

μ̃αα′
∂2

∂ R′
α∂ R′

α′
A(

⇀

R ′)

−(N − 1)(N − 2)
∫

d3 R′d3 R A(
⇀

R ′)

×A(
⇀

R′′)q̂(
⇀

R ′,
⇀

R′′)A(
⇀

R ′)A(
⇀

R′′), (4.8)

q̂(
⇀

R ′,
⇀

R′′) = 1

2
v(

⇀

R ′,
⇀

R′′) +
3∑

α,α′=1

χ̃αα′
∂2

∂ R′
α∂ R′′

α′
. (4.9)

This constitutes a nonlinear eigenvalue problem for deter-

mining A(
⇀

R) and Ẽ . This equation is distinct from that of
traditional mean-field theory in that the kinetic energy term
has two-body character and is tensorial in nature, the forces
are coarse-grained, and the excitations are Bosonic and not
Fermionic.

B. Single and multiple quasi-Boson excitations

Let �+ be an operator that symmetrizes any function of
R. In the present case, the function to be symmetrized is a
product of single particle functions. For example,

W (1) = �+ B(
⇀

R1)A(
⇀

R2) · · · A(
⇀

RN ), (4.10)

where A and B are single-particle functions. There are N terms
in the symmetrized sum constituting W(1). For large N, A sat-
isfies Eq. (4.5) which is nonlinear and is independent of the
single-particle excitation factor B. The mean-field interaction
of B only involves A and represents the (N − 1)-particle back-
ground. To insure that A and B are distinct, the minimiza-
tion of Ẽ is carried out constrained by orthogonality, i.e.,

∫ d3 R A(
⇀

R)B(
⇀

R) = 0. However, the distinguished particle is
surrounded by many background particles, and thus the B-
factor satisfies an equation reflecting that the exceptional par-
ticle evolves in the fluctuating medium of the majority, the
latter described by A. The single-particle excitation factor B
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obeys an equation involving A which provides the environ-
ment for the single-particle motion. Furthermore, the equa-
tion for B is linear. Thus, one may solve the A equation and
then use the results to determine B for large N. By analogy,
for more complex excitations, one may construct functions in-
volving various numbers of distinct single particle functions.

In conclusion, the CGMF approximation provides a prac-
tical starting point for a variational calculation of Bosonic ex-
citations such as plasmons. While the case for one type of
excitations (A above) describes the ground state, the lowest
lying excitations follow from an analysis that includes a sec-
ond single particle function (B above).

V. ANTISYMMETRY AND FAMILIES OF EXCITATIONS

In Secs. I–IV we introduced a scaling relationship be-
tween the characteristic distance and the strength of terms in
the N-particle potential. While the development is found to be
consistent, the result is not necessarily unique. This does not
imply that there is a missing constraint on the physics. Rather,
there may be distinct types of behaviors that are related to a
given class of initial states of the system.

While the wavefunction for an assembly of N identical
Fermions must be antisymmetric, there are solutions to the
Schrödinger equation which are of mixed symmetry and are
still relevant as follows. Let �s be an operator that performs
a permutation s which represents a rearrangement of the par-
ticle configuration {⇀

r 1,
⇀

r 2, . . . ,
⇀

r N } to {⇀

r s1 ,
⇀

r s2 , . . . ,
⇀

r sN } and
� = (1/

√
N !)

∑N !
s=1 (−1)sξs is an antisymmetrizer. For exam-

ple, a Slater determinant can be written as � times a product
of N single particle functions. With this, one may solve the
Schrödinger equation in a space of arbitrary exchange sym-
metry and, via �, reassemble the solutions into an antisym-
metric function.

By construction, H0, H1, and H2 are symmetric operators
so that � commutes with them. We seek long space-time ex-
citations of the system constructed as disturbances from the
ground state of H0. The family of excitations is constructed
starting from a “base” solution �̂, choosing the energy con-
vention such that H0�̂ = 0. To be consistent with the an-
tisymmetry requirement, and to be sufficiently general, we
write

�0 = �(�̂W ). (5.1)

Henceforth, we pursue each family of excitations separately.
A family is categorized according to the exchange symmetry
of the base solution �̂. Since �̂ may not be antisymmetric,
it can have energy lower than the antisymmetric ground state
of H0. However, as the symmetry of �̂ departs from antisym-
metry in increasing degree, W will have increasingly antisym-
metric character and thus have higher energy, to compensate
for it.

A. Collective Bosonic versus single-particle
Fermionic excitations

The multiscale analysis of Sec. III reveals the existence
of several families of excitations in N-fermion systems. In the
simplest case, �̂ is antisymmetric and W depends on R in

a symmetric fashion; these excitations, as manifested in W,
have thus a Bosonic and long-scale character. However, there
are other excitations which have more Fermionic character as
follows.

Inserting Eqs. (5.1) and (3.6) in Eq. (3.8) yields

�1 = −�

{
t0|0〉∂W

∂t1
+ i

¯

∫ 0

−t0

dt ′
0S(−t ′

0)H1(W |0〉)
}

,

(5.2)
where �0

1 is taken to be zero as discussed in Sec. III. Exam-
ining the long time behavior of (5.2) implies

�|0〉∂W

∂t1
= 0. (5.3)

With this, continuing the analysis to O(ε2) yields

�|0〉
{

i¯
∂W

∂t2
− H CGW

}
= 0. (5.4)

This implies {
i¯

∂

∂t2
− H CG

}
|0〉W = F, (5.5)

where F is a symmetric function. Since |0〉W = �0 is
antisymmetric, Eq. (5.5) implies that either the operator
{i¯∂/∂t2 − H CG} is antisymmetric or F is a constant. How-
ever, {i¯∂/∂t2 − H CG} is symmetric and therefore the only
valid solution is that F = C where C is a constant. Multiply-
ing both sides by 〈0| yields{

i¯
∂

∂t2
− H CG

}
W = C〈0|. (5.6)

However, the left hand side of Eq. (5.6) have no r depen-
dency while 〈0| on the right hand side does. This implies C
can only be zero. With this, we obtain

i¯
∂W

∂t2
= H CGW. (5.7)

Thus, Eq. (5.7) generates a family of excitations characterized
by W which obeys a CGWE; factors within the CGWE differ
for different solutions �̂. Note that when we write H0�̂ = 0
for a given family, we assume that the ground state energy
for that family has been subtracted from V0. This shows that
even for complex entangled excitations W still obeys the same
CGWE.

VI. SIMPLE ESTIMATE FOR BOSONIC EXCITATIONS

Rough estimates for the factors in the CGWE were made
to gain insights into the mathematical development. In partic-
ular, the effective mass tensor of Eq. (3.20) was generated us-
ing a decoupled-particle approximation. The V0 contribution
to the many-particle potential is, by construction, short-range.
As a simple approximation, we assume that electrons evolv-
ing according to V0 can be taken to occupy single particlelike
orbitals localized to a lattice of ion cores. In this picture, the
delocalized nature of the electrons will arise solely due to the
CGWE and W.
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In this spirit, one could construct �̂ (denoted |0〉) and
similarly for the excited states |n〉 (n > 0) of H0. With the
above or other approximation to the states of H0 one can com-
pute the effective mass tensor μ�α�′α′ and coarse-grained po-
tential VCG. When computing the effective mass tensor, one
must evaluate the time integral of the single-particle momen-
tum correlation

χ̃αα′ = ¯
2

m2

∑
n �=0

〈0|pα|n〉〈n|pα′ |0〉
ζn

, (6.1)

for H0 excitation energy (ζ n > 0). To obtain a crude estimate,
consider a single-particle picture wherein the states |n〉 are
limited to the three lowest Coulomb excited states, i.e., the
degenerate states 2pz, 2px, 2py denoted |1〉, |2〉, |3〉 respec-
tively (the 2s excited state does not contribute since for it
〈0|⇀

p�|n〉 vanishes). Thus, ζ1 = ζ2 = ζ3 = 3¯2/8ma2 where a
is the Bohr radius. With this, we obtain

χ̃αα′ = 212

39

¯2

m
δαα′ = 0.2081

¯2

m
δαα′ , (6.2)

μ�α�′α′ = K��′δαα′ , (6.3)

K��′ = (0.2081 − 0.5δ��′ )¯2/m. (6.4)

With this, the coarse-grained Hamiltonian takes the form

H CG = V CG +
N∑

�,�′=1

K��′

×
{

∂2

∂ R�1∂ R�′1
+ ∂2

∂ R�2∂ R�′2
+ ∂2

∂ R�3∂ R�′3

}
.

(6.5)

To interpret these results, we transform the particle co-
ordinates such that the effective inverse mass tensor becomes
diagonal. Thus, we introduce a set of modified positions

R̃�α =
N∑

�′=1

Q��′ R�′α, (6.6)

such that the matrix Q satisfies the condition

QKQT = D, (6.7)

where D is a diagonal matrix. With this, Eq. (6.5) takes the
form

H CG = V CG +
N∑

�=1

d�∇2
R̃�

, (6.8)

where d� is the �th diagonal entry of matrix D. Solving
Eq. (6.7) yields

d� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−0.2919
¯2

m
for � = 1

0.08521 − 0.06074(� − 2) − 0.04331(� − 1)

−0.2919 + 0.2081(� − 2)

¯2

m
otherwise.

(6.9)

Notice that as � increases, d� approaches −¯2/2m, the bare
mass value. Thus, associated with these excitations is an ef-
fective mass meff such that m ≤ meff ≤ 1.713 m. However, this
is not simply interpreted as corresponding to a set of Bosonic
excitations with effective meff since W is a symmetric function
of R and not R̃.

The implications of the effective masses for excitations
are more easily understood within the mean-field approxima-
tion of Sec. IV. In this case, the inverse mass tensor takes
the value μ̃αα′ = −0.2919¯2δαα′/m. For the ground state of
the CGWE, meff in the equation for the single particle func-
tion (4.1) is equal to the largest value in the effective mass
interval, i.e., 1.713 m. In general, it is expected that this value
would be sensitive to lattice structure and the type of atoms
constituting the metal or semiconductor. Thus, while this re-
sult is simply a crude estimate based on the hydrogenic wave-
functions, it illustrates that the coarse-graining induces sec-
ond order terms in the CGWE which provides an estimate of
the effective mass which in this case is higher than the bare
one.

VII. IMPLEMENTATION AS A MULTISCALE
COMPUTATIONAL PLATFORM

The conceptual flow of Fig. 1 suggests an algorithm for
the multiscale simulation of quantum nanosystems. Its imple-
mentation presents two challenges: (1) constructing �̂ and (2)
computing the inverse mass tensor μ�α�′α′ and coarse-grained
potential VCG appearing in the coarse-grained Hamiltonian
HCG. These quantities, and in particular �̂ needed to compute
them, can be constructed via path integral,23, 24 DFT, varia-
tional techniques. Given that V0, by construction, expresses
short-range interactions only, construction of �̂ is somewhat
easier than for the full problem, which for a Coulomb system
has a long-range correlation.

For a variational approach to the entangled case (Sec. V),
we start with a trial function that has N* quasiparticles dis-
tinguishable via their long-scale behavior. The corresponding
states �̂ are the analogue of a Slater determinant expression.
Consider a trial function involving short-scale functions ϕk(

⇀

r )
(k = 1, 2, . . . , N) and long-scale ones wq (

⇀

R) (q = 1, 2, . . . , N*
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+ 1). An antisymmetric function �0 can be written as

�0 = �(ϕ1(1) · · · ϕN (N ))(w1(1) · · · w N ∗

×(N ∗)w N ∗+1(N ∗ + 1) · · · w N ∗+1(N )). (7.1)

Here, ϕk(�) ≡ ϕk(
⇀

r �) and wq (�) ≡ wq (
⇀

R�).
The generalization of the above mean-field Slater de-

terminants and their optimization via a variational approach
allows for a spectrum of excitations. For example, N* = 0
makes �̂ antisymmetric and the analysis of Sec. III follows.
The N* = 1 family corresponds to single quasiparticle excita-
tions and similarly for N* > 1. Finally a variational procedure
can be used to optimize the single particle functions ϕk(

⇀

r ).
Also, the variational form [Eq. (7.1)] can be augmented by
multiplying it with a factor that is a symmetric function of r
and which has variational parameters that can be used to ac-
count for some correlation in the short scale behavior i.e., (�̂).

VIII. CONCLUSIONS

Long space-time behaviors of Fermion nanosystems
(e.g., quantum dots, superconducting nanoparticles, and
graphene nanostructures) follow from the interaction of each
Fermion with many others across multiple scales in space and
time. Thus, it is expected that the longer space-time dynamics
of Fermion nanosystems is inherently of mean-field character.
When combined with a multiscale methodology for construct-
ing a CGWE, this implies a coarse-grained mean-field picture
of the low-lying excitations of Fermion nanosystems. The re-
sulting CGMF approximation suggests an algorithm for the
efficient simulation of these low-lying excitations.

The collective, Bosonic excitations supported by a many-
Fermion system are of several types. The simplest excitations,
according to the CGMF picture, involve all Bosonic excita-
tions in the ground state (i.e., the condensate). If all these
Bosonic excitations are in the same state, then the excitation
energy increases with N. Other excitations wherein the indi-
vidual Bosonic degrees of freedom are in different energy lev-
els can have excitation energy relative to the condensate that
is not proportional to N (e.g., Sec. IV.10).

Quasi-particle excitations with more Fermionic charac-
ter were also investigated. These correspond to solutions of
the multiscale wave equation which, as ε → 0, are antisym-
metrized sums of products of a short-scale core solution �̂

and a long-scale function W. Such particlelike excitations
(e.g., quasi-particles in a semiconductor), emerge from an
analysis wherein the long-scale variations are entangled with
the short-scale ones to capture both the multiscale nature of
the wavefuntion and respect the exclusion principle.

To realize the practical implications of the present theory,
several advances must be made:

1. Construction of the factors in the CGWE requires an ex-
pression, or a very efficient computational algorithm, for
constructing �̂.

2. Advancing the system in time via the CGWE could be
facilitated via a type of path integral approach; this fol-
lows from the notion that construction of R-trajectories
could proceed in a discretized fashion involving larger

time steps (e.g., due to the t2 rather than the t0 depen-
dence of the dynamics). Thus, as R progresses along a
trajectory, one needs only to compute the CGWE factors
in the immediate vicinity of the instantaneous R values.
Hence, the entire R dependence of these factors is not
required. The flowchart for such a stepwise computation
is suggested in Fig. 1.

3. A variation approach can be used to construct �̂. This
can be accomplished by (1) making an ansatz on the
form of �̂ with a set of variational parameters λ, (2) us-
ing Monte Carlo integration to compute the value of the
variational energy for given λ, and (3) using an efficient
minimization algorithm to find the best value of λ. In the
time-stepping used to construct the trajectories for the
coarse-grained dynamics, the Monte Carlo integrations
over r are limited to a 3N dimensional cube centered
around ε−1 R and extend a limited distance over each
of the 3N directions for an interval of length b/2 where
b3N is the volume in r -space over which �(R − εr ) is
nonzero.

The spectrum of a system such as nanoscale rings, disks,
and spheres reflects its geometry and the universality class
of its long-scale behavior. Consider the CGMF approxima-
tion. Eigenstates of the nonlinear mean-field equations satisfy
periodic boundary conditions for these systems. The single-
particle wavefunction w (such as A or B of Sec. IV) must
satisfy the condition w(X + L) = w(X) for a ring of circum-
ference L. For a disk or sphere, w satisfies analogous peri-
odic conditions. With this, it is seen that the coarse-graining
can express continuous symmetries not present in the original
problem. For example, a metal or semiconductor expresses
the symmetry of the ion-core lattice while, in the CGWE, vari-
ations on this scale are absent.

In conclusion, the multiscale approach yields insight
into the spectra of long space-time excitations of Fermion
nanosystems. It allows for the simulation of larger systems
that can readily be achieved using standard methods such as
implemented in Gaussian.
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APPENDIX A: LONG TIME-AVERAGE/
EXPECTATION VALUE EQUIVALENCE THEOREM

The objective here is to show that the long time-average
and expectation value are equal. First introduce the complete
(infinite) set of eigenstates |n〉 of H0 (H0|n〉 = ζn|n〉 for en-
ergy ζ n and ζ 0 = 0). With this, for any operator � one has

�|0〉 =
∞∑

n=0

|n〉〈n|�|0〉. (A1)
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The long time-average of the time-evolved effect of �

can be written as
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The long time-average of S(−t ′
0)|n〉 vanishes when ζ n

�= 0 and is equal to |n〉 otherwise (i.e., when n = 0). Therefore,
(A2) becomes

lim
t0→∞

1

t0

∫ 0

−t0

dt ′
0S(−t ′

0)�|0〉 = |0〉〈0|�|0〉, (A3)

the long time-average/expectation value equivalence theo-
rem.

APPENDIX B: THE CORRELATION FUNCTION χ�α�′α′

(t0) OF EQ. (3.22)

The single-particle correlation function arising in
Eq. (3.22) is of the form

χ�α�′α′(t0) = 〈0|p�α exp(i t0(H0 − i0+)/̄ )p�′α′ |0〉. (B1)

Using the completeness of the eigenfunction |n〉 of H0, this
becomes

χ�α�′α′ (t0) =
∞∑

n=0

〈0|p�α|n〉〈n|p�α′ |0〉eiwnt0 , (B2)

where H0|n〉 = ζn|n〉, ζ n > 0 for n > 0, ζ 0 = 0, and wn

= (ζn − i0+)/̄ .
Since 〈0|p�α|0〉 = 0, the n = 0 contributions are ne-

glected and the χ matrix takes the form

χ�α�′α′(t0) =
∞∑

n=1

〈0|p�α|n〉〈n|p�′α′ |0〉eiwnt0 . (B3)

We seek the integral of this quantity from t0 = −∞ to t0
= 0. The small dissipative term i0+ accounts for dephasing
from random effects; otherwise, the integral would not be de-
fined since eiζn t0 /̄ is a harmonic function. However, in a metal
or semiconductor, the zero-point and thermal oscillations of
the ion core lattice cause continuous dephasing of the elec-
tron system and χ�α�′α′ (t0) will decay as t0 → ∞ with a rate
that depends on the thermal conditions, and the properties of
the lattice and its interaction with the electrons. With this, we
obtain∫ 0

−∞
dt0χ�α�′α′ (t0) = −i

∑
n �=0

〈0|p�α|n〉〈n|p�′α′ |0〉
wn

. (B4)

Note that for � = �′, α = α′, i times this quantity is a positive
real number.

Furthermore, i times this matrix (i.e., with indices
��′ αα′, is Hermitian and hence has real eigenvalues).

If |n〉 (n = 0, 1, . . . ) is Fermionic and is independent of R,
then the expectation values of (B4) (〈0|p�α|n〉and〈n|p�α|0〉)

are independent of the particle label since the |n〉’s are anti-
symmetric and; therefore, one can safely exchange labels in-
side the integral without affecting the final results. With this,
we show that even though the correlation function χ�α�′α′ (t0)
depends on particle labels, its time integral does not and is
equal to χ̃αα′ which takes the form

χ̃αα′ = ¯

m2

∑
n �=0

〈0|pα|n〉〈n|pα′ |0〉
wn

. (B5)

APPENDIX C: POTENTIAL SPLITTING AND SCALING

The splitting of the potential V into terms of various or-
ders in ε (i.e., V = V0 + εV1 + ε2V2) affects the structure of
scaling limit laws. Starting with a physical rational for the
splitting and a specification of the type of phenomenon to be
studied, our objective is to provide a rational for the scaling
of space and time and thus the resulting CGWE.

Consider a two-body potential v(r) that depends on inter-
particle distance r. Let G(r) be a Gaussian-like function (i.e.,
G(0) = 1 and G → 0 as r → ∞). Then v can be split via

v(r ) = v(r )G(r ) + v(r )[1 − G(r )]. (C1)

This type of splitting for Coulomb systems is standard in clas-
sical molecular dynamics.25 It splits the potential into a strong
short range part plus a weak long-range one as follows. The
first term has a short-scale character, i.e., approaches zero as
r → ∞ faster than v(r). However, the second term is well-
behaved as r → 0 assuming by construction that 1 − G de-
cays to zero as r → 0 faster than v(r) → ∞ there. By choice
of the range over which G decays, the second term can be
considered a perturbation, i.e., contributes to εV1 rather than
to V0. For Coulomb systems such as electrons in a metal or
semiconductor, there is an additional reason why the v(r)[1 −
G(r)] term can be considered a perturbation. As the distance
between two electrons exceeds a few lattice spacing, the to-
tal potential (electron–electron plus electron–ion core) acts to
screen the interaction; thus, each electron can be considered to
be near an oppositely charged ion core so that v(r)[1 − G(r)]
summed over the electrons and its neighboring ion core is a
screened interaction.

In the present splitting ansatz, V0 is independent of the
set R of long-scale variables. Thus, the eigenstates of H0, the
O(ε0) contribution to the Hamiltonian, are independent of R,
the collection of long-scale particle position variables. If the
potential has ε terms (i.e., V1 �= 0), then the O(ε) contribu-
tion to the CGWE is shown to have solutions proportional to
exp(i〈0|V1|0〉t1/̄ ) and hence oscillates with a different fre-
quency at each point in R-space (see Sec. III). Such solutions
eventually develop large gradients, which is inconsistent with
the fact that a coarse-grained wavefunction depends only on
the set of long-scale variables R.
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