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Abstract. A probability functional method is used to determine the most prob
able state of a reservoir or other subsurface features. The method is generalized to
arrive at a self-consistent accounting of the multiple spatial scales involved by unifying
information and homogenization theories. It is known that to take full advantage of
the approach (e.g. to predict the spatial distribution of permeability, porosity, multi
phase flow parameters, stress, fracturing) one must embed multiple reaction, transport,
mechanical (RTM) process simulators in the computation. A numerical technique is
introduced to directly solve the inverse problem for the most probable distribution of
reservoir state variables. The method is applied to several two and three dimensional
reservoir delineation problems.

1. Introduction. The state of a reservoir or other subsurface feature
is generally only known at selected space-time points on a rather coarse
scale. Yet we would like to reconstruct the spatial distribution of fluid/rock
state across a reservoir or other system. As we would like to determine such
fluid/rock variables as functions of position and as the subsurface can only
be determined with great uncertainty, we must use a probability functional
formalism - i.e. analyze the probability of a continuous infinity of variables
needed to describe the distribution of properties across the system.

This goal cannot be accomplished without the use of models that de
scribe many fluid/rock variables. For example, a classical history matching
procedure using a single phase flow model could not be used to determine
the preproduction oil saturation across a system. As a complete under
standing of reservoir state involves the fluid saturations, nature of the wet
ting, porosity, grain size and mineralogy, stress, fracture network statistics,
etc., it is clear that hydrologic simulators are needed that account for a
full suite of reaction, transport, and mechanical (RTM) processes. It is
thus the goal of this communication to present our probability functional
- RTM reservoir simulator approach to the complete characterization of a
subsurface system.

We expect that the state of a reservoir involves variations in space
over a wider range of length scales. As suggested in Fig. 1, the shape and
internal characteristics of a reservoir can vary on a wide range of scales
including those shorter than the scale on which the observations could
resolve. For example, knowing fluid pressure at wells separated by 1 km
could not uniquely determine variations of permeability on the 10 cm scale.
Therefore one most consider the determination of the most probable state
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(b)

FIG. 1. (a) Both smooth and short-scale profiles for the demarcation of a super
K (anomalously high permeability) zone, compartment or reservoir. Such complexity
can even be fractal in nature and still be consistent with available data. The region of
uniform permeability. (b) is not distinguishable from a mosaic of low (white) and high
(dark) regions. (c) when only data of coarse spatial resolution is known.

among the unrestricted chss of states that can involve variations on all
spatial scales. In Fig. 2 we 8uggest that the probability Pk of variations
on a leng~h scale 27f/ k must become independent of k as k -+ 00. Thus
in a classic history matching approach there is an uncountable infinity
of solutions. In our approach we seek the most probable upscaled state
consistent with the scale on which the observations are taken.

Geostatistical methods are extensively used to construct the state of
a reservoir. Traditional geostatistical methods utilizes the static data from
core characterizations, well logs, seismic or similar types of information.
However, since the relation between production and monitoring well data
(and other type of dynamic data) and reservoir state variables is quite
complicated, traditional geostatistical approaches fail to integrate dynamic
and static data. Two significant methods have been developed to integrate
the dynamic flow of information from production and monitoring wells,
and the static data. The goal of both methods is to minimize an "objective
function" that is constructed to be a measure of error between observations
and predictions. The multiple data sets are taken into consideration by in
troducing weighting factors for each data set. The first method (sequential
self-calibration) defines a number of master points (which is less than the
number of grid points on which the state of the reservoir is to be com
puted). Then a reservoir simulation is performed for an initial guess of the
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FIG. 2. The probability for variations of wave vector k must become independent
of k for large k as the sparceness of the data does not allow one to discriminate among
all the short scale (large k) states.

reservoir state variables that is obtained by the use of traditional geosta
tistical methods. The nonlinear equations resulting from the minimization
of the objective function requires the calculation of derivatives (sensitivity
coefficients) with respect to the reservoir state variables. The approximate
derivatives are efficiently obtained by assuming that streamlines do not
change because of the assumed small perturbations in the reservoir state
variables. In summary, the sequential self-calibration method first upscales
the reservoir using a multiple grid-type method and then uses stream line
simulators to efficiently calculate the sensitivity coefficients. A difficulty
in this procedure is that convergence to an acceptable answer is typically
not monotonic (and is thereby slow and convergence is difficult to assess).
The second method (gradual deformation) expresses the reservoir state as
a weighted linear sum of the reservoir state at the previous iteration and
two new independent states. The three weighting factors are determined by
minimizing the objective function. The procedure is iterated using a Monte
Carlo approach to generate new states. Comparisons of the two methods
are presented in Wen et al. (1997,2000). Sequential self-calibration is dis
cussed by Gomez-Hernandez et al. (1998), Wen et al. (1998a,b 1999), and
Tran et al. (1999) whereas gradual deformation is discussed in Roggero
and Hu (1998), Hu et al. (1999), and Hu (1999).

2. Probability functional approach. Let a reservoir be character
ized by a set of variables w(f') at all points r within the system at a given
time. For example, w(f') may represent the values of porosity, grain size
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and mineralogy, stress, fractures, petroleum vs. water saturation and state
of wetting before production began. We seek the probability p[llI] that is
a functional of III and, in particular, wish to construct it to be consistent
with a set of observations 0 (= {01 , O2 , ... ON}) at various points across
the system or at various times. In addition, we assume that we have an
RTM reservoir simulator that can compute these observables given an ini
tial state III (f'). We let 0(= {01 , fh, ... ON}) be the set of computed values
corresponding to O. Clearly, 0 is a functional of 1lI(f').

Information theory provides a prescription for computing probability.
For the present problem, the prescription may be stated as follows. The
entropy S is defined via

(2.1) S = -Spenp
IlJ

where S indicates a functional integral. Normalization implies

(2.2) Sp= 1.
IlJ

The entropy is to be maximized subject to a set of constraints from the
known information. Let G(= {G1 , G2 , ... GNc }) be a set of constraints that
depend on 0 and 0 and, therefore, are functionals of Ill. We introduce two
types of constraints. One group, the "error constraints," are constructed
to increase monotonically with the discrepancy between 0 and O. A sec
ond group places bounds on the spatial resolution (the length scale) over
which we seek to delineate the reservoir attributes. These constraints are
required for self-consistency as the reservoir simulators typically used as
sume a degree of upscaling imposed by a lack of short scale information and
practical limits to CPU time. In all cases the constraints are functionals of
IlI(C = C[1lI]) and we impose the "information"

(2.3) SpGi =r i , i =1,2, ... Nc.
\If

Using the Lagrange multiplier method we obtain maximum entropy
consistent with (2.2), (2.3) in the form

(2.4)

(2.5)

Nc

enp = -en2- - L ,8iGdlll]
i=l

2- =§exp [t ,8iGi] .
t=l

The ,8's are Lagrange multipliers and is the normalization constant.
In our approach we focus on the most probable state IlIm

. The maxi
mum in occurs when

(2.6)
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Here 8/81J1 a indicates a functional derivative with respect to the Q - th
fluid/rock state variable. We solve these functional differential equations
for the spatial distribution of the N reservoir attributes IJ1r (T), 1J12(T), ...
IJ1N(T)·

There are two sets of conditions necessary for the solution of (2.5).
The character of the homogenization constraints is that they only have an
appreciable contribution when IJ1 has spatial variations on a length scale
smaller than that assumed to have been averaged out in the upscaling
underlying the RTM reservoir models used to construct the 'lJ-dependence
of the O.

3. Comprehensive RTM reservoir models. The functional de
pendence of the predicted values 0[1J1] on the spatial distribution of reser
voir state IJ1 (T) is determined by the laws of physics and chemistry that
evolve the "fundamental" fluid/rock state variables 1J1. We consider these
fundamental variables to include (see Ortoleva 1994a,b, 1998; Tuncay and
Ortoleva 2001, Tuncay, Park and Ortoleva 2000a,b; Ozkan and Ortoleva
2000)

• stress;
• fluid composition, phases and their intra-pore scale configuration

(e.g. wetting, droplet or supra-pore scale continuous phase);
• grain size, shape, packing, and mineralogy and their statistical

distribution;
• fracture network statistics; and
• temperature.

With these variables we can predict the derivative quantities (e.g. phe
nomenological parameters for the RTM process laws).

• permeability;
• relative permeabilities, capillary pressure and other multi-phase

parameters;
• rock rheological parameters; and
• thermal conductivity.

From the latter one you can, through the solution of reservoir RTM equa
tions, determine the functionals 0[1J1]. Thus we consider IJ1 to be the set of
fundamental variables at some reference time (e.g. just prior to petroleum
production or pollutant migration). The dependence of 0 on IJ1 comes
from the solution of RTM equations and the use of phenomenological laws
relating the derived quantities to the fundamental ones.

A complex network of geochemical reactions, fluid and energy trans
port and rock mechanical (RTM) processes underlies the genesis, dynamics
and characteristics of petroleum reservoirs and other subsurface features
(Ortoleva et al. 1997; Ortoleva 1998; Tuncay, Park and Ortoleva 2000a,b;
Tuncay and Ortoleva 2001). Prediction ofreservoir location and producibil
ity lies outside the realm of simple approaches. In order to develop a predic
tive capability for reservoir location and characteristics, we have developed
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the quantitative basin/reservoir simulator, Basin RTM. This simulator in
tegrates all the relevant geological factors and RTM processes. As reservoirs
are fundamentally 3-D in nature, Basin RTM was developed in terms of a
fully 3-D finite element approach. The specific process and rate laws used
in Basin RTM are reviewed in Ortoleva (1994a,b, 1998), Ortoleva et. al
(1997), Payne et al (2000), and Tuncay Park and Ortoleva (2000a,b).

The following features show the comprehensiveness of our rock/fluid
state description and the completeness of the set of chemical and physical
processes evolving them.

• Incremental stress rheology (Zienkiewicz and Cormeau 1974; Rice 1975)
is used to integrate poroelasticity, viscous flow with yield behavior, frac
turing and pressure solution. In most studies sediments are considered as
either nonlinear Newtonian fluids or as elastic media, thereby ignoring the
effects of faulting and fracturing (Ortoleva 1994a, 1998; Tuncay, Park and
Ortoleva 2000a,bj Ortoleva et al. 1997).
• Faulting occurs via a Driiker-Prager criterion to signal failure, and a tex
ture dynamics model is used to compute the evolving, associated rheologic
properties (Tuncay, Khalil and Ortoleva 2001).
• Petroleum generation/rock deformation and multi-phase flow are solved
simultaneously to capture seals, abnormally pressured compartments and
petroleum expulsion.
• Inorganic and organic solid state and fluid reactions and their temper
ature and ionic state dependencies are accounted for (Ortoleva 1994a,b,
1998).
• Grain growth/dissolution, breaking of grain-grain contacts, pressure so
lution and gouge evolve rock texture (Ortoleva 1994a,b, 1998, Ozkan and
Ortoleva 2000).
• A 3-D fracture network dynamics has been developed that accounts for
the stress tensor, fluid pressure and rock texture variables (Fig. 3) (Tuncay,
Park and Ortoleva 2000a,b).
• A 3-D computational platform is used. All other basin simulators are
limited to 2-D or a few processes. Nonlinear dynamical systems have a
strong dependence on spatial dimensionality (Ortoleva et al. 1987a,b; Or
toleva 1990, 1992, 1994a,b). Therefore, a 3-D computational platform is
required to gain a better understanding of fracture networks and reservoirs
and the dynamical petroleum system (Figs. 4).

The processes and phenomenological laws embedded in Basin RTM
are now being used to develop a next-generation class of 3-D multiple
RTM process reservoir simulators to capture reservoir evolution on the
engineering time scale. We thus are able to use the information theory ap
proach of the previous section to determine a variety of fluid/rock proper
ties in the preproduction state as they vary across a reservoir or subsurface
pollution site.
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FIG. 3. Cross-section of a 2-D, 5 x 2.5 km normal fault system after 5 My of simu
lation. The shading indicates porosity and shows differences between the four lithologies;
the shales (low porosity) are at the middle and top of the domain. Higher porosity re
gions (in the lower-right and upper-left comers) and the fracture length (contour lines)
arose due to the deformation created by differential subsidence. Both stress field and
fracturing are strongly affected by rock composition and texture. The arrows indicate
fluid flow toward the region of increasing porosity (lower-right) and through the most
extensively fractured shale.

4. Homogenization. Homogenization theory provides a prescription
for computing the effective transport and other properties for upscaled
computation. Here we investigate its use in formulating the two scale per
meability problem to yield a self-consistent procedure for computing the
most probable distribution of homogenized permeability. We illustrate our
procedure for the case of steady single phase Darcy flow.

The starting point of our analysis is the assumption that the
permeability K has a long spatial scale dependence and a short scale de
pendence f'o related by rl =ef'o for e ~ 1. We modify this traditional view
somewhat and conceive of space rl as having an associated set of perme
ability variables K (f'o, rI) - the distribution of the values of K in a small
region about rl' In this small region (representative volume) K(f'o, rI)
varies periodically or has a statistically representative set of variations for
K near rl.

Fig. 5 is a schematic depiction of a discretized form of our two scale
concept. There is a macrogrid (with elements centered at points rt} and
with each macronode there is a set of micronodes centered about points f'o.

Using multiple scale analysis, the steady state pressure P is expanded
in the form
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FIG. 4. a) Simulation domains for basin-scale and inter-field studies (thickly out
lined box). The Rulison Field is in the upper northwestern area of the latter box. b)
Isosurface of overpressure (15 bars) toned with depth. The folded, multi-layered struc
ture is dictated by the interplay of lithological differences and fracturing and shows
the three-dimensional complexity of conductivity of overpressured zones. Thus, stacked
overpressured compartments as viewed as a simple pressure-depth curve may hold little
insight into the full three-dimensionality of the structure. c) The distribution of fracture
length reflects lithologic variation and the topography imposed by the basement tectonics.
The layered fracture length structure is closely related to the layering in overpressure
surface.
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FIG. 5. Macrogrid discretizing f\ space with embedded microgrid descretizing To space.

(4.1)

With this the pressure error E can be written in terms of the pressure Ptbs

at each of the Nabs observation wells (i = 1,2, ... Nabs):

(4.2)
Nob.

E = L (POi +cP1i + ... - pr)2
i=1

where Ptb is the pressure at monitoring site i. Thus

(4.3)
N obs

E = Eo[Kh] + 2c L (POi - prS )p1i ,
;=1

where Eo is the error as computed using an upscaled reservoir simulator
with permeability K h . Collecting powers of c in the equation of steady
Darcy flow one obtains the hierarchy

(4.4) 90 , (K90Pd + 9 0K. 9 1PO= 0

(4.5) 90, (K9 0 P2 )+91 , (K90 Pd+ 90' (K91Pd+9 1 , (K91PO)=0

Equation (4.4) implies

(4.6)

where the Go; are the solutions of

(4.7) - - oK
\70 ' (K\7oGo;) +-8 = O.

XOo;
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With this we obtain
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Averaging (4.4) over one realization of a representative volume one obtains

(4.9)

(4.10)

The probability p as in Section 2 is a functional of K and, in the discretized
form as suggested in Fig. 5, P is a function of K(fa, rl). Note that K h is
a complex function of K.

To construct the probability we impose the condition

(4.11) SpE = E*
K

noting that this implies a functional integral over all K, i.e. all possible fa
and rl dependencies. We impose two conditions on the maximization of
the entropy so as to characterize the likely scales on which the permeability
can fluctuate:

(4.12)

(4.13)

~pJd6rlvIKI2 = Al

§p J~r1VoK12 = A2

where d6r = d3rod3rl. This implies that takes the form

(4.14)

The /31, /32 terms fix the minimal spatial scales over which fa and rl are
like to vary.
Finally,

With this, the most probable distribution satisfies

(4.16)
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FIG. 6. Schematic view of systems plagued with heterogeneity that can lead to
by-passed reservoirs. In case (a) the upper and lower reservoirs are separated by a
seal which is compromised in some poorly defined region. (b) Pinchout separates a
sandstone reservoir into two poorly connected regimes. c) A zone of super-K can direct
flows around petroleum-saturated matrix and thus lead to by-passing of reserves.

where >'1 = 2/31//30 and similarly for >'2. Averaging over a representative
volume v rep of i'D-space and using the expression for E to order £ yields

oEo / oK
h

) ~( obs)~ oPo 2
(4.17) OKh \ oK + 2£~ POi - P ~ OXl0 (Go) - >'1~I(K) = 0

where (... ) is an average of a quantity over a representative volume about
rl. Note that

(4.18)

To make the evaluations of interest we must compute the three Go.

5. Numerical simulations. In the cases shown in Fig. 6, there are
difficulties in placing wells and planning the best production rates from ex
isting wells to minimize by-passed reserves and excessive water cuts. The
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key to making successful decisions is quantifying the geometry of reservoir
connectivity or compartmentation. Our technology places quantitative lim
its on the location, shape and extent of the zones of super-K or connectivity
to other reservoirs or parts of the same, multi-lobed reservoir.

Information theory is used in our approach to provide a mathematical
framework for assessing risk. We use the information theory software to
integrate quantitative reservoir simulators with the available field data.
Our approach allows one to:

• use field data of various types and quality;
• integrate the latest advances in reservoir or basin modeling/

simulation into production planning and reserve assessment;
• predict the quantitative state (distribution of porosity, permeabil

ity, stress, reserves in place) across the system;
• place quantitative bounds on all uncertainties involved in our pre

dictions/strategies; and
• carry out all the above in one automated procedure.

This technology will improve the industry's ability to develop known
fields and identify new ones by use of all the available seismic, well log,
production history, and other observations.

Fig. 7 shows a 2-D test case domain (10 x 10 km). The pressure mon
itoring wells are shown with dots in Fig. 7a. In this example, we demon
strate our multiple gridding approach. We first obtain a coarse permeability
field and then use it as our initial guess for a finer resolved permeability
field. This process reduces the computational effort to arrive at the most
probable permeability field since it takes only a few iterations to solve the
coarsely resolved problem. Fig. 8 shows another 2-D example where only
two permeability logs are available. Although both permeability logs miss
the puncture in the center, our approach results in lower permeability at
both ends of the domain and higher permeability in the center. This exam
ple demonstrates that the core and well log data can be directly imposed
in the most probable reservoir state in our approach, making our approach
cost effective. As seen in Fig. 9, our approach can also successfully pre
dict the initial pressure distribution showing that production history and
other dynamic data can be used to reconstruct the reservoir state. Fig. 10
shows that our methodology works well in 3-D. As in Fig. 10 even a crude
discretization captures the overall reservoir shape.

6. Conclusions. We showed a self consistent method for most prob
able homogenized solution by integrating multiple scale analysis and infor
mation theory. The self consistency is in terms of level of upscaling in the
reservoir simulator used and the spatial scale to which one would like to
resolve the features of interest. Furthermore, the homogenization removes
the great number of alternative solutions of the inverse problem which arise
at scales less than that of the spatial resolution of data. The great potential
of the method to delineate many fluid/rock properties across a reservoir is
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FIG. 7. (aJ 2-D test domain (10 x 10 kmJ showing locations of 16 monitoring
wells, and injection and production wells; color coded map of fluid pressure related
to the configuration of injection/production wells and the nonuniform distribution of
permeability. Our information technology was used to compute the assumed unknown
permeability distribution. The calculation was made efficient by a multi-grid technique
using 11 x 11 (b), 21 x 21 (c), and 41 x 41 (d) finite element resolution. The final result
(d) is in good agreement with the actual high permeability zone indicated by the purple
(outline across which the actual permeability jumps one order of magnitude).
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FIG. 8. a) Cross-section view of an upper and lower reservoir separated by a seal
with a puncture. Shown here is the actual permeability field, pressure monitoring well
locations (yellow dots), production (-) /injection (+) well locations, and two perme
ability logs (vertical lines). The challenge is to predict the location and extent of the
puncture that was missed by the two logs. b) We efficiently arrive at a prediction that
captures the puncture even with limited production and core data. c) Uncertainty in the
predicted permeability (as defined in equation (15)) as a function of estimated pressure
monitoring/simulator error.
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FIG. 9. Predicted initial pressure distribution from (production history) informa
tion at selected wells. The approach here can also be used to predict the preproduction
distribution of other reservoir state variables. a) Actual distribution of pressure after
30 days indicating locations of injection and production wells as pressure maxima and
minima. b) Predicted distribution of pressure - note the excellent agreement with (a).
c) Comparison of actual and predicted pressure at one of the pressure monitoring wells.

only attained through the use of multiple RTM process simulators. We
believe that our method is a major advance over presently used history
matching algorithms due to self consistent treatment of multiple scales and
direct approach to obtaining the most probable reservoir state. Finally
having embedded the computations in an overall context of information
theory, our approach yields a practical method for assessing risk.
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FIG. 10. Our new iterative method works well in 3-D. Even a crude discretization
can capture overall reservoir shape and location. Shown is a) the actual high perme
ability zone and b) that predicted by our approach for a 21 x 21 x 21 grid. The domain
is 10 x 10 x 10 km. Smaller scale features in the actual permeability surface are lost
on the predicted one because of the spacing of the pressure monitoring wells and the
configuration of the production/injection wells, as we would expect.
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