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Pits, outgrowths, and inclusions as coated grain kinetic instabilities
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Abstract—The development of outgrowths or pits of various shapes on coated grains is explained via a
quantitative model of grain growth/dissolution kinetics coupled to evolving grain geometry (morphological
dynamics). Grain-coating thinning or fracturing occurring due to nonplanar growth (and consequent grain
surface area increase) is shown to underlie an instability to the formation of bumps, or in the case of
undersaturated systems, to pitting. Examples of diagenetic outgrowth phenomena on clay-coated quartz are
presented. A quantitative model of coupled quartz growth and coating dynamics is shown to imply many
features observed in natural systems. Crystal growth anisotropy is shown to strongly influence the morphology
of the outgrowths. The creation of inclusions is shown to be closely related to the present morphological
instability. These morphological instability phenomena are interesting examples of geochemical self-organi-
zation.

A steady-state model of the diffusion of solutes across the grain coating is shown to yield a novel nonlinear
equation to be solved for the rate of growth of coated grains. This equation leads to a complex dependence
of the growth/dissolution rate on saturation (or more generally on the composition of the fluid) in the medium
surrounding the coated grain. The feedback between the dynamics of the coating thickness and morphology
changes makes the phenomenon of interest here distinct from that arising from the coupling of grain growth
and diffusion in the surrounding medium. This makes pits and needles possible even in a well-stirred
surrounding medium, a fact of interest in interpreting the geologic record. For example, the present model can
explain the development of spike, mushroom, and other outgrowths on clay-coated quartz grains in a
sedimentary rock, whereas the classic Mullins and Sekerke diffusion model cannot, i.e., the time scale for
eliminating concentration gradients in a pore is much shorter than that for grain growth. Predictions of the
model are consistent with observations on quartz when typical values of diffusion, growth rate coefficients,
and other parameters are used. In this paper, we emphasize that pitting can be closely related to outgrowth
instabilities. If this be the case, then pitted dissolution of feldspars is a likely example. As feldspars dissolve,
they commonly surround themselves with a clay coating, often leaving only a ghost remnant of the original
growth. Copyright © 2002 Elsevier Science Inc.

1. INTRODUCTION

The growth or dissolution of single crystals in nature is often
inhibited by mineral or organic coatings (Heald, 1955). Diffu-
sion through such coatings can be the rate-limiting step, leading
to a growth rate that can be orders of magnitude slower than
that of a pristine grain. The rate of growth and dissolution can
have a complex relation to the saturation (Lasaga, 1981; Ander-
son and Crerar, 1993); this may be related to surface complex
formation or, in the present case, the influence of grain coat-
ings.

In this study, it is shown how the kinetics of coated grains
can lead to an implicit growth rate law, i.e., an equation
(typically nonlinear) that must be solved for the rate itself. Most
interestingly, we show that the state of planar dissolution or
growth of coated grains can be unstable to dissolution pitting
and needle or other outgrowths.

It is well known that the kinetics of solid growth can support
surface morphologic (shape) instability (see Chadam and Or-
toleva, 1983, 1986, 1990; Chadam et al., 1987; Ortoleva, 1994,

and references therein). However, these models require the
diffusion of key components or heat transfer in the growth
medium. This classical morphologic instability should be neg-
ligible in an aqueous medium within a pore in a rock, as the
characteristic growth/diffusion length is much greater than the
pore size. However, needle, mushroom, spike, and other out-
growth phenomena are observed in diagenetic systems as seen
in Figures 1, 2, and 3. In such a system, [SiO2(aq)] is essen-
tially uniform in the growth medium (the aqueous pore fluid),
in contradiction to the necessary conditions for the classic
diffusion-mediated shape instability (Mullins and Sekerka,
1963) noted above. Quartz spikes are relatively common in
clay-coated sandstones in the Anadarko Basin (Oklahoma), in
the Springer (Mississippian) Sandstone, and in the Spiro (Penn-
sylvanian) Sandstone of the Arkoma basin.

The objective of this work is to resolve this morphologic
paradox by setting forth a mechanism for a grain’s growth
coupled to the dynamics of its coating and its changing shape.
A quantitative model is developed, wherein the growth of a
small bump on the grain or minor local thinning of the coating
is amplified via a runaway thinning or microfracturing as
suggested schematically in Figure 4. The model is implemented
for ductile coatings (such as organic amorphous materials or
non-brittle clay) and analyzed for morphologic instability. The
model is solved numerically to illustrate the growth of large
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distortions of the grain surface. We investigate the effect of
growth-rate dependence on the orientation of the crystal surface
relative to the crystallographic axes. The influence of surface
free energy, growth kinetics, supersaturation, and average coat-
ing thickness on the space and timescale of the phenomenon is
identified via a dimensional analysis. Unlike in the case of

diffusion-mediated morphologic instability, these phenomena
can occur in well-stirred growth media.

Before proceeding, let us clarify the regime in which the
specific model presented below is meant to capture. In Fig. 4b
we show a breakthrough of a growing protrusion of the under-
lying grain. When the rate of this bump growth causes exten-

Fig. 1. Plane-polarized light (a) and cross-polarized light (b) pictures of a silica cement “mushroom” that is attached to
the quartz host grain by a narrow stem extending through the clay coating that appears as a gray rim in the plane-polarized
picture. (Pennsylvanian Spiro Sandstone, Shell Jankowsky well, Arkoma Basin, Oklahoma. Depth is 9814 feet). The
mushroom cement displays optical continuity with the host. Quartz overgrowth represents a significant diagenetic stage with
drastic effects on primary porosity.
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sional stresses in the coating that are beyond a yield point, the
coating fails and the growing bump is exposed to the growth
medium. The condition for this coating fracturing vs. continu-
ous (viscous) coating thinning/deformation is related to the
crystal growth rate, the visco-elastic properties of the coating,
and the failure criterion for the latter. In this study, we consider
only cases wherein failure does not occur. However, our basic
concept of bump amplification, due to augmented growth rate
associated with morphology-induced exchange of material be-

tween the growing crystal surface and the growth medium, is
the same.

The classic Mullins-Sekerke mechanism of grain morpho-
logic instability requires that the timescales for growth and
diffusion in the growth medium are comparable. The timescale
for the growth of a 1-mm quartz grain is on the year time scale.
Diffusion in an aqueous medium in a 1-mm pore is �103/s
(assuming a diffusion coefficient of 10�5cm2/s). Thus the con-
centration gradients required for the Mullins and Sekerke

Fig. 2. Plane-polarized (a) and cross-polarized (b) pictures of silica cement in the form of a euhedral quartz crystal “spike”
that extends through the clay coating (Shell Jankowsky well, depth 9819 feet). This cement morphology, which has optical
continuity with the host, is a rather common feature in clay-coated quartz arenites.
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mechanism cannot explain the features of Figures 1, 2, and 3.
As we shall show, the present mechanism can.

2. IMPLICIT GROWTH-RATE LAWS

2.1. Steady-State Formulation

A steady-state diffusion model for coated grain growth/
dissolution is now developed. (See Table 1 for a list of symbols

used in this paper.) Assume that diffusional mass transfer is the
only processes taking place in the coating and that this process
is at steady state. Let D� be the diffusion coefficient of solute
species � across the coating. At steady state for a coating of
thickness �, one has

j� � D��c� � c�
0�/�, (1)

where j� is the flux of solute � across the coating to the grain

Fig. 3. Plane-polarized (a) and cross-polarized (b) pictures of an oblong, elongate cement extension to a nearly
equidimensional quartz grain (Shell Jankowsky well, depth 9819 feet). This feature has optical continuity with the grain and
apparently formed beneath the clay envelope, showing that a morphologic instability mechanism involving diffusion
through the clay coating is viable.
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surface and c� is the molar concentration of solute � in the fluid
beyond the coating (the growth medium) while c�

0 is the �-con-
centration at the coating/grain interface. Mass balance at this
interface implies

j� � ���G�c0�. (2)

Here � is the molar density of formula units in the mineral, ��

is the stoichiometric coefficient for solute � in the grain growth

Fig. 4. (a) Incipient needle (left) and pit (right) cause local thinning or microfracturing of the coating. (b) Schematic
breakthrough of a grain showing breach of the brittle grain coating.

Table 1. List of Symbols

Symbol Definition Units

A Area cm2

ca Concentration of solute � in growth medium mol/L
c�

0 Concentration of solute � at the grain surface mol/L
ceq Saturation value of [SiO2(aq)] for pristine quartz mol/L
c� ceq for planar surface mol/L
D� Diffusion coefficient of solute � in coating grains cm/s
G Rate of growth of uncoated grain as a function of c0 cm/s
g Same as G but thought of as the unknown in (Eqn. 4) cm/s
j� Flux of solute � across the coating mol/cm2 s
K Equilibrium constant in (Eqn. 14) mol2/L2

k Effective rate coefficient cm L/s mol
k0 Rate coefficient for pristine grain cm L/s mol
N Number of solute species none
n Unit normal vector to the grain surface none
r Position vector cm
r* Characteristic length cm
t Time s
t* Characteristic time s
ux, uz Growth rate component in x and z directions cm/s
z Unit normal in z direction none
� Coating thickness cm
�* Characteristic coating thickness cm
�t Time step in the numerical scheme s
� A parameter measuring effect of curvature on solubility cm
� Curvature l/cm
� Molar density of mineral mol/L
� Supersaturation as in (Eqn. 11) none
	 Unit tangent vector to grain surface none
�� Stoichiometric coefficient for solute � (see ( )) none
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reaction, and the rate of reaction of the uncoated grain G
depends on the c�

0 (and not on c 	 {c1, . . . , cN}) for the N fluid
species system. For simplicity, the dependence of G on stress,
fluid pressure, and temperature (while important) has not been
made explicit (see, however, Ortoleva, 1994).

Our objective is to obtain an equation yielding the rate of
growth/dissolution in terms of c (and not c0). It is now shown
that this can only be done implicitly, except for simple cases.
Combining Eqn. 1 and 2 yields

c�
0 � c� �

����

D�

g. (3)

where g 	 G(c0). The rate g is yet an unknown function of c.
Combining Eqn. 2 and 3 yields

g � G��c� �
����

D�

g, � � 1, . . . , N�� . (4)

As the functional dependence of G on c�
0 is presumed known

(i.e., from experiments or the theory of the kinetics of uncoated
grains), this serves as an equation to be solved for g in terms of
c. This is typically a nonlinear algebraic equation that, in most
cases, must be solved numerically.

2.2. Growth Anisotropy

A controlling factor on the morphology of growing bumps or
pits is the effect of crystal axis orientation relative to the normal
n to the crystal surface. To have a semiquantitative model of
this phenomenon, assume that the z-axis is the direction of
overall growth and is along one of the crystallographic axes. If
z is a unit vector in the z-direction, and n is the unit normal to
the grain surface, we write

u � uz�n � z�2 
 ux
1 � �n � z�2� (5)
where uz and ux are growth rates when n is along the z and x
directions, respectively. We take uz to be equal to g as obtained
above, and ux is a fixed fraction of uz. The observations of Figs.
1, 2, and 3 show continuity of crystallographic orientation from
the underlying grain into the outgrowth. This suggests that the
growth anisotropy of an outgrowth can be directly related to the
orientation of crystallographic axes of the underlying grain.

3. ILLUSTRATIVE MINERAL SYSTEMS

The above formulation is now examined for two simple
mineral families wherein Eqn. 4 can be solved explicitly.

3.1. Quartz and Other Silica Minerals

Consider the process

silica mineralº SiO2�aq�. (6)

The free face rate law is often assumed to be

G � k0�c0 � ceq� (7)

where ceq is the saturation value of [SiO2(aq)]. In this case Eqn.
4 reads

g � k0�c0 � ��g/D � ceq�. (8)

Solving this linear equation for g yields g 	 k(c � caq) where

k � k0�1 

k0��

D ��1

. (9)

When the � is small, the coating-free kinetics is obtained.
When � is large (i.e., � �� D/k0�), a diffusion-limited kinetic
law (k 3 D/��) is obtained.

A key factor in the phenomenon at hand is surface free
energy. This effect mediates against the growth of fine needles,
as they are of high free energy and hence are more soluble than
morphologies with large radii of curvature. To capture this
effect, we adopt the usual assumption that the local free energy,
and hence ceq, depends on local curvature �(cm�1). Letting c�

be the ceq for a planar surface, we assume

ceq � c��1 
 ��� (10)

for parameter �(cm) that measures the effect of curvature on
solubility. For sharp needles, � is large (���� � 1) while for
smooth shapes � is small.

With the above, the rate law can be expressed in terms of
supersaturation �(c�� 	 c � c�) and �:

g �
k0c��

1 
 �/�*
�1 � r*��. (11)

where r* 	 �/� and �* 	 D/k0�. Clearly, �* and r* represent
characteristic coating thicknesses and radii of curvature for this
system. Furthermore, let �̄ be a typical coating thickness for a
grain. Then k0c��/(1 � �̄/�*) is a characteristic growth rate. A
natural choice for the characteristic time, denoted t*, is the
typical bump size r* divided by the characteristic rate and
hence

t* �
���* 
 �̄�

k0c��2�*
. (12)

In the studies time of section 5, we use units such that �* and
r* are one, while tine units are such that �/k0c��2 	 1. The
latter choice was taken because �/�* ranges from large values
to one or even smaller as the a bump grows and the coating
thins locally. The coefficient � can be estimated using data on
the surface energy (J/cm2). From the results of Ozkan and
Ortoleva (2000) cast for a small spherical grain, one may show
that

� �
2�12�v� /N0�2/3�

3kBT�4�N0/3v� �1/3 (13)

v� 	 1/�, � is the surface energy, N0 is the Avagadro’s number,
and kB is Boltzman’s constant. For quartz, � is 12J/cm2

(Dove, 1995), while k0c�  10�3 cm/yr, 10�4 � � � 10�2,
10�12 � D � 10�8 cm2/s. Using these values, one finds

2.4 10�8 cm � �* � 2.4 10�4 cm (14)

5 10�6 cm � r* � 5 10�4 cm (15)

Typical clay coating thicknesses �̄ such as in Fig. 3 are 0.005
cm. With the above data ranges and � 	 10�3 one finds
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1222 years � t* � 11.6 106 years (16)

These characteristic values are consistent with the observations
of Figures 1, 2, and 3 and many similar ones we have made on
a number of sandstone thermosections.

3.2. Calcite/Siderite/Anhydrite

Consider the group of mineral reactions

mineralf MZ 
 A�Z. (17)

For mass action kinetics,

g � k0
�c � �g�2 � K� (18)

where � 	 g�/D, and the concentration of MZ and A�Z are set
equal to c for an assumed stoichiometric mixture, and K is the
equilibrium constant. With this,

g �
2k0c� 
 1 
 �4k0c� 
 1 
 4�k0�2�2K

2k0�2 . (19)

We have assumed that the diffusion coefficient of MZ and A�Z

in the coating are equal to D. Even in this stoichiometric equal
diffusion case, the rate is a complex function of supersaturation
� (	 c2/K � 1). For small �, g is proportional to � while for
large � (� 0), it goes as c and hence as �1/2.

4. NUMERICAL SCHEME

We now present a numerical scheme for simulating the
morphologic dynamics of a coated grain. Consider the case of
quartz, assuming that D is constant and that the coating has
continuous coverage. For simplicity here, we limit our consid-
erations to two-dimensional growth.

The starting point of the numerical approach is the gridding
of the grain surface and discretization of time. Let ri(t) be the
location of the i-th grid point on the grain surface. A grid point
advances from time t to t � �t via the time-discretized equation

ri�t 
 �t� � ri�t� 

�t

2

ni�t 
 �t�ui�t 
 �t� 
 ni�t�ui�t��

(20)

where ui is the normal growth rate (Gi/�) evaluated at thickness
�i and curvature �i for the i-th grid point. The second term on
the RHS (right-hand side) of Eqn. 20 (and similarly for the
developments to follow) are written so as to be second order in
�t.

Conservation of coating mass implies

1

�

D�

Dt
� �

1

A

DA

Dt
� �	 �

��un�

�l
(21)

where 	 is a unit tangent vector and A is area. The discretization
of Eqn. 21 yields

1

�i

D�i

Dt
� �

ri�1 � ri�11

�ri�1 � ri�1
�

ui�1ni�1 � ui�1nni�1

�ri�1 � ri� 
 �ri � ri�1�
(22)

Grid points i � 1, i, and i � 1 are transformed to a local
coordinate system � (�1 � � � 1) and fitted to second order

polynomial to calculate the curvature at grid point i. The
normal vector n is calculated from the same polynomial.

Our preliminary simulations showed that as morphology
changes, the distribution of grid points changes significantly to
affect the stability and accuracy of the numerical approach. The
inaccuracy results from the curvature and normal vector calcu-
lations, as they strongly depend on the local grid resolution and
rapidity at which grid spacing changes along the grain surface.
We also found that if explicit time-stepping is employed, anal-
ogous to diffusion problems, a stability condition (�t � c1�xc2)
arises. The exponent c2 is found to be very close to 2. There-
fore, when grid points merge due to invagination of the surface,
to avoid numerical instability, the time step chosen must be
very small. To overcome these difficulties resulting from the
uneven distribution of grid points that results as morphology
changes significantly, we developed a regridding technique that
keeps the distance between the grid points regular after every
time step. As a result, grain-coating � must be interpolated onto
the new grid points. However, care must be made to avoid loss
or gain of coating mass due to this interpolation.

Our solution algorithm is as follows:

1. Calculate the normal growth rate using the curvature and
grain coating at time t.

2. Calculate the locations of grid points at t � �t (via Eqn. 20).
3. Calculate the grain coating at t � �t (via Eqn. 22).
4. Calculate the curvature and normal vector using the new

grid locations.
5. Calculate the changes in curvature and location of grid

points; if error criteria are satisfied, go to step 1 and increase
the time step, or else go to step 2 and iterate until error
criteria are met. If the number of iterations exceeds a max-
imum value, decrease the time step and go to step 1.

The tolerances for both locations and curvature between two
successive iterations are taken as 10�4. The maximum number
of iterations allowed was eight. The time step was increased by
10% and decreased by 50% for successful and unsuccessful
time steps, respectively.

5. NUMERICAL SIMULATION RESULTS

The numerical approach presented in the previous section
was used to simulate outgrowths in two spatial dimensions. The
variables introduced in section 3.1 were used:

r*r̃i � ri, t* t̃ � t, �*�̃i � �i. (23)

We obtain, dropping the �, the following problem. The basic
equations (Eqn. 20 and 21) with

u3
1 � �

1 
 �
. (24)

In the following set of simulations, we vary key parameters to
investigate the behavior of outgrowths on a clay-coated crystal.

5.1. Initially Flat Grain Surface with Locally Thin
Coating

The initial conditions are taken with the grain surface at z 	
0 and � 	 10 � exp(�(x � 50)2/4) for horizontal axis x. Figure
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5 shows the evolving crystal morphology for isotropic and
anisotropic growth. The initially thin coating at the center
promotes growth there. Isotropic growth results in an almost
circular outgrowth (Fig. 5a), whereas anisotropic growth yields
an eccentric bump with an aspect ratio of 3.5. In Figure 6, we

see the evolution of an initially slightly thinner (10%) coating
at the center for the simulation of Figure 5. Growth increases
total grain surface area (length in the present two-dimensional
case). The evolving morphology results in a wide region of thin
coating and a very narrow region of thick coating for both

Fig. 5. Evolution of morphology for (a) isotropic (t 	 29.73, 79.28, 128.82) and (b) anisotropic (t 	 89.19, 168.45,
247.73, 327.01, 406.29) growth scenarios with the initial conditions z 	 0 and � 	 10 � exp(�(x � 50)2/4).
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isotropic and anisotropic cases; however, the total mass of grain
coating is conserved (i.e., the clay coating is not dissolved or
precipitated in the simulation). Our results on grain growth also
can be reinterpreted for the case of grain dissolution by putting
u3 (�1 � �)/(1 � �), noting that the equations are symmetric
about z 	 0 and that the equations with � � 0 are the same as
the growth case but with t 3 �t.

5.2. Initially Flat Grain Surface with Locally Thick
Coating: Dynamics of Inclusion

The initial conditions are taken with the grain surface at z 	
0 and � 	 10 � exp(�(x � 50)2/4). Although the only

difference between this case and the previous is the sign in the
initial coating disturbance, Figure 7 shows that the resulting
morphologies are very different. At early times, the initially
thick coating at the center creates a dimple there. A gradual
increase in surface area at the sides locally decreases the
grain-coating thickness and therefore increases the growth rate
there. Meanwhile, the negative curvature at the center increases
growth there and thereby competes with the retarding effect of
thick grain coating. As in Figure 5a, the isotropic growth rate
fosters a circular morphology. Figure 8 shows the results with
the grain surface at z 	 0 and � 	 10 exp(�(x � 50)6/4x106).
In this case, there is a broader and thicker local initial distur-
bance in the grain coating. As the underlying grain grows, it is
seen to surround this material and ultimately enclose it to form
an inclusion. The shape of the inclusion shown is an early time
feature, which over geological time, will tend towards a spher-
ical shape to minimize the surface free energy.

5.3. Initial Bump in the Grain Shape with Uniform
Coating

The initial conditions are taken to be z 	 exp(�(x � 50)2/
64) and � 	 10. If � 	 0, the disturbance in z would be

Fig. 6. Evolution of grain-coating thickness for the simulation of
Figure 3 for (a) isotropic (t 	 0.00, 128.82) (b) anisotropic (t 	 0.00,
406.29) growth scenarios. The multiplicity of � as a function of x is
related to the bulging in the outgrowth seen in Figure 3.

Fig. 7. Evolution of morphology for (a) isotropic (t 	 49.55, 89.19,
128.81, 168.41) and (b) anisotropic (t 	 49.55, 99.10, 148.63, 198.18)
growth scenarios with the initial conditions z 	 0 and � 	 10 �
exp(�(x � 50)2/4).
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eliminated by the curvature term in the growth rate. However,
the increase in local surface area due to growth at the center
thins the grain coating there and eventually increases the local
growth rate initiating the morphologic instability (Fig. 9). A
“mushroom” is created for the isotropic growth case, whereas
in the anisotropic case, an earlier mushroom-like feature trans-
forms into a spike. To study the sensitivity of results on the
initial grain-coating thickness, we repeated the simulation ex-
cept with � 	 1. As seen in Fig. 10, the resulting morphologies
were quite different. As opposed to Figure 9a, Figure 10a
shows additional inflection points. Fig. 10b has three peaks of
the same height, whereas Figure 9b has one large bump with
humps on both flanks. It is also observed that the aspect ratios
(height/width) are smaller for both isotropic and anisotropic
growth scenarios when the initial coating is thinner. To study
the effect of a somewhat different disturbance in the initial
condition, we set z 	 0 for �x � 50� � 20, and z 	 exp(�(x �
50)2/64) for 30 � x � 70 (Fig. 11) and � 	 10. This corre-
sponds to a sudden (but small) jump in z � 10�3. Comparisons
of Figures 9a and 11a and Figures 9b and 11b show that the

additional small disturbance in z eventually affects the mor-
phology of the system.

5.4. Initially Random Grain Surface with Constant
Coating

We take � 	 10 and the initial surface is shown in Figure 12.
The short length scale variations in z are eliminated by curva-
ture at an early stage of evolution. This “ ripening phase” is
followed by a selection process in which larger, lower radius of
curvature outgrowths dominate.

6. CONCLUSIONS

The rate of growth/dissolution of coated grains is found as
the solution of a nonlinear algebraic equation that yields the
dependence of rate on coating properties and growth medium
composition. As a result, coated grains exhibit morphologic
instability. This addresses the long -standing paradox of how
morphologic instability of a growing crystal can occur in the

Fig. 8. Evolution of morphology for (a) isotropic (t 	 4.97, 9.95,
14.92, 20.92, 24.91) and (b) anisotropic (t 	 29.70, 69.34, 108.98,
148.62) growth scenarios with the initial conditions z 	 0 and � 	 10
exp(�(x � 50)6/4x 106).

Fig. 9. Evolution of morphology for (a) isotropic (t 	 49.55, 99.10,
148.65, 188.29) and (b) anisotropic (t 	 49.55, 99.10, 148.64, 198.19,
247.74, 297.28) growth scenarios with the initial conditions z 	
exp(�(x � 50)2/64) and constant grain-coating thickness (� 	 10).
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absence of gradients of composition or temperature in the
growth medium in contrast to the classical model of Mullins
and Sekerka (1963, 1964). This instability is manifest during
growth and dissolution even if the outside medium is stirred.

Simulations of growth coupled to coating dynamics show the
formation of bumps, mushrooms, spikes inclusions, and other
morphologies, depending on the degree of growth anisotropy
and initial coating thickness. The results obtained from the
numerical simulations illustrate a tendency to incorporate the
coating material as suggested by the coating thickening in the
invaginations that develop at the flanks of a growing bump as
in Figure 6 or the creation of an inclusion as in Figure 8.

While morphologic instability and large amplitude bumps
and mushroom features were obtained, the limits of the phys-
ical model prevented extreme morphologies. The most impor-
tant physical restriction stems from the lack of a physical
mechanism to arrest intergrowth.

While the resulting needles and other morphologies are not
simply related to the ambient chemical conditions, they are a
reflection of it. For example, the characteristic length and time
depend on supersaturation, pressure, and through the rate and
coating diffusion coefficient, on temperature. Effects such as
the finite rate of diffusion across the coating (i.e., breakdown of
the steady -state approximation) solid solution (and resulting
compositional zoning; see Haase et al., 1980; Ortoleva, 1994)

Fig. 10. Evolution of morphology for (a) isotropic (t 	 19.82, 49.54,
69.35, 89.16, 108.96) and (b) anisotropic (t 	 39.53, 79.25, 118.87,
158.48, 198.12, 237.75, 297.18) growth scenarios with the initial con-
ditions z 	 exp(�(x � 50)2/64) and constant grain-coating thickness
(� 	 1).

Fig. 11. Evolution of morphology for (a) isotropic (t 	 49.55, 99.10,
148.65, 188.29) and (b) anisotropic (t 	 59.46, 128.83, 198.19, 267.55)
growth scenarios with the initial conditions z 	 0 for �x � 50� � 20 and
z 	 exp(�(x � 50)2/64) for 30 � x � 70 and constant grain-coating
thickness (� 	 10).
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and the effects of coating microfracturing present themselves as
interesting directions for the extension of this work. The use of
these results in interpreting the geologic conditions accompa-

nying these morphologic instabilities and their use in control-
ling crystal morphology in manufacturing make these crystal
growth phenomenon of practical as well as fundamental inter-
est.
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