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It has been shown earlier that the competitive growth dynamics of particles in a sol can account for 
spontaneous precipitation patterns that arise as a uniform sol ages. Here it is found that this dynamics can, 
unlike the classic Ostwald-Prager theory. account for a complete range of precipitation pattern types 
including Rung~Liesegang bands, invert bands, secondary banding, spontaneous pattern formation from a 
uniform sol and propagation, and destabilization of fronts of coarsening. Effects of electrical fields on banding 
are also investigated. A characteristic length is obtained and is found to be a strictly nonlinear effect. 

I. INTRODUCTION 

Interest in spatially periodic preCipitation has spanned 
the last century. Studies of regular precipitation bands 
seem to have originated with Runge and later with Liese
gang,l the phenomenon having been named after the lat
ter. The early work is reviewed in the 1926 book by 
Hedges and Myers entitled PhYSico-Chemical Periodic
ity. Z These authors also conjectured that the mechan
ism of a number of geological and biological patterning 
phenomena could be essentially the same as precipita
tion banding (see also Ref. 3). The more modern liter
ature is surveyed in Ref. 4. 

The claSSic theory of this phenomenon was set forth 
by Ostwald5 and Prager. 6 In their model, interdiffusing 
coprecipitates supersaturate in some interface zone. 
This is followed by nucleation and ensuing depletion of 
soluble coprecipitate species until one of them diffuses 
further into the domain rich in the other, commencing 
a new sequence of supersaturation and nucleation. This 
theory relies strongly on the cross diffusion configura
tion and cannot explain either the origin of secondary 
banding (one band breaking up into a sequence of more 
closely spaced bands), or invert spacing (the spacing 
between the bands is usually observed to increase down 
a tube of gel solution of one of the coprecipitates over 
which the other reactant is superimposed). 

Another theory of the bands involves a mechanism of 
autocatalytic creation of precipitate particles. 7 Al
though there does not seem to be any physical justifica
tion of such a mechanism, it does lead to an interesting 
pattern forming dynamics. 

A more recent theoretical approach is based on a 
feedback involving particle growth, diffUSion, and the 
precipitate particle size dependence of the equilibrium 
concentration due to surface tension. 8,9 This mechan
ism leads to coarsening of a SOl.10 In Sec. II, we shall 
review this model. In the remainder of this paper, we 
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show that this theory can explain a host of spatio-tem
poral preCipitation phenomena, including a number of 
phenomena that are contradictory to the Ostwald-Prager 
theory. These effects have also been observed experi
mentally; some of these results are also presented al
though a more complete account of the experiments and 
comparison with theory is given elsewhere. 13 We con
clude by pointing out that the mathematical structure of 
the present problem is a exemplary case of a wide class 
of spontaneous pattern formation phenomena involving 
the coupling of transport and first order phase transi
tions. 3,18,19 

II. COMPETITIVE PARTICLE GROWTH THEORY 

A. Phase transition kinetics 

The kinetics of band formation is that of a first order 
phase transition coupled to transport. A chemical 
kinetic model of precipitation kinetics is the sequence 
of binary processes 

Pm +P,,+=tP m+n, (n. A1) 

where Pn, n = 1, 2, •.• is an aggregate of n moments. 
A more modest description of the particle growth/diS
solution process is to limit Eq. (II. A1) to monomer 
addition 

(II. A2) 

This picture is applicable when precipitate particle den
sity is low and stirring is absent. A fuller discussion 
of these models and their ranges of vailidity is found 
in Ref. 11. We shall adopt a Simplified version of mod
el (n. A2) here. 

For model (II. A2), a description of the system is in 
terms of the concentrations c = {c ll cz, ••• , c", ••• } 
= c(r, t) at all pOints r and times t. In Ref. 9, such a 
description of spontaneous pattern· formation was set 
forth. It is our purpose here to study a Simpler de
scription that is strictly valid after nucleation and when 
en is narrowly peaked about some n*(r, t) at each point 
in space. We now review this approach and then devel
op the consequences of the model in the remainder of 
this paper. 

ConSider a large particle describable roughly as a 
sphere of radius R. Surface free energy will cause this 
particle to have an equilibrium monomer concentration 
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C"'l that depends on R. For large R, C8CI(R) is a mono
tonically decreasing function. Hence, if a large parti
cle is near a small one it will grow at the expense of 
the latter. This competitive growth kinetics causes the 
typical particle size to increase in any domain of space. 
This cascade to larger particle sizes is called ripen
ing. 10 Because of ripening, small particles in any given 
domain tend to be eliminated. The size of particles is 
also limited from above by virtue of the fact that parti
cles beyond a given size have not had time to grow. 
Thus, we arrive at a picture such that in any small 
spatial domain, cn (as a function of n) is peaked at some 
value n*(r, t) in the post nucleation regime. 

1. Competitive particle growth 

Let R(r, t) denote the radius of the (assumed spheri
cal) n* particle. Because ceq(R) depends on R, we ex
pect that if R(r, t) is higher in one region than its sur
roundings, then the maximum in R will grow and cause 
dissolution in its surroundings. This will in turn in
duce satellite maxima in R further away from the 
original R maximum. This scenario provides a mech
anism of spontaneous pattern formation in precipitating 
systems. It has been tested experimentally using PbI2 
sols in agar. 7,8 

2. A simple mathematical model 

Since the particle size distribution crr tends to peak 
around n* corresponding to a particle radius R, we 
approximate the C = (cl> C2, ••• ,Cn • ••• ) description by 
the concentration C(r, t) of the monomer and the local 
average particle size R(r, f). We take R(r, t) to satisfy 

(IL A3) 

where p is the molar density of the solid and the rate 
parameter K may depend on R. In setting forth Eq. 
(II. A3), we assume that the preCipitate particles are 
suffiCiently large that their diffusion coefficient is 
small. This would be quite reasonable for a gel experi
ment. Simple considerations of conservation of mass 
lead to an evolution equation for C: 

ac a qW 
- =D2C - np- (t1TR3

) +-at at E: • 
(II. A4) 

We have assumed that after the nucleation phase is over, 
and coarsening has narrowed the particle size distribu
tion, the number density n of precipitate particles is 
time independent. The term qW/E: represents a source 
of monomer and is written in that form for reasons that 
shall be clarified in Sec. mB below. After specifying 
qW/E:, and n Eq. (II. A3, 4) constitute a self-consistent 
model of post nucleation and post local coarsening evo
lution. Our objective is to show that this Simple model 
can explain a host of spontaneous precipitation pattern
ing phenomena. This will serve both to underscore our 
overall physical picture and justify further work on the 
more accurate (and exceedingly more technically com
plicated) particle growth model of Eqs. (II. Al) or 
(II. A2) as discussed in Ref. 9. 

B. Characteristic lengths and times; Dimensionless 
variables 

We introduce characteristic values of lengths, times, 
and concentrations so as to extract some of the baSic 
phYSics from the problem. We find that only two di
menSionless combinations of system parameters differ
entiate all systems. It shall be assumed henceforth 
that the equilibrium concentration COCl(R) takes the com
monly used form 

(II. Bl) 

(II. B2) 

where R e, Yoo, p, v, R, and T are the critical radius, 
surface tension of a flat crystal surface, crystal molar 
denSity, a stoichiometric coefficient, the gas constant 
and the absolute temperature, respectively. 

The analysis proceeds by defining a typical particle 
radius Ii and particle number density n. A typical value 
of the concentration is C8CI(oo). We also introduce a 
characteristic time T and length L and, in the course 
of our analysis, shall obtain a relation between the oth
er system parameters and the latter. New dimension
less quantities are defined as follows: 

C=Ceq(oo)[l+s], R=R'Ir, r=L~, 

t= tT, n=nv. 

With these definitions, Eqs. (II. A3) and (n. A4) become 

a'lr TKCeq(oo)r rRs -g('Ir 'Ir)1 (II.B4) 
aT ]i2p tr 'e ~ , 

as Dt 2 2 a'lr qTw 
aT=[!vtS-'Ir GV aT +E:C"'l(oo) , (II.B5) 

where G is the ratio of a typical molar density of ma
terial in precipitate to that in solution, i. e., 

G= 41TR3pn 
ceq(oo) (II. B6) 

The function g, shown in Fig. l(a), is defined by 

2'1r2 
(II. B7) 

where 'Ire = RciR. All system parameters vanish from 
Eq. (II. B4) if we define T by setting the coefficient in 
front of the parentheSiS equal to unity and define a new 
"scaled supersaturation" a: taking K constant we have 

_ R2p 
f = KCeq(oo)r , 

a=RS/r. 

With this, Eqs. (II. B4) and (n. B5) become 

a'lr 
ar=a-g('Ir, 'Ire), 

aa _ Dr v2 _ 'lr2 a a'lr {Jqw 
aT -[! t a JJV aT + E: 

where 

f3=RG/r, 

w=RTw/ceq(oo)rf3 . 

(n. B8) 

(II. B9) 

(II. BlO) 

(ll.Bll) 

(IT.B12) 

(II. Bl3) 

J. Chern. Phys., Vol. 78, No.3, 1 February 1983 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.79.133.186 On: Mon, 16 Dec 2013 18:29:01



Feeney et al.: Periodic precipitation and coarsening waves 1295 

2 

g 

°O~------------------~5------------------~10 

VJ 

{3>{3t 
O~~----------------------------~k 

r---------------------------~k 

(3<{31. 
0r---==~~=_----------------~k 

(a) 

(e) 

FIG. 1. (a) Normalized supersaturation function g(v) as a 
function of the ratio of particle radius to the typical particle 
radius (v=R!R). In most experimental situations the typical 
particle size is much larger than the critical radius so 
that vc«l. In the simulations carried out in the figures to 
follow, this was the case. Hence the maximum of g (that oc
curs at about v J is far to the left of the range of particle sizes 
of interest in the experiment. In this figure vc =O.25. (b) States 
of the uniform sol as described by solutions of Eq. (II. C4) 
The labels "s" and "u" indicate the stability of sol states with 
respect to uniform perturbations. Stability with respect to pat
terned perturbations is discussed in Sec. IIC. (c) Dependence 
of the stability eigenvalues z.{k) given in Eq. (II.C8) for the ~ 
= 1 state. Note that in all cases the branch z. is positive for all 
k values, indicating instabiltty to pattern formation without giv
ing any information about a preferred length for the pattern. 
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Finally, the characteristic length L is defined such that 
Dt/ L2 = f,. Thus, we obtain 

f- D )1/2 
L= \41TiFnK ' (IT. B14) 

With this, Eq. (IT, B11) becomes 

! aa = V 2a _ >It2 v a>It + qw • 
f, aT aT € 

(IT. B15) 

Here and henceforth we shall drop the subscript ~ from 
the Laplacian. 

In the absence of the source (w) term, the system 
dynamics Eqs. (IT. BI0) and (II. B15) are characterized 
by two parameters f, and >It c. In most cases of interest 
here >It c = Rclll will be small-i. e., particles are much 
larger than the critical particle of radius Rc, and hence 
only one parameter f, is the dimensionless combination 
of ceq(oo), K, r, D, n, and R that differentiates between 
systems, 

C. States and stability of a uniform sol 

The uniform sol is found to have multiple possible 
states of existence in the present theory. We examine 
these states and their stability and discuss the struc
tural stability of the model. 

1. Multiple uniform sol states 

In the present model, the uniform static sol is spec
ified by, letting a superscript "-" indicate a uniform 
sol state 

A second equation is obtained by combining Eqs. 
(ill. BlO) and (ill. B15) to obtain 

d~ (a+~>II') =0 for a uniform system. 

(II. Cl) 

(II. C2) 

Thus the bracketed quantity is a constant of the motion 
for a uniform sol. This constant, denoted aT, is simply 
the total amount of material in either particles or 
scaled supersaturation. Thus, we have 

(j+(f,/3)~=aT ' (II. C3) 

Combining Eq. (II. Cl) and (II. C3) we get 

(II. C4) 

Recall that f, contains a dependence on the typical par
ticle radius R. Thus, with no loss of generality, we 
can assume that Eq. (II. C4) has one solution with w = 1. 
The corresponding value of aT, a7'l, is given by 

(II. C5) 

We now investigate the possiblity of other solutions \Ii, 
satisfying 

g(\Ii) + (,8/3)WS =g(I)+,8/3 , (II.C6) 

that may also exist consistent with a total material con
tent aT =g(l) + ,8/3. The solutions of Eq. (II. C6) are 

indicated in Fig. 1 (b). Notice that in the interval 
0<,8< (3m our model predicts the existence of three uni
form sol states. Thus, in the range 

g(I)< aT<g(I)+ {3/3 (II. C7) 

our model predicts multiple possible sol states for a 
given total material content. 

2. Stability of the uniform sol 

The realization of the uniform sol in a physical sys
tem depends on its stability. We test this via the usual 
small amplitude stability theory. Letting - indicate the 
uniform sol and a = g(\Ii)+ 1ia, >It = ~ + 1i>It, we find solu
tions 1i>It, 1ia for small perturbations in the form 
exp [z (k)T +ik~] where z (k) is one of the following: 

zz(k) = - H,8(k2 +~) + g] 

±i../[{3(k2+>It2)+g]2_4/tk2, (II. C8) 

where g=dg/d>It. For small k perturbations, we see 
that 

z ---0, - {3~ -g . 
"..0 

(II. C9) 

The eigenvalue zero corresponds to the conservation 
law (II. C2). The other eigenvalue determines the 
stability of the sol to uniform perturbations. The 
results are shown in Fig. l(b). There is an ex
change of stability at the point f3" where the upper solu
tion crosses the line ~=l. For >Itc«l, .BrN'c«l)-l. 

For patterned (k * 0) perturbations we must use Eq. 
(II. C8). States with g> 0 are always stable. The de
pendence of the branches z~ on k for the ~ = 1 state is 
shown in Fig. l(c). Since z. is monotonically increasing 
with k, the system is seen to be unstable to pattern for
mation although no preferred pattern length is indicated. 
For the larger (3 dependent state shown in Fig. l(b), the 
dependence of the stability eigenvalue is similar to that 
shown in Fig. l(c), except that the inequalities on {3 are 
reversed. 

In conclUSion, the stability analysis indicates that 
there exists a tendency for pattern formation in a uni
form sol. However, to determine the length scale of 
the patterns we require a nonlinear analysis. 

D. Numerical simulation of spontaneous pattering 
in an aging sol 

1. Definition of the problem 

We have undertaken a series of numerical simulations 
of the dynamics of an aging sol described by Eqs. 
(II. BI0) and (II. B15) without the source term qw/(: 
thus, the calculations were based on the follOwing 
model: 

a>It 
aT =a-g(>It) , (II. Dl) 
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FIG. 2. Simulation of the growth of an initial bump and subse
quent satellite induction. The initial sol was, by definition, at 
'i' == 1 with a small bump near the left-hand wall (the initial bump 
is essentially imperceivable on the scale of the graph). The 
first satellite develops at about 2. 55. Note also that the initial 
bump is tending to split into a doublet (since the no flux boun
dary conditions allow one to reflect the profiles about the ori
gin). The parameter values used were (J = 0.1 and 'i' c = O. 25. 
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FIG. 3. Same as Fig. 2 except f3 = 1. O. Note the induction of 
multiple satellites. The first satellite haa an aaymptotlc maxi
mum at about 2.6. Unlike the case fJ =0.1 of Fig. 2 there 
seems to be no tendency for the initial bump to split into a 
doublet. 
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FIG. 4. Same as in Fig. 3 except that {J = 100. At these high 
values of /3 the first satellite never quite matures-i. e., grows 
larger than the initial sol size 'i' = 1. However, note that the 
presumptive first satellite does attempt to develop at about 2.7, 
surprisingly very close to the first satellite induction distance 
for the f3 = 0.1, 1.0 cases of Figs. 2 and 3. This dramatic in
variance is discussed further in Sec. II D. Since the first satel
lite is represented we see the phenomenon of period doubling 
for large /3. 

(IT.D2) 

The equations were solved using standard iterated back
ward difference techniques. 12 The system consisted of 
a one-dimensional tube of length LT' At boundaries 
~ = 0, L T , fluxless conditions were imposed, i. e., 
a(1/a~ = 0 at ~ = 0, LT' Note that in Eqs. (II. Cl) and 
(IT. C2) and henceforth, we repress the >V c dependence 
of g. 

2. Satellite induction and its characteristic length 

In this series of simulations, we investigated the 
growth of satellite maxima in R induced by an initial 
bump. All simulations were carried out for fairly 
coarse sols, i. e., >Vc = O. 2 or 0.25 for which g(>v) is 
shown in Fig. l{a). 

The most striking feature of these Simulations is that 
over the range 0.01!$f3!$100 tested (see Figs. 2-5), it 
was found that the first satellite induction distance was 
almost constant at a value ~1 = 2. 7= e (the natural log a
rithmic base). This implies that for a sol the satellite 
induction length Ll =~lL is apprOximately given by [see 
Eq. (IT.B14)] 

(H.D3) 

J. Chern. Phys., Vol. 78, No.3, 1 February 1983 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.79.133.186 On: Mon, 16 Dec 2013 18:29:01



1298 Feeney et al.: Periodic precipitation and coarsening waves 

,___25 

~ 
I- If 

1--20 

~ 2 

,-15 
/-\ \ 1 

10 ~ -< 
y5 ~ l ~ ~ ,......t=o 

1 

( \ 
'---

5 10 

Distance 

FIG. 5. Same as Fig. 3 except that the initial bump is taken to 
have a width comparable to the first satellite induction length, 
i. e., we took v(/;, 0) =i +0.01 exp[- (V2)21. Note that the cen
tral maximum breaks up into a doublet and in the process 
makes the average separation between the maximum of the 
doublet and the first satellite and their mirror images about 
2. 7, the invariant first satellite induction length. 

This first satellite induction length law is not limited 
to a small amplitude analysis and is very surprising. 
The small amplitude analysis of Sec. lIe yields no 
characteristic length since it was found that the linear 
stability theory implies that under spontaneous pattern 
formation conditions, all wavelength perturbations 
grow-see Fig. l(c). Thus, this pattern length is a 
strictly nonlinear interaction of the Fourier modes in 
the problem. 

The detail features of the evolution do depend quite 
strongly on (3 however. We see in Fig. 2 that for small 
(3, peaks tend to split up into secondary peaks. In Fig. 
4, we see that the original peak has started to split into 
a doublet (think of the picture continued for ~ < 0 and re
flected about ~ = 0) before the second satellite has 
formed. For large (3, we see the very interesting ef
fect of apparent satellite induction length doubling. In 
Fig. 5., the first satellite never grows above the aver
age sol size and eventually disappears as the second 
satellite matures. However, note that the putative first 
satellite does attempt to rise at its usual location 
~h essentially independent of (3. In Fig. 3 we see the 
clear formation of second and third satellites. 

In Fig. 5 we investigate the effect of an interference 
between the initial bump shape and the first satellite. 
In that figure we took 

>v(~,0)=1+0.01e-(02)2 , 

(II. D4) 

The system is seen to attempt to find its characteristic 
length by splitting the central peak while inducing a sat
ellite. Considering the profile to be reflection sym
metric about ~ = 0 we see that the average distance be
tween the four central peaks-the central doublet and 
the satellite and its mirror image-is close to ~1' 

3. Random initial data 

A macroscopically "uniform" sol actually has slight 
random deviations in local average particle radius. 
Thus, since the uniform sol is unstable, we ex-
pect the small deviations from uniformity to grow and, 
because of diffUSion, maxima and minima will interact. 
Results of Simulations of this type are shown in Figs. 
6 and 7. For large (3, we expect that since the first 
satellite does not mature, the average pattern length 
for long times will be larger than for smaller (3. This 
effect is seen clearly in Figs. 6 and 7. 

Experiments on initially uniform Pblz sols show that 
the uniform state is indeed unstable and that in the aging 
process the uniform state makes the transition to mac
roscopic patterns as predicted in Figs. 6 and 7. Since 
these patterns occur post nucleation and in the absence 
of cross diffUSion, they cannot be explained via the 
Ostwald-Prager theory. 

4. Secondary banding 

Secondary banding is the development of bands from 
an original precipitation band that occurred in an inter
diffUSion, Liesegang experiment. Since these bands 
arise in the wake of the moving precipitation reaction, 
they do not appear to involve nucleation and cross dif
fUSion. Hence, the Ostwald-Prager mechanism can
not explain them. 

4 

25, 

2 
5, 

t=O 

AD\ 
u V 1\ 

.!:: - b 

5 10 

Distance 

FIG. 6. Evolution of a small initially random variation of sol 
coarseness into a macroscopic pattern for parameter values 
J3 =0. 5, i'q=O.25. 
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FIG. 7. Same as Fig. 6 except that {3 =100. Note that the 
length scale between surviving maxima for a given time is 
much longer than the case in Fig. 6. 

We have carried out numerical simulations of the 
competitive growth equations (II. Cl0) and (II. C15) to 
describe the evolution of a single band. In Figs. 8 and 
9 we see the results. A gradient of particle size across 
the band induces smaller scale "secondary" banding. 
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FIG. 8. Evolution of an initial band into secondary bending 
as simulated via the. competitive particle dyanmics of Eqs. 
(II. D1) and (n. D2). Notice the interesting flip-flop that oc
curs in that the particles in the band at the end of the profile 
where the particles were initially smallest becomes the coar
sest. Parameter values were {3 = I, ~ ct = O. 2. 
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FIG. 9. Same as in Fig. 8 except that {3=10. Note that the 
left-hand band represses the formation of the first presump
tive satellite as expected from the results of Fig. 4 where the 
length doubling for large {3 is also observed. 

The results show a number of interesting features whose 
occurrence and properties depend on the value of {j. In 
all cases tested the largest maximum in dimenSionless 
particle radius \}T arose at the end of the original band 
where \}T was initially smallest. This reversal happens 
because when \}T is smaller the surface tension mediated 
competitive dynamical feedback is stronger. In the case 
of larger {j values, the period doubling phenomenon ap
pears to be operative in annihilating the second band 
from the left before it came to maturity. The spacing 
of the secondary bands is on the order of the satellite 
induction length (or an integer multiple of it) but the 
original overall \}T gradient appears to lead to minor 
deviations from it. 

5. Two sol junction experiment 

If two gels with uniform sols of different particle size 
are joined, we expect from the satellite induction simu
lations, that banding will be induced in the two gels. 
Simulations of this effect for three different values of 
{j (=0.1, 1, and 10) are shown in Figs. 10-12, respec
tively. The results are quite well explained by the in
variant induction length hypothesis and the experience 
obtained from the satellite induction simulations. Vari
ables in Figs. 10-12 are defined with R being the initial 
particle radius in the right half of the system. This 
predicts, according to the expression (II. C3), that the 
pattern length to the left is half that to the right of the 
junction, as it clearly is. Also note that high {j sys
tems tend to skip the first satellite-as expected from 
the satellite induction simulations in Sec. II. C2 above. 
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FIG. 10. Numerical simulation via Eqs. (II. Dl) and (II. D2) 
of an experiment wherein a coarser sol (left) was interfaced 
with a finer one (right). The experiment is seen to result in 
banding in both media. Parameters used were P. =0.1, 'l<c 
= O. 2 with 'l«L 0) as shown and (1(~, 0) =g['l«L 0)]. 

E. Arbitrarily spaced arrays of rectangular teeth 

The uniform sol is not the most general time inde
pendent solution of the competitive particle growth 
equations (II. Dl) and (II. D2). Let 0-* be a constant be
tween zero and the maximum value gm of g(\}I) 

O<o-*<gm. (II.El) 

4 I-

2 

o 
o 

taO 
\ 

I '-_ '-- L.-

20 
Distance 

FIG. 11. Same as Fig. 10 except {3 = 1. 
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/25 

f\ 
r--.... 
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FIG. 12. Same as Fig. 10 except (3 = 10. Notice in the finer 
sol region the first satellite is repressed as expected from the 
satellite induction simulations as in Fig. 4. 

Then from Fig. l(a) we see that the equation 

g(\}I) = 0-* (II. E2) 

has two solutions that we denote \}Il(o-*), \}I2(0-*). Let 
9,i 1;) = 1, 1;, < I; < I;j; 8/ j( 1;) = 0 otherwise for a series of 
positions. Then 

\}I=\}Il +(\}I2 - \}It) L 811W , (II.E3) 
l,j 

0- = 0-* 

satisfies Eqs. (II. Dl) and (II. D2). For most systems, 
one of the particle sizes, \}I2 say, will be much less than 
the other, \}It. We expect that the rectangular sawtooth 
patterns [Eq. (II.E2)] are not stable to perturbations in 
the teeth heights about \}It. The rate of increase in the 
height difference between neighboring teeth should be 
proportional to the inverse of the square of the distance 
separating them. This leads to a cascade up in length 
scale as neighbors compete and smaller ones are anni
hilated. In the random initial condition and many simu
lations to follow this competition of maxima is ob
served. Note that particles between bands will not be 
completely dissolved but the size will bottom out at a 
value close to a value of the solution of the equation 
g(\}I) =g(-v") where -V" is the size of the neighboring 
maximum. 

F. The greedy giant catastrophe 

It is often observed that between bands in the cross 
diffusion experiment, large isolated crystals appear. 
Similar isolated crystals are found in the essentially 
precipitate free areas that occur when a uniform sol 
ages into a mottled pattern. 8 We term these isolated 
crystals "greedy giants, .. because they arise out of the 
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competitive advantage that crystals in the tail of the 
size distribution possess due to the surface tension 
mechanism. Indeed, these isolated giants grow faster 
when the more typically sized crystals are being co
herently dissolved out because of a neighboring average 
particle size maximum. 

The large wave vector k behavior of the stability 
eigenvalues discussed in Sec. IIC (such that z approaches 
a positive constant as k-«:» is due to this greedy giant 
phenomenon. A small perturbation in R in the form of 
a localized maximum crudely models a crystal that is 
larger than those around it. However, this is not a 
particularly accurate description, mainly due to the 
fact that diffusion cannot occur inside an actual parti
cle. The occurrence of greedy giants is a statistical 
question, requiring the introduction of a particle size 
distribution functions and will not be pursued further 
here. 

III. CROSSFLUX KINETICS 

A. Experiments on the oxalic acid-gold system 

Some old experiments on the formation of gold bands 
resulting from the cross diffusion of oxalic acid and 
goldS were repeated in our laboratory. 13 We cite some 
of the results here to set the stage for our subsequent 
model making. 

Glass tubes were filled with agar or silica gel solu
tions of AuCl, ions. Oxalic acid solutions in water were 
imposed on top of the gels allowing the acid to diffuse 
into the gel. As the oxalic ac id (denoted A) diffused into 
the gel, the AuCl, (denoted B) was reduced to gold atom 
(monomer, denoted C. The reduction process is char
acterized by the overall reaction 

3A + 2B - 2C + • •• , (ill. AI) 

where the dots indicate other products that are not of 
interest here. To a very good approximation, Eq. 
(ill. AI) is irreversible. 

The advancement of oxalic acid into the Au'+ bearing 
gel is marked by a well-defined zone in which the yel
low color due to Au'+ is absent. In the reduced (Au3+ 
free) zone a haziness appears somewhat behind the 
leading edge of that zone-see Plate I. The haze sig
nals the presence of particles of diameter greater than 
the wavelength of visible light. 

Banding is then observed to emerge out of the haze-
i. e., the haze in the reducing zone breaks up into al
ternative bands of relative clear and preCipitate laidened 
regions. This is in contradiction with the predictions 
of the Ostwald-Prager theory, wherein sequential nu
cleation and nuclei free zones are created. 

To further investigate this point, we set up a light 
transmission experiment as follows: A tube developing 
banding was placed between a columated light beam 
and a light detector. The beam-detector couple was 
moved along the tube by computer controlled stepper 
motors. The data was digitized, stored and displayed 
as temporal sequences of transmitted light intenSity as 
a function of distance along the tube at given times. 

3.2 days 5.1 days 5.8 days 

Plate I. Band formation resulting from the diffusion of oxalic 
acid into a gel solution of AuCI4. The stoichiometry of the in
terdiffusion reaction leading to monomer production is sum
marized in Eq. (m.AI). Notice that a leading monotonic front 
of hazing forms well in advance of bands, ruling out the classic 
mechanism of Ostwald and Prager (Refs. 5 and 6). Banding of 
this type appears to be the result of the surface tension me
diated instability of a uniform sol to pattern formation as de
scribed by the present theory. The experiment shown was 
carried out by placing a gel solution of HAuC~ in a test tube 
and superimposing a solution of oxalic acid. The one weight 
percent chlorauric acid gel solution was made by combining 
8 ml of 1.075 glcc sodium silicate solution, 15 ml of 0.6 M 
acetic acid, and 3 ml 0.2115 M HAuC~ and allowing the gel to 
set in the tube. The oxalic acid solution used was 0.22 M. 
The time indicates hours after imposition of the oxalic acid. 
Evolution took place in the dark (to avoid photochemical effects). 
The tubes were maintained vertical at all times. [Gravity is 
known to sometimes affect precipitation patterns (Ref. 20»). 

(See Ref. 13 for more complete details and Ref. 20 
for related work). 

A telling sequence is shown in Plate II. A silica gel 
solution of 1% by weight HAuCl, • H20 was allowed to 
interact with an 8% by weight superimposed solution of 
H2CzO.. In plate II, we plot the fraction of light not 
transmitted f (f = 1 - 1110, 10 = incident light intensity, I 
=transmitted intenSity). This is a measure of the 
amount of precipitate contained in the tube (since 10 is 
measured as the light transversing the precipitate free, 
AuCl. silica gel). A zone of hazing clearly precedes the 
domain where bands are emerging. The bands are seen 
to emerge from the unbanded sol. Note the interesting 
transition from the relatively narrowly spaced bands 
to the wider,smoother bands. This agrees well with 
the numerical simulations based on the competitive 
particle theory to be presented below. Other similar 
experiments presented in Ref. 13, the AuCl, tubes are 
prehazed with Au-sol by introduCing a given amount 
of HaCsO. and similar banding to that of Plate II occurs. 
Thus, nucleation is not an integral part of the kinetics 
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o min. 

~-T--------~ ____ ----________ ~, __ Y'~' __ ~ __________ ~ __ 

218 min. 

938 min. 

2543 min. 

7216 min. 

~lcm~ 14324 min. 

Plate II. Development of Au bands resulting from the infusion of a 2% by weight solution of H2C20, into a 1% by weight solution 
of AuCl4 -H20 in silica gel. The quantity plotted is proportional to the percentage of light not transmitted! = 1-1/10 where I is 
the light transmitted and 10 is the light transmitted through the precipitate free gel solution. Thus! increases as the amount of 
precipitate. The distance shown is a 3 in. segment of the'tube. The most important observation is that banding occurs in the 
zone behind the H2C20 S and nucleation fronts-i. e., the bands develop out of a pre-existing haze. The scan labeled 0 min is taken 
before tie HZCZ0 4 solution is superimposed. All other times indication the duration after H2C20,. (See Ref. 13 for further details.) 

of band formation. 

In the remainder of this section, we shall study the 
front of monomer Au production that drives the interdif
fusion banding. 

B. Creation of monomer 

1. Basic equations 

The interdiffusion of reductant and metal ion that 
produces metal monomer shall be generalized to the 
process 

(III. Bl) 

The other products of this irreversible reaction are 
taken to be inert (with respect to pattern formation) and 
are neglected henceforth; m, n, q are stoichiometric 

coefficients. Assuming Eq. (III. Bl) proceeds with 
rate (l/E)/W (mol equivalents/volume time) we take the 
concentrations of A, B, and C to satisfy 

aA a2A m 
8t== DA axr--;W, (III.B2) 

aB a2B n 
fii == DB aX! - i W , (III.B3) 

ac a2c q 
fii=Dc 8? +E W +H • (III.B4) 

The term H in Eq. (III. B4) indicates contributions from 
other reactions and precipitate particle growth. A 
factor (1/E) has been added in Eqs. (III. B2)-(III. B4) to 
emphasize that in many cases, Eq. (III. Bl) is fast and 
hence it is convenient to examine Eqs. (III. B2)-(III. B4) 
in the limit E « 10 
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A 
-----~Bo 

B 
FIG. 13. Concentration profiles of 
cross diffusion experiment of species 
A moving into the B laden tube. The 
reaction rnA +nB - products is con
sidered fast. Hence there exists a mov
ing interface at X(t) where both A and B 
vanish. A is assumed fixed at the value 
Ao at the left-hand boundary; Bo is the 
value of B before A invasion. 

L-__________________ ~ ________________________ ~O 

X(t) 

X 

The boundary conditions and initial data arising from 
the interdiffusion problem in an infinitely long tube lo
cated in O~ x< 00 are given by 

A(O, t) = Ao, A(x, 0) = 0, B(x, 0) = Bo , 

where Ao and Bo are constants. 

2. The moving boundary problem 

(m.B5) 

As £ - 0, we see from Eqs. (ill. B2) and (IT!. B3) that 
A and B must vary rapidly in space or time un-
less W is small. This suggests that the limiting (£ - 0) 
profiles of A and B attain a form as in Fig. 13. This 
picture follows from the assumption that W must vanish 
if either A or B does and hence space is divided into an 
A-free region x> X(t). a B-free region 0 ~ x :S x(t), 
and a reaction interface where.A and Bmeet, a small in
terval about X(t) as observed in the oxalic acid-gold 
system. 

In an earlier paper on the propagation of chemical 
waves, it was shown that problems of this type may be 
reduced to a Stefan moving boundary problem. 15.18 In 
this section, we apply this method to generate the mov
ing boundary problem associated with Eqs. (IT!. B2) and 
(m. B5) and subsequently obtain an exact solution of 
this problem. 

Since A vanishes for x>X(t) and B vanishes for O~x 
~X(t), one finds upon eliminating W/£ from Eq. (ill.B2) 
via Eq. (ill. B3) that 

aA a2A 
at=DA axz' B=O, O~x~X(t), (III. BS) 

(ill.B7) 

A[X(t), t] = B[X(t), t] = 0 • (III. B8) 

These equations and the data Eq. (III. B5) admit a solu
tion on their indicated domains if the position X(t) of the 
mOving reaction interface is known. 

Determination of X(t) requires an additional condi
tion-a Stefan condition-and we shall next obtain it by 
a more detailed examination of the system behavior in 

the vicinity of X(t). To do so we introduce scaled vari
ables 

i;=[x-X(t)V£"l, A=£"2A(i;,t) , B=£"SB(i;,t). 
(III. B9) 

This scaling expands the spatial domain about the in
terface and also reflect the fact that A and B are small 
in this domain. The specific values of the exponents 
/.L1, /.L2, /.Ls follow from inserting this general scaling 
(i. e., using arbitrary powers of £) and then determin
ing which choices properly, as £ - 0, balance the rele
vant dominant process taking place in the interface. 
The latter are found to be a stoichiometric balance of 
A, B influx into the interface. Since the choice of ex
ponents depends on the way in which W vanishes with A 
and B as the latter go to zero, we shall assume 

W=kAB, (ill.BI0) 

where k(A, B) is a positive function that is nonzero as 
A, B-O, i.e., 

k(A, B) -...-ko> 0 • (ill.Bll) 
A.B~O 

(More general cases such as W= kAt> BB may also be 
analyzed by our method.) For Eq. (ill. BI0) 

/.Lj = 1/3, i = 1, 2, 3 (ill. B12) 

is found to be the correct choice. 

USing this scaling we obtain as £ - 0 

a2A ~ 
DA~-mkoAB=O , (ill. B13) 

2~ a B ~ ~ 
DB~-nkoAB=O • (ill. B14) 

Multiplying Eq. (III. B13) by n and Eq. (ill. B14) by m, 
subtracting Eq. (ill. BIO) from Eq. (III. Btl) and inte
grating over the interface, - 00 < I; < + 00 for the scaled 
variable, we get 

aA an 
nDA~(i; = _00, t) = - mDB ai; (I; _+00, t) , (ill. B15) 

upon invoking 8..4/a,(+00, t) = aB/a,(- "", t) = O. We 
note that from the definitions [Eq. (ITI. B7)] we have 
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1304 Feeney et al.: Periodic precipitation and coarsening waves 

(Ill. B16) 

and similarly for B. We next take the matching condi-
tions (see Refs. 15 and 16), 20 

(Ill.B17) 

. (8B), ~Bl 11m - =lim - . 
x-x(t).O· 8x t c- ... 8& t 

(Ill. B1B) 

Here O· is an infinitesimal positive number and x-X(t) W 
± O· indicate taking the limit as x approaches X(t) from 
the right and left, respectively. The required Stefan 10 

condition is then obtained by combining Eq/? (Ill. B12), 
(Ill. B14), and (Ill. B15) with Eq. (Ill. B13) and its B 
analog to find 

nDA(:~ ) [X(t), t] = - mDB (::) [X(t), t] • (III. B19) 

3. Analytical solution of the Stefan problem 

Equations (Ill. B6)-(Il. BB), and (Ill. B16) constitute 
a well posed Stefan problem. We now present an analy
tical solution of it. Since A and B are diffusing, we 
might expect that the interface behaves like a charac
teristic diffusion length. Thus, we conjecture 

X(t) = a..jt (Il.B20) 

for a yet unknown constant a. This suggests that a 
more natural spatial variable is a similarity variable17 

(III. B21) 

This approach turns out to be quite fruitful and we ob
tain an equation for a in the form 

(Il.B22) 

where 

D=D,jDB, w =n~mBo, 

a = 2a .f75;.. 
(Ill.B23) 

It is most convenient to calculate w for various values 
of a and D. This is given in Fig. 14. 

The concentration profiles are found to depend on the 
similarity variable ~ as follows: 

(Il.B24) 

2 {/2.nJB .elI 
B(~) = 2..jDBB' ea I DB e- dz. 

alUDB 
(Ill.B25) 

The constants A' and B' are given by 

[
'UDA .ell 

Ao+ 2..jDAA' e- dz = 0, 
o 

(Ill.B26) 

nDAA'e-a2/4DA+mDBB' =0. (Il.B27) 

Thus, we have a complete analytical solution of this 
cross diffusion Stefan problem. 

1.6 

FIG. 14. Numerical solution of Eq. (ill. B22) yielding scaled 
interface advancement rate a as a function of the composition 
variable w at various values of diffusion coefficient ratio D (see 
Sec. illB for definitions). 

C. The Rate of monomer production 

The reaction interface wherein Eq. (Ill. Bl) proceeds 
with appreciable rate is of a thickness that vanishes as 
E: - O. Thus, the term qWIE: that represents the rate of 
monomer production in the continuity Eq. (Ill. B4) for 
the monomer concentration C should be a function that 
is high and narrowly peaked in the fast reaction (E: - 0) 
limit. We represent the qW IE: term by a delta function 
localized to X(t) and with weight N(t), 

(Ill.Cl) 

and use the asymptotic approximation, Stefan problem 
approach above to calculate N(t). 

Integration of Eq. (Ill. B25) in a small interval of 
width 2E:1/SA centered on X(t) we get, with W=kAB 

f
:x:·e1/S<l. 

N(t) '"'-' !& ABdx. 
e- 0 ( X-e1/s<l. 

(nI.C2) 

Converting the integration variable to & and using Eq. 
(Ill. B9) we get 

N(t)=qkOf<l. ABd?;. 
-<l. 

(m.C3) 

Using Eq. (Ill. B13) we get 

q i<l. 8
2A N(t) =-D A -;;;;r d {; • 

m -<l. Vb t 
(Ill.C4) 

ChOOSing A large enough so that (BA/B?;) at A is negligi
ble we get (formally putting A_co) 

N(t) = -,: DA(:t)t (_co,t)= :q DA(:~ )1 [X(t), t], 

(Il.C5) 
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Cross Flux Banding Experiment 

~----------~v ~-----------. 

FIG. 15. Configuration for electroinfusion experiments. 

where we have used Eq. (III.B17). Finally, invoking 
Eq. (III. B24) we get 

(III. C6) 

Note that as the interface advances into the system the 
rate of production decreases as rll a . This is due to 
the fact that as the interface moves forward the concen
tration profiles of A and B become increasingly shallow 
and hence the rate of A and B flux to the reaction zone 
decreases. 

D. Electrical field effects 

When an electrical field is applied to an interdiffusion 
phenomenon, it has been found experimentally that the 
band spacing becomes constant. 14 Here we examine the 
effects of an applied field on an interdiffusion experi
ment in a manner analogous to the analysis of the pre
vious two sections. Experimentally the situation we 
seek to model is described in Fig. 15 and its caption. 

1. The constant velocity reaction interface 

The effect of an electric field E (V / cm) is to modify 
Eqs. (III. B2) and (III. B3). Assuming the presence of a 
constant electric field E and a background electrolite 
(to eliminate the complexities of charge neutrality cou
plingl6

) we find 

aA aaA aA m 
8t"",DA 87- a a;--"€W, (III.D1) 

(III. D2) 

(III. D3) 

Here z, and M, (i'" A, B) are the valences and mobility 
of species i and 1J' is Faraday's constant. The most 
profound effect of the electrical field is to allow for the 
possibility of constant velocity A-B interface propaga
tion as follows. Let us assume that a transient phase, 
when the A-B interface has not yet moved in far from 
the end of the tube, has passed. Thus, the tube end is 
considered to be at x'" - 00. We now seek solutions that 
propagate with constant velocity and profile A(cf», B(cf» 
where cf> is the coordinate system moving at velocity v 
with the interface, 

cf> "'x - vt • (III.D4) 

For these solutions, Eqs. (III. D1) and (III. D2) become 

n 
DBB" +(v- f3)B' -- W:=O, 

€ 

where "I" indicates d/ dcf> • 

2. The advancement velocity 

(III.D5) 

(III.D6) 

We may easily obtain an exact expreSSion for v that 
depends only on the stoichiometry (i. e., on m, n). 
Eliminating W from Eqs. (III. D5) and (III. D6) we get 

{![DAA1 + (v - a)A] - ~ [DBB' + (v - f3)B} 1 := O. (III. D7) 

Clearly the quantity inside the braces is a constant of 
the motion. Let AO and BO be the values of A( - 00) and 
B(+oo), respectively. Then using the fact that A(+oo) 
:= B( - 00) = 0, evaluating the braced quantity in Eq. 
(III. D7) at + 00 and - 00 and equating the results we get 

v- aAo/m+f3Bo/n (III. D8) 
- AO/m+Bo/n 

Thus, we see that if a wave exists, its velocity is pro
portional to the applied field and that it propagates into 
the B or A domains if the numerator of Eq. (III. D8) is 
:;;:10, respectively. 

3. The rate of monomer production 

The total rate of monomer production is qW/€ inte
grated from - 00 to + 00 for the wave. From Eq. (III. D5) 
we get 

(III. D9) 

Finally, as €-O, the reaction (III.B1) takes place in a 
narrow domain and hence we may write Eq. (III. B4) for 
the (unchanged) monomer concentration Cas 

aC a2c 
8i=D8;1+NfJ(x-vt)+H, (III. 010) 

where, using Eq. (III. D9), we have 

N _ q( a - f3)Bo/n 
- m(Ao/m + BO/n) (III. Dll) 

Thus, the two important differences between the elec
trical and nonelectrical configurations are that the former 
has time independent interface velocity and rate of 
monomer production whereas, these quantities decrease 
as rlt2 for the purely diffusional situation. Clearly this 
is the basis of the periOdicity of banding in the presence 
of an applied electric field. 

4. Wave profile and existence criterion 

In general, the calculation of the wave profile and 
conditions of existence are quite difficult. However in 
the limit € - 0 the analysis is greatly Simplified. USing 
arguments as in Sees. III. B and m. C, we find that as 
E-O we have 
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{
O, ¢>O 

A( ¢) = Ao[ I - ea~ ], ¢ < ° , 

{
BO[I- eb~], ¢> 0, 

B(¢)= ° '/'<0 ,'I' , 

a=(o. - V)/DA' b = ({3-v)/DB • 

(III. D12) 

(III. D13) 

In order that these solutions satisfy the asymptotic be
havior A-Ao as ¢ __ oo, B-Bo as ¢_+oo we have the 
conditions 

a.> v , 

{3< v, 

(III. D14) 

(III. D15) 

Using Eq. (III. D8) for v these existence criteria imply 

a.> {3 • 

From Eq. (III. D3) this yields 

ZAMAE> ZBMBE • 

(III. D16) 

(III. D17) 

This implies that waves can propagate under a variety 
of conditions. Since we are only interested in cases 
wherein propagation goes into the tube from the A 
source v> 0, we limit our discussion to the cases [see 
Eqs. (III. D3) and (III. D8)] for which 

(III. D18) 

Thus electro infusion wave experiments can be carried 
out when Eqs. (III. D17) and (III. D18) are both satisfied. 
If Eq. (III. D17) is violated waves do not exist and if Eq. 
(III. D18) is violated, they propagate in the experimen
tally uninteresting direction (if they exist). The signs 
of Z A, Zs, and E are clearly important in these criteria. 
Also, the concentrations AO, BO and the stoichiometric 
coefficients m and n may affect the wave propagation 
direction. Hence, AO and BO are sometimes useful ex
perimental parameters for changing wave velocity. 

Finally, we note that the existence criterion a.> {3 im
plies via Eq. (III. D12) that over the range of wave exis
tence the rate of monomer production, the N factor, is 
positive, as it should be. 

IV. REGULAR BAND INDUCTION IN AN INITIALLY 
UNIFORM SOL 

A. The model 

It has long been known that diffusion of one coprecipi
tate (A) into a region with a uniform sol with its co
precipitate (B) can induce banding in the sol. Here we 
simulate this situation with the competitive particle 
growth model. With Eqs. (II. B9) and (II. BlO) we have 
the equations 

1 aa a2a 2 a-.Jt 
~aT=~+IL(t)O[~-S(t)]--.Jt VaT' 

a-.Jt 
aT =a-g(-.Jt) , 

IL(T)=RtN(fT)/C·q(oo)Lr, S(T)=X(tT)/L, 

(IV. AI) 

(IV. A2) 

(IV. A3) 

where N(t) and X(t) are given by Eqs. (III. C6), and 

(III. B20), (III. B22), (III. B23) for the electric field free 
system and by Eq. (III. D11) and X(t) = vt with v as in 
Eq. (III. D8) for the electrical problem. In Eqs. 
(IV. AI) and (IV. A2), ~ is the dimensionless spatial 
variable and not the similarity variable defined in Sec. 
III. All other variables are defined in Sec. I1IB. 

For a tube of length LT »L, the A infusion experi
ment corresponds to the following initial data: 

(IV. A4) 

For simplicity we assume that the monomer does not 
escape from the end of the tube into which A is being 
introduced; hence we take the no flux boundary condi
tion 

Daa/a ~ =0, at ~ =0. (IV. A5) 

This approximates the situation where the A reservoir 
is small in volume (but highly concentrated in A so that 
A is approximately constant during experiment). If the 
A reservoir is large in volume and stirred, then the 
boundary condition 0(0, T) = - R/r may be more accurate 
although the resulting "end effects, " leading to dissolu
tion of precipitate near ~ = 0, will not be considered 
further here. 

B. Electroinfusion waves 

Under the influence of the electrically driven A in
fUSion, monomer is produced at a constant rate at a 
position which moves at constant velocity as discussed 
in Sec. IIID. This moving source will tend to increase 
the average particle size in its wake as it encroaches 
into the uniform sol. In this section, we investigate 
the possiblity that a constant velocity and profile of 
coarsening-an "electroinfusion coarsening wave"
exists. In the next section, we examine this problem 
numerically and determine when this solution becomes 
unstable and leads to undulatory precipitation phenom
ena. 

1. The wave equations 

We seek solutions that keep in step with the monomer 
source. The latter travels at a speed v given in Sec. 
IIID. Introducing a dimensionless speed u =lv/L, the 
wave profile a=O'(7]), -.Jt=-.Jt(7]) and 17= ~ -UT, Eqs. 
(IV. AI) and (IV.A2) become 

rr' +N rr +tU(-.Jt3)1 + lLo(17) = ° , (IV.Bl) 

u-.Jt ' + a - g(-.Jt) = ° , (IV. B2) 

where "I" denotes a derivative with respect to 17. 

2. Constants of wave motion 

From Eq. (IV.BI) it is evident that for 17*0, there 
is a constant of the motion. Thus, we have 

(IV. B3) 

The constants Q", can be evaluated under the assumption 
that the wave corresponds to a uniform sol of particles 
of radius -.Jt,< for 17-±oo, respectively. Thus, 

J. Chern. Phys., Vol. 78, No.3, 1 February 1983 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.79.133.186 On: Mon, 16 Dec 2013 18:29:01



Feeney et al.: Periodic precipitation and coarsening waves 1307 

U 1. 3 
Q~ "'jig('It,,,,) + 3U'It~ • (IV.B4) 

The constants Q> can be related by integrating Eq. 
(IV. Bl) over a s~all interval (0·,0+) around 7] '" O. Since 
(f is continuous at 1J = 0, this integration yields 

0"'(0+) - (f'W) - U['It3(0+) - 'It3W)] + IJ. = 0 0 

Using Eq. (IV. B5) we thus find 

Q(=Q)+Ji • 

(IV. B5) 

(IV. B6) 

Thus, Eq. (IV.B4) and (IVoB6) show that 'It) and 'It( are 
connected by a total mass conservation law 

(IV.B7) 

stating that the amount of substance in both particles 
and solution after arrival of the source is that far in 
advance of the source plus that added by it. 

3. A closed equation for 'II 

We next express the problem in the form of a closed 
set of equations in 'It by eliminating (f from the profile 
equations. Solving Eq. (IV. B2) for (f and inserting the 
result in Eq. (IV. B3) we get 

[g('It) - u'lt']' +Nfg('It) - u'lt']+ tu>It3 = Q • (IV. BB) 

To completely solve this problem we must obtain two 
conditions relating 'It and 'I!' across the source at 7] = O. 
We also have the asymptotic data 

(IV. B9) 

Integration of Eq. (IV. B2) over the interval [0·,0+] we 
get the continuity condition for 'It, 

(IV. Bl0) 

The remaining condition needed to completely specify 
the solution comes from the fact that continuity of (f and 
>It at 7] = 0 implies, through Eq. (m. B2), that 'It' is also 
continuous at 7] = 0; thus, 

(IV.Bll) 

4. Small amplitude waves 

If the source strength Ji is small, then so is 'It < - >It) 
and hence the coarsening wave can be viewed as a small 
deviation from uniformity. We now seek a small IJ. de
scription of the waves. First, introduce a deviation 
function rf> such that 

(IV. B12) 

Inserting these definitions in Eq. (IV. BB) and neglecting 
nonlinear terms in rf> we obtain, letting/=dgld>It, 

(IV. B13) 

This equation yields solutions of the form rf> = AeWf/ with 
w satisfying 

(IV. B14) 

The two roots of Eq. (IV.B14) denoted w. are given by 

Electro· Infusion coarsenIng wave 

1-------_------------

- - - - - - - - - - -.---------i1}l> 

." (Distance) 

FIG. 16. Idealized coarsening wave driven by electroinfusion 
monomer source. In numerical simulations it was found to be un
stable but serves a most important theoretical role as an 
organizing tool for unraveling complex pattern forming phenom
ena. 

1 
~ [j~ - u

2/13]2 + 4~1 13 + >It~] • 

(IV. B15) 

The present theory is valid as IJ. - 0 and hence I> and 
1<[= 1(>It",)] are approximately equal. But since rf> = AeWf/ 
and rf> - 0 as 7]- ± ""', we must have the real part of one 
w < 0 for 7]> 0 and one w> 0 for 7]< O. This holdS if and 
only if II 13+ 3>It2 > 0 for 'It = ¥ = H >It) + 'It <]. Clearly, w" ~ 0 
in this case. Hence, we have 

7]> 0 

7]< 0 • 

Continuity of 'It and >It' at 7]:= 0 demands 

>It) + A) := >It < + ~ , 

(IV.B16) 

w+~:= w.A) • (IV. B17) 

Solving these equations for A""and using Eqs. (IV. B4) 
and (IV. B6) considering 'It",,- >It to be small, we obtain 

(IV.BIB) 

(IV.B19) 

From Eq. (IV. B14), we see that w+w.> O. Hence, A< 0 
as it should be. This profile is shown in Fig. 16. Hav
ing established the existence of monotonic propagating 
profiles of particle coarsening induced by electroinfu
sion, we next turn to the question of their stability and 
the occurrence of undulatory phenomena. 
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130B Feeney et al.: Periodic precipitation and coarsening waves 

C. Simulation of electroinfusion waves and cross 
flux banding 

Far in advance and behind the transition region of the 
waves studied above, the system is a uniform sol. As 
we have discussed this uniform sol is-typically unstable 
to pattern formation. Hence, it is clear that the electro
infusion coarsening waves are never strictly stable. 
Nonetheless, the concept of a coarsening waves serves 
as a useful starting point for the understanding of a host 
of complex phenomena that can arise when the experi
mental situation shown in Fig. 15 is used. 

1. Coarsening waves and banding in a pre-existing sol 

A series of simulations of the electrocross infusion 
of coprecipitates in a pre-existing sol was undertaken 
using the model Eqs. (IV.Al) and (IV.A2). The 15 func
tion was replaced by a unit normalized Gaussian of 
half-width on the order of the space grid spacing. 

A well developed coarsening wave arises for the pa
rameter choice used in Fig. 17. The profile is essen
tially a monotonically decreasing transition layer of 
particle size as predicted in the previous section. No
tice the small minimum at the left-hand end however. 
This effect arises because the layer adjacent to the left
hand boundary receives monomer only from the center 
and left wing of the source of moving monomer produc
tion, whereas all regions to the right receive monomer 
from both wings and the center of the source. Thus, 

2.8 

1.B 

'\ '\ '\ '\ '\ 

15 
/ 

20 25 
/ / 

t;O \ \ \ \ \ 

I .BO~-----------------2~5------------------~50· 

Distance 

FIG. 17. Simulation of an electroinfusion coarsening wave 
obtained by numerical solution of Eqs. (IV. AI) and (IV.A2) as 
described in Sec. IV C. In this experiment an apparatus as 
shown in Fig. 15 is used to induce a constant velocity inter
face of monomer production. Note that the coarsening wave 
satisfies the conservation law (IV. 37). At the left boundary the 
wave is breaking up due to the initial conditions that are ampli
fied by the inherent homogeneous sol instability. Parameters 
used are {:/=10, u=l, JI. =10, vc=0.2. 

3 

2 

~ 

'-- '-

(25 
............. 

"-t =0 

25 

Distance 
50 

FIG. 18. Same as Fig. 17, except that the monomer source 
strength jI. =0.1. Note that this wave is unstable and rapidly 
evolves into banding in its wake. 

the region just to the right of the left boundary layer has 
a competitive advantage over the particle size minimum 
region at the left boundary. We might therefore expect 
band induction to take place in the wake of the coarsen
ing soliton starting from this end effect. This is seen 
clearly in Fig. 18 where the banding develops quite 
quickly for the same {:3 and u but weaker source strength 
J1.. This is because at high source strength the parti
cles in the wake of the front are large and hence the pat
tern inducing feedbaCk is weak. Finally, note that in 
both cases shown (Figs. 17 and 18) the wave conser
vation law [Eq. (IV.B7)] is obeyed. 

These phenomena of Figs. 17 and 18 are quite trans
parent since coarsening wave propagation and pattern 
formation are well separated events. A stronger inter
action of pattern formation and wave propagation takes 
place when the wave advancement velocity u becomes 
on the order of the velocity of pattern advancement, 
i. e., ~1 divided by a typical time for induction of a first 
satellite, denoted 1'1({:3). Thus, the transition velocity 
Uc is expected to roughly be given by 

uc( (:3) Rl l' :t(3) . (IV. e1) 

Since 1'1 decreases With (3, uc(t3) increases with {:3. In 
Figs. 19 and 20 we show simulations that verify these 
predictions. 

D. Simulation of cross diffusion pattern induction in 
uniform sols 

The uniform sol also tends to become patterned when 
a monomer source, due to interdiffusion as discussed in 
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FIG. 19. Same as Fig. 18, except that the advancement rate 
u = 0.3. At these conditions the pattern advancement rate ex
ceeds the velocity of front propagation and the front is not ob
served. 

Sec. rnA.3, encroaches into the sol. Here we present 
numerical simulations of some of the resulting complex 
phenomena. 

1. The model 

Our description of these phenomena shall be via Eqso 
(IV.A1) and (IV.A2). For the diffusion experiment this 
becomes 

2 

°0~-----------------7.25~----------------~50 

Distance 
FIG. 20. Same as Fig. 18, except IJ. =7. Note that the front is 
clearly present except that it has an interesting scalloped struc
ture. 

2 

U \/ 

I 
ooL------------------2~5~----------------~50 

Distance 

FIG. 21. Simulation of cross-diffusion experiment into a pre
existing, initially uniform sol at ~ = 10, 'ltc= O. 2. The source 
strength parameter A is 10 and the advancement rate')' is 10 
[see Eqs. (IV.D)-(IV. D3) for definitionsl. We observe a 
slowing wavelike intrusion with pattern formation in its wake. 

al}f 
-=a-g(l}f) a,. 

where a and A are defined in Eqs. (ill. B22), 
(ill. B23), and (III. C6), respectively, 

(IV.D1) 

(Jv.D2) 

(IV.D3) 

2. Diffusive coarsening fronts and their transitions 
to patterning 

In the simulation of Fig. 21 we see a coarsening front 
which advances with essentially constant profile but, 
unlike for the electroinfusion coarsening wave, with de
creaSing velocity. The transition zone is localized to 
the source at ",.1/2. The constancy of the diffusion 
front is at first surprising but can be understood in 
light of the fact that the rate of monomer production de
creases as ,.-1/2 and hence the amount of monomer pro
duced per unit length is constant. However, the dip at 
the left-hand end of the tube induced by the initial in
fusion tends to pattern the wake of the diffusion front. 
This effect is greatly enhanced by lowering A, the mo
nomer production rate constant. In Fig. 22 we see the 
result of a simulation identical to that of Fig. 21 ex
cept with a lower value of A. Notice that because of the 
greater instability at smaller particle Size, the banding 
keeps up with the front propagation. Note also that the 
envelope of local particle radius maxima takes on a 
complex, nonperiodic, undulatory form. 
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FIG. 22. Same as in Fig. 21, except for smaller source 
strength A=l. Note the weaker source strength leads to a 
smaller amplitude and hence much more unstable coarsening 
wave. The resulting banding has interesting irregular spac
ing and amplitude. 

At lower advancement constant y, the pattern en
croachment keeps up with the naiscent front so the lat
ter never actually is observed. This repression of the 
diffusion coarsening front perSists even at high mono
mer production rates as seen in Figs. 23 and 24. In 

if; 

2 

1\ 

~c ~ 
v5 
1.----10 

P\ 1/15 

1\\ ~ 20 
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U [f\25 
\ Iv V" 

t=o 

, 
°0~------------------~25------------------~50 

Distance 
FIG. 23. Same as Fig. 22 except that the advance rate is 
slower. i. e., ")' '= 3. Note that a slowing diffusional wave at
tempts to propagate but because it slows down, the pattern ad
vancement rate catches up and exceeds it. 
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FIG. 24. Same as Fig. 23with"),'=1, A=l. Atthisslowadvance
ment rate a decelerating wave is never created. Patterning is re
gular. Note the secondary banding like splitting of the maximum 
at the far left near the A source. 

fact the main effect of higher A is only to amplify the 
pattern but not to change its spacing. 

At intermediate values of y, the pattern rate is ob
served to catch up to the initially manifest coarsening 
front and a cross over effect will be observed as seen 
in Figs. 25 and 26. 

6 I-

If 
if; 

3 

k'O 

/25 
~ 

25 50 
Distance 

FIG. 25. Same as Fig. 24 except at increased source strength, 
A = 10. The patterns in Figs. 24 and 25 are essentially identi
cal except for amplitude. In particular the pattern spacing ap
pears to be independent of A for these slow advancement rates 
("),=1). 
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FIG. 26. Same as Fig. 24 with ')'=3, >-=10. Note the decelerat
ing wave decays into a pattern advancement mode when it be
comes slower than the latter. 

V. CONCLUSIONS 

The competitive particle growth theory of precipita
tion banding shows the existence of a variety of nonlin
ear phenomena including spontaneous pattern formation 
and the propagation and instability of waves. These ef
fects are being directly tested in our laboratory and will 
be reported elsewhere. 13 

One of the most surprising consequences of the theory 
is the independence of the first satellite induction length 
on {3. This length is a strictly nonlinear effect as the 
linear stability analysis of Sec. lIe did not suggest any 
such characteristic length. It is also noteworthy that 
this characteristic length is typically much longer than 
the mean interparticle distance n-1I3, where the theory 
breaks down. Indeed, it was assumed that there were 
many particles within the typical length scale of interest 
in our initial formulation of the theory and hence our 
results show our approach to be self-consistent. 

The present model has the following basic mathemati
cal structure. A diffusible substance (monomer) inter
acts with an immobile variable (particle radius). This 
turns out to be in close analogy to a variety of other 
phenomena involving spontaneous pattern formation in 
systems involving transport and first order phase tran
sitions. Such effects are most striking in geology. In 
the case of metamorphic layering a polycrystalline mul
timineralic medium (a rock) becomes banded in mineral 

content. 3,18 The kinetic processes here are, as in the 
present system, crystal growth and dissolution. How
ever, the feedback leading to instability is due to the 
dependence of the equilibrium constant on the local state 
of stress and hence on the types of crystals surrounding 
a given crystal. Another example is that of spontaneous 
stylolite formation. Stylolites are seams that spontane
ous appear in limestone and sandstone that were, appar
ently, subject to anisotropiC stress. Again, the feed
back that allows for the "nucleation" and growth of 
seams and the regularity of their spacing is related to 
the effects of anisotropic stress although here the po
rosity plays an important role. 19 In both cases-meta
morphic layering and stylolitization-the mathematical 
structure is that a set of nondiffusible variables inter
acts with diffusible ones. Thus these two examples 
from geology and a number of others not yet mathemat
ically modeled,3 appear to constitute a large class of 
very interesting spontaneous pattern formation phenom
ena that is sure to receive much attention in the near 
future. 
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