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Abstract

Numerical simulation of wave propagation in poroelastic media demands significantly more computational capability

compared to elastic media simulation. Use of serial codes in a single scientific workstation limits the size of problem. To

overcome this difficulty, a parallel velocity-stress staggered-grid finite-difference method is developed for efficient

simulation of wave propagation in 2-D poroelastic media. The finite difference formulation of Biot’s theory has the

properties of fourth order accuracy in space and second order accuracy in time. The model is decomposed into small

subdomains for each processor. After each processor updates wavefields within its domain, the processors exchange the

wavefields via message passing interface (MPI). The parallel implementation reduces the computational time and also

allows one to study larger problems. From our numerical experiment, consistent with other 1-D experiments, it is found

that the presence of heterogeneity of porous medium can produce significant P-wave attenuation in the seismic frequency

range.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Biot’s theory; Poroelastic media; Wave propagation; Finite difference; Message passing interface (MPI)
1. Introduction

Seismic methods based on a single phase elastic or
even a acoustic medium have been successfully
applied to various geophysical problems to identify
geological structures. In such studies, properties of a
e front matter r 2005 Elsevier Ltd. All rights reserved
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pore fluid such as density, bulk modulus, saturation
and viscosity have been ignored. A porous medium,
made of an elastic matrix filled with a viscous fluid,
is a realistic model that allows one to account for
the effects of pore fluid on the seismic properties of
rocks. In recent years, numerical simulation of wave
propagation in fluid saturated poroelastic media
has received more attention as its importance in
geophysical exploration and reservoir characteriza-
tion is now recognized (Arntsen and Carcione, 2001;
Pride et al., 2002; Sheen et al., 2003).

While attenuations from Biot’s theory have been
well known for decades, theoretical and numerical
approaches to attenuations due to fine layering or
.
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heterogeneities of poroelastic structures have been
developed in recent years (Gurevich et al., 1997;
Shapiro and Muller, 1999; Pride et al., 2002). These
studies showed that, even in the seismic frequency
range, attenuation due to generation of the dis-
sipative slow waves by randomly and finely layered
poroelastic structure can significantly affect seismic
wavefields.

Biot’s theory (Biot, 1962) is the basis for the
numerical simulation of wave propagation in fluid
saturated poroelastic media. The finite-difference
(FD) method for Biot’s equations has been for-
mulated in several ways, central difference FD
method in displacement (Zhu and McMechan,
1991; Zeng et al., 2001), velocity-stress predictor-
corrector FD method (Dai et al., 1995), and
velocity-strain staggered-grid FD method (Zeng
and Liu, 2001). Because central difference operators
to perform first derivatives are less accurate than
staggered-grid operators for high frequencies close
to the Nyquist limit (Kneib and Kerner, 1993), we
employ a staggered-grid operator to increase the
accuracy of the numerical simulation. To simulate
the wave propagation in unbounded media, the
perfectly matched layer (PML) method (Berenger,
1994) is implemented as an absorbing boundary
condition (ABC).

As PC clusters become an inexpensive alternative
to ‘‘traditional’’ parallel computers, number of
parallel numerical applications increases accord-
ingly. The most efficient parallel implementations
are ones which are optimized to balance the
computational load and minimize the communica-
tion between processors. This can be easily achieved
for an explicit FD method via domain decomposi-
tion. Each processor solve the problem within its
small subdomain and at each time step commu-
nicates with neighboring processors to update
wavefield information. The communication between
processors is implemented by Message Passing
Interface (MPI).

In this article, we present a numerical method to
solve Biot’s equations in 2-D heterogeneous, fluid
saturated poroelastic media based on a first order
hyperbolic formulation whose unknowns consist of
solid phase velocity, velocity of fluid phase relative
to that of solid phase, solid stress, and fluid
pressure. Next, we present a methodology to
parallelize this problem and show the performance
of the parallelism. Finally, we consider a realistic
situation for the heterogeneities, where the partial
saturation is characterized by the von Karman
autocorrelation function, and investigate attenua-
tion due to the slow P wave in seismic frequencies.

2. Theory

Biot’s theory (Biot, 1962) takes account of energy
dissipation due to the relative motion between
viscous pore fluid and the solid matrix. The theory
predicts an additional compressional wave which
was first confirmed by Plona (1980). The physical
interpretations of the elastic constants in Biot’s
theory were provided by Biot and Willis (1957),
Geertsma and Smit (1961) and Pride et al. (1992).

Biot’s equations for a fluid-saturated, statistically
isotropic, locally homogeneous, poroelastic medium
are given by

r€uþ rf €w� ðlc þ mÞrr � u� mr2u� aMrr � w ¼ 0,

rf €uþm €wþ b _w� aMrr � u�Mrr � w ¼ 0, ð1Þ

where u is the displacement vector for the solid, w
the displacement vector for the fluid relative to that
for the solid, r the overall density of the saturated
medium determined by frf þ ð1� fÞrs, rf and rs

the density of the fluid and the solid, f the porosity,
lc the Lamé constant of the saturated matrix, m the
shear modulus of the dry porous matrix, T the
tortuosity, m the effective fluid density defined by
Trf =f, Z the viscosity of the fluid, k the perme-
ability of the porous medium, b the mobility of the
fluid defined by Z=k, Ks and Kf the bulk moduli of
the solid and the fluid, Kb bulk modulus of the
dry porous matrix, a the poroelastic coefficient
of effective stress defined by 1� Kb=Ks, M the
coupling modulus between the solid and the fluid
defined by ½f=Kf þ ða� fÞ=Ks�

�1.
From the definition of strain energy function in

porous media (Biot, 1962), the stress t and the pore
fluid pressure p are given by

tij ¼ 2meij þ dijðlcekk þ aMwk;kÞ,

p ¼ �aMekk �Mwk;k, ð2Þ

where eij is the strain tensor defined by ðui;j þ uj;iÞ=2,
dij the Kronecker delta, dij ¼ 0 for iaj and dij ¼ 1
for i ¼ j, wk;k the spatial derivative, q=qxk, and the
summation convention is used:

ekk ¼ eii þ ejj and wk;k ¼ wi;i þ wj;j .

The time derivatives of the displacement can be
written in terms of the stress and the pore fluid
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pressure:

ðmr� r2f Þ €ui ¼ mtij;j þ rf b _wi þ rf p;i,

ðmr� r2f Þ €wi ¼ �rf tij;j � rb _wi � rp;i. ð3Þ

These equations can be written as a set of first order
differential equation in time domain by differentiat-
ing Eq. (2) with respect to time:

ðmr� r2f Þ_vi ¼ mtij;j þ rf bV i þ rf p;i,

ðmr� r2f Þ _Vi ¼ �rf tij;j � rbV i � rp;i,

_tij ¼ mðvi;j þ vj;iÞ þ dijðlcvk;k þ aMVk;kÞ,

_p ¼ �aMvk;k �MV k;k, ð4Þ

where vi ¼ _ui and V i ¼ _wi. Eq. (4) forms a set of
first order hyperbolic differential equations in time
for v;V ; t; and p.
3. Finite-difference formulation

Eq. (4) can be discretized using a staggered-grid
FD method (Levander, 1988; Graves, 1996). The
most outstanding feature of this method is that the
differential operators are all naturally centered at
the same point in space and time (Fig. 1). The
discretization yields

v
nþ1=2
xiþ1=2;j ¼ v

n�1=2
xiþ1=2;j þ dt½AxðDxtxx þ DztxzÞ

þ BxVx þ CxDxp�jniþ1=2;j,

v
nþ1=2
zi;jþ1=2 ¼ v

n�1=2

zi;jþ1=2 þ dt½AzðDxtxz þ DztzzÞ

þ BzV z þ CzDzp�j
n
i;jþ1=2, ð5Þ
τxx, τzz, p

τxz

vx, Vx

vz, Vz

(i, j)

(i, j+1/2)

dh/2

media parameters

Fig. 1. Grid layout for staggered-grid formulation. Indices (i; j)
represent spatial coordinates (x; z), respectively, and grid spacing

dh is defined as a length between centers of two adjacent grid

cells, modified from Graves (1996).
V
nþ1=2

xiþ1=2;j ¼ DxV
n�1=2

xiþ1=2;j � dt½ExðDxtxx þ DztxzÞ

þ FxDxp�jniþ1=2;j ,

V
nþ1=2

zi;jþ1=2 ¼ DzV
n�1=2

zi;jþ1=2 � dt½EzðDxtxz þ DztzzÞ

þ FzDzp�jni;jþ1=2, ð6Þ

tnþ1
xxi;j ¼ tn

xxi;j þ dt½ðlc þ 2mÞDxvx þ lcDzvz

þ aMðDxVx þ DzV zÞ�j
nþ1=2
i;j ,

tnþ1
zzi;j ¼ tn

zzi;j þ dt½ðlc þ 2mÞDzvz þ lcDxvx

þ aMðDxVx þ DzV zÞ�j
nþ1=2
i;j ,

tnþ1
xziþ1=2;jþ1=2

¼ tn
xziþ1=2;jþ1=2 þ m

xz
dt½Dzvx þ Dxvz�j

nþ1=2
iþ1=2;jþ1=2,

ð7Þ

and

pnþ1
i;j ¼ pn

i;j � dt½aMðDxvx þ DzvzÞ

þMðDxVx þ DzVzÞ�j
nþ1=2
i;j . ð8Þ

In the above equations, the superscripts denote the
time step, and the subscripts denote the spatial
indices. The symbol D represents the discrete form
of the spatial differential operator, for example,

Dxvxji;j ¼
27ðv

xiþ1=2;j � v
xi�1=2;jÞ � ðvxiþ3=2;j � v

xi�3=2;jÞ

24dh
,

(9)

where dh denotes grid spacing. V denotes the
arithmetic average in time domain, ðV nþ1=2 þ

Vn�1=2Þ=2 and the coefficients A;B;C;D;E and F

are defined as

Ax ¼
mx

ðmxrx
� r2

f x
Þ
,

Bx ¼
r

f x
bx

2ðmxrx
� r2

f x
Þ

Cx ¼
r

f x

ðmxrx
� r2

f x
Þ

Dx ¼
ð2mxrx

� 2r2
f x
� r

f x
bx dtÞ

ð2mxrx
� 2r2

f x
þ r

f x
bx dtÞ

Ex ¼
2r

f x

ð2mxrx
� 2r2

f x
þ r

f x
bx dtÞ
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Fx ¼
2r

x

ð2mxrx
� 2r2

f x
þ r

f x
bx dtÞ

.

The effective media parameters yield a more
accurate representation in the region near interfaces
(Graves, 1996). The parameters are given by the
harmonic average:

r
x
¼

1

2

1

ri;j

þ
1

riþ1;j

 !" #�1
,

r
z
¼

1

2

1

ri;j

þ
1

ri;jþ1

 !" #�1
ð10Þ

for the density. Similar averages are used for m; rf ,
and b. The rigidity m is given by

m
xz
¼

1

4

1

mi;j

þ
1

miþ1;j

þ
1

mi;jþ1

þ
1

miþ1;jþ1

 !" #�1
. (11)

Moczo et al. (2002) proposed a FD scheme based
on a heterogeneous formulation of equations of
motion for modeling seismic wave propagation in
elastic media. They explicitly constructed hetero-
geneous displacement-stress FD scheme on a
staggerd-grid with the volume harmonic averaging
of the shear modulus and the bulk modulus,
and volume arithmatic averaging of the density
which is based on simplified boundary condi-
tions inside heterogeneous media and which allows
for an arbitrary position of the material disconti-
nuity in the spatial grid. It is shown that this
scheme is more accurate than other staggered-grid
schemes. Therefore, incorporation of this for
poroelastic media should be studied in a subsequent
research.
4. Absorbing boundary condition

In order to simulate an unbounded medium, an
ABC is often used to truncate the computational
domain. A commonly used ABC in seismic model-
ing is the one-way wave equation based on the
paraxial approximations of the acoustic or elastic
wave equations (Clayton and Engquist, 1977).
Recently, the PML method for electromagnetic
problems has been proposed by Berenger (1994)
and it has been successfully applied to various wave
propagation problems (Chew and Weedon, 1994;
Zeng and Liu, 2001).
Chew and Liu (1996) showed the effectiveness of
the PML as an absorbing boundary condition for
elastic waves. Using the concept of complex
coordinates (Chew and Weedon, 1994) in the
frequency domain with a time dependence of e�iot,
the complex coordinate stretching variables can be
written as

~xi ¼

Z xi

0

siðx
0
iÞdx0i; siðx

0
iÞ ¼ as

i þ ios
i=o, (12)

where as
iX 1 is a scaling factor and os

iX 0 is an
attenuation factor. The derivative q=q ~xi can be
expressed in terms of the regular coordinate
stretching variables, q=q ~xi ¼ ð1=siÞq=qxi. In the
PML region and the frequency domain, Eq. (4)
becomes

ð�ioÞðmr� r2f Þv̂i ¼ mt̂ij;~j þ rf bV̂ i þ rf p̂;~i,

ð�ioÞðmr� r2f ÞV̂ i ¼ �rf t̂ij;~j � rbV̂ i � rp̂;~i,

ð�ioÞt̂ij ¼ mðv̂i;~j þ v̂j;~iÞ þ dijðlv̂k; ~k þ aMV̂k; ~kÞ,

ð�ioÞp̂ ¼ �aMv̂k; ~k �MV̂ k; ~k, ð13Þ

where the hat refers to the frequency domain. The
regular coordinate variable xi is replaced by the
complex coordinate stretching variable ~xi,

ð�ioÞðmr� r2f Þv̂i ¼
m

sj

t̂ij;j þ rf bV̂ i þ
rf

si

p̂;i, (14a)

ð�ioÞðmr� r2f ÞV̂ i ¼ �
rf

sj

t̂ij;j � rbV̂ i �
r
si

p̂;i,

(14b)

ð�ioÞt̂ij ¼ m
v̂i;j

sj

þ
v̂j;i

si

� �
þ

dij

sk

ðlcv̂k;k þ aMV̂ k;kÞ,

(14c)

ð�ioÞp̂ ¼ �
aM

sk

v̂k;k �
M

sk

V̂ k;k, (14d)

To simplify the PML equations, the field variables
are split as vj ¼ v

ðkÞ
j and tij ¼ tðkÞij , where the super-

script denotes the splitting direction. For example,
Eq. (14a) for x component can be written as,
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ð�ioÞðmr� r2f Þv̂
ðxÞ
x ¼

m

sx

t̂xx;x þ rf bV̂
ðxÞ

x þ
rf

sx

p̂;x,

ð�ioÞðmr� r2f Þv̂
ðzÞ
x ¼

m

sz

t̂xz;z þ rf bV̂
ðzÞ

x . ð15Þ

By taking the inverse Fourier transform, the PML
equations in time domain are obtained:

ðmr� r2f Þða
s
xqt þ os

xÞv
ðxÞ
x

¼ mtxx;x þ rf b as
xV ðxÞx þ os

x

Z t

�1

V ðxÞx dt0
� �

þ rf p;x,

ðmr� r2f Þða
s
zqt þ os

zÞv
ðzÞ
x

¼ mtxz;z þ rf b as
zV ðzÞx þ os

z

Z t

�1

V ðzÞx dt0
� �

. ð16Þ

Eqs. (14b)–(14d) can be transformed similarly.
To incorporate the PML boundary condition, the

computational domain is divided into a PML region
and an interior region. The outgoing waves are
absorbed by the PML via high attenuation of the
outgoing waves. Even though a perfectly matched
interface generates no reflections at the interface, it
cannot completely exclude reflections in discretized
media due to discretization errors. The discretiza-
tion error which generates fictitious reflection from
outgoing waves is proportional to the grid spacing
and the contrast between the two media (Chew and
Jin, 1996). It has been known that the first few
PMLs generate the most significant reflections,
which forces the increments in attenuation proper-
ties in the first few PMLs to be small. On the
contrary, insufficient attenuation may also cause
reflections from the computational boundary, i.e.,
the outer boundary of the PML region. Therefore,
the attenuation must be increased significantly
toward the end of the PML region to guarantee
the absorption of the outgoing waves.

In this work, the scaling factor and the attenua-
tion factor have the following forms:

as
i ¼ 1þ amaxðli=LPMLÞ

n,

os
i ¼ 2pf 0omaxðli=LPMLÞ

nþa, ð17Þ

where li is the distance from the interface between the
PML region and the interior region, LPML is the
thickness of the PML region, amax and omax are
empirical coefficients and f 0 is the dominant frequency
of the source. amax and omax control the rate of
attenuation of the outgoing waves. Different rates of
change of as

i and os
i can lead to significant improve-

ment of the PML performance (Rickard et al., 2003).
5. Source implementation

In this study, the first time derivative of the
Gaussian function is used as the source time
function:

F ðtÞ ¼ ðt� t0Þe
�½pf 0ðt�t0Þ�

2

, (18)

where t0 is the time delay and f 0 is the dominant
frequency. Since we are concerned with a composite
material, a bulk source is used (Zhu andMcMechan,
1991). The explosive source is partitioned linearly
between the two phases by multiplying the source
function by factors

W s ¼ ð1� fÞ; W f ¼ f, (19)

where W s and W f are the weighting factor for the
solid normal stresses and fluid pressure, respectively,
and f is the porosity.
6. Domain decomposition

The computational domain is decomposed into
relatively small subdomains which are assigned to
each processor. It is important to divide subdo-
mains evenly and minimize the communication
between processors. Fig. 2 shows a typical 1-D
and 2-D decomposition when 4 processors are used.
Although computations in subdomains are same,
generally 2-D decomposition is more efficient than
1-D decomposition. Thus, in our implementation,
according to a given available processor number,
2-D decomposition has priority. If the number is
less than 4 or a prime number, 1-D decomposition is
applied.

In our approach, velocity and stress fields are
staggered in spatial and time domain. Therefore, the
velocity field is updated after the stress field is
updated and vice versa. After each processor
updates its own wavefields, the processors exchange
wavefields at the edges of subdomains (see Fig. 2).
For communications, a ghost layer whose thickness
is 2 grid spacings at the edges of subdomains are
used. The length of this ghost layer is equal to half
of the length of spatial finite difference operator.
The exchange of the wavefields in the PML region is
the same as in the non-PML region because split
wavefield variables have no spatial derivatives (see
Eq. (16)). In the next section, we will show the
performance of the parallelism.
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Table 1

Physical properties of a gas-contact model

Gas saturated layer Water saturated layer

r ðkg=m3Þ 1:885� 103 2:155� 103

rf ðkg=m
3Þ 0:1� 103 1:0� 103

m ðkg=m3Þ 0:333� 103 3:333� 103

lc ðGPaÞ 0.530 6.767

m ðGPaÞ 1.855 1.855

M ðGPaÞ 7:323� 10�2 6.963

b ðPa s=m2Þ 1:5� 107 1:0� 109

a 0.951 0.951

f 0.3 0.3

Fig. 2. Domain decomposition and communication between processors. (a) 1-D and (b) 2-D decomposition. Shaded and gray layers

represent ghost layers and internal edges at subdomains, respectively.
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7. Numerical examples

In the first example, we compare our numerical
solution with the analytical solution given by
Carcione and Quiroga-Goode (1996). The medium
is homogeneous and acoustic. The pore fluid is
considered as an ideal inviscid fluid. The other
properties of the medium are those of gas saturated
layer given in Table 1. An explosive bulk source
with 45Hz of dominant frequency is located at 50m
away from the receiver. Fig. 3 shows analytical
and numerical responses of solid and fluid pres-
sures. The agreement between analytical and
numerical responses is very good. The first arrival
is the P wave and the trailing wave is the slow P
wave.

In the second example, we simulate a gas–water
contact model (Dutta and Odé, 1983). This model
has the same rock matrix in both gas and water
saturated layers. The upper layer is gas saturated
sandstone whereas the lower layer is water saturated
sandstone, whose parameters are given in Table 1.
Explosive bulk sources whose dominant frequencies
are 45Hz and 45 kHz are located at gas saturated
layer. The size of the model is Nx �Nz ¼ 600� 600
nodes with 15 grids of PML on all sides of the
computational boundary. The spatial grid spacings
are 0.8m and 0.8mm whereas the time steps are
0.2ms and 0:2 ms, respectively.

Fig. 4 shows vertical component snapshots of the
solid velocity and the relative velocity of the fluid at
t ¼ 0:2 s and 0.2ms, respectively. In this figure, P, Ps

and S mean the P, slow P and S waves, respectively.
The subscripts indicate the associated layer and
multiple symbols represent reflected or transmitted
waves. Incident P wave generates reflected and
transmitted P and mode converted S waves (P1P1,
P1P2, P1S1 and P1Ss2). Dutta and Odé (1983)
showed that the P and S waves have weak
dependence on frequency whereas the slow P wave
shows strong dependence on frequency. At low
frequencies, the slow P wave (Ps

1) is highly diffusive
and disappears as a static mode at the source
location (Fig. 4b). This is because the relative
motion of the pore fluid at the low frequency range
is of the Poiseuille type and the inertial term in
Eq. (1), m €w, is negligible in comparison with the
viscous term, b _w (Biot, 1956). However, at high
frequencies, the slow P wave propagates (Figs. 4c
and d). Incident slow P wave generates mode
converted P and S waves (Ps

1P1, Ps
1S1, Ps

1P2 and
Ps
1S2) and also reflected slow P wave (Ps

1P
s
1). One

of the mode converted slow P waves (P1P
s
1) is

clearly shown whereas the other (P1P
s
2) is not. The

transmitted and mode converted slow P waves(Ps
1P

s
2

and P1P
s
2) in water saturated sandstone is not clear

because the slow P wave is strongly attenuated in
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Numerical
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Fig. 3. Comparison of analytical and numerical waveforms of

solid and fluid pressures. Upper and lower responses correspond

to solid and fluid pressures, respectively. Pore fluid is an ideal

inviscid fluid. Amplitudes are normalized with respect to a

maximum of fluid pressure.
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the lower layer where the fluid viscosity is higher.
The lack of reflections from the computational
boundary shows the effectiveness of the PML
method.

The performance of a parallel algorithm is usually
evaluated in terms of speedup or efficiency. Speedup
is defined as the ratio of the elapsed time when
executing a program on a single processor to the
execution time when n processors are used:

SðnÞ ¼ T1=Tn. (20)

Efficiency ðEÞ measures the fraction of time and
shows how all processors are utilized:

EðnÞ ¼ SðnÞ=n ¼ T1=ðTnnÞ. (21)

If efficiency remains at 1 as more processors are
added, it is called linear speedup. However, in
general, the linear speedup is not achievable because
of the communication between processors. To
illustrate the performance of the approach, we used
a simple model whose problem size is Nx �Nz ¼

600� 600 grids and 1200 time steps were evaluated.
We ran the simulations on an IBM SP cluster which
contains 4 Power3þ processors in a node. When
only one processor is used, the simulation takes
about 2078 s whereas it takes about 40 s with 64
processors. Fig. 5 shows the speedup, efficiency and
elapsed time. Beyond 32 processors, although more
processors are added, the efficiency decreases. Since
the communication cost is greater than the compu-
tational cost, beyond a certain number of proces-
sors, the performance is hardly expected as much as
processors are used. This suggests that the optimal
number of processors depends on the problem size.

The scalability of an algorithm is also important
in parallel computing because if an algorithm is
scalable and the efficiency can be sustained as the
number of processors is increased, the problem
size can also be increased. Table 2 illustrates the
scalability of the approach. Although the problem
size is increased, the computation time is almost
constant as the subdomain size is invariant.

When wavelengths are larger than layer thickness,
it is shown that the slow P wave are generated in
order to equilibrate the fluid pressure between the
layers. The fluid flow associated with this equilibra-
tion can cause significant attenuation in the seismic
frequency range (Pride et al., 2002). In the next
example, attenuation due to the slow P wave in the
seismic frequency range is investigated. We consider
a heterogeneous model by introducing a transition
layer between gas and water saturated sandstones
whose saturation varies with depth (Fig. 6). The
partial saturation is generated by von Karman
autocorrelation function which defines random
distributions of two different pore-filling fluids.
For the construction of partially saturated layer,
we follow a uniform distribution scheme from Helle
et al. (2003). Another transition layer is introduced
through the effective medium parameters to account
for partial saturation (Bachrach and Nur, 1998).
The material properties are same as above. The
dominant frequency is 45Hz. The spatial grid
spacing is 0.1m and the time step is 20ms. In order
to remove any small reflections from the computa-
tional boundary, we set the model size large enough
so that the size is 640� 640m. The transition layer
is 5m thick. An explosive point source is placed at
80m above the top of the transition layer. Two lines
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Fig. 5. Performance of algorithm. (a) Speedup, (b) Efficiency and (c) Elapsed time. Solid line is an ‘‘ideal’’ or linear speedup and dashed

line is a performance of this approach. Circles indicate measured data points.

Fig. 4. Snapshots of vertical velocity component from a gas-water contact model (Dutta and Odé, 1983). (a) and (c) Snapshots of solid

velocity; (b) and (d) Snapshots of relative fluid velocity (to solid velocity). P and S mean P and S waves, respectively. Ps denotes slow P

wave. Subscripts indicate associated layers. Multiple symbols represent reflected or transmitted waves. Scaling for (b) is 20 times that for

(a) and scalings for (c) and (d) are same.
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of receivers are located at 80m above and below the
top of the transition layer, whose offsets are from 1
to 100m.

Fig. 7 shows the amplitude ratios of reflections
and transmissions from the random medium to
those from the effective medium. The direct arrivals
in the reflection data are removed by differencing
homogeneous responses. The P wave is separated by
the divergence operator. The amplitude ratios are
calculated with maximum amplitudes in frequency
spectrums. Overall amplitude ratios are smaller than
1 in both reflection and transmission ratios. This
suggests that attenuation due to the dissipative slow
waves in heterogeneous poroelastic structure sig-
nificantly affects seismic wavefields in the seismic
frequency range.
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Table 2

Elapsed time for fixed-size decomposition in a processora

Problem size # of processors Elapsed time (s)

600� 600 1 2078.17

1200� 600 2 2060.77

1200� 1200 4 2020.57

2400� 1200 8 2039.63

2400� 2400 16 2055.73

4800� 2400 32 2053.47

3600� 3600 36 2097.63

4800� 3600 48 2124.94

4800� 4800 64 2168.51

aEach processor has the same size of subdomain.
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respectively.
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8. Conclusion

A parallel implementation of velocity-stress stag-
gered-grid FD method to solve Biot’s equations in
fluid saturated poroelastic media is presented.
Parallelism is accomplished by domain decomposi-
tion via message passing interface (MPI). It is
shown that a significant speedup is obtained with a
moderate number of processors. The scalability of
this algorithm allows for the problem size to be
increased as the number of processors is increased.
In numerical examples, we have shown that
poroelastic wave phenomena in heterogeneous
media can be simulated efficiently with this method.
We have verified that attenuation in heterogeneous
poroelastic media can be significant even in the
seismic frequency range due to the slow P wave,
which have been investigated in finely layered
model (Gurevich et al., 1997; Pride et al., 2002).
Therefore, it is believed that the comprehensive
study of poroelastic wave propagation provides a
methodology for the seismic analysis of reservoir
characterization.
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