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Abstract. The interaction between mineral reaction and mass transport in a rock can lead to 
reaction front instability and the development of channel-like voids. This phenomenon is 
studied with a two-dimensional model accounting for the nonlinear feedback between flow, 
reaction, and matrix porosity-permeability evolution. In our model we calculate the flow field 
in both the porous medium and the reaction-induced voids, using the Brinkman equation. 
While a linear analysis cannot determine the length scale of the channels which can develop 
in a typical geological system, our simulations indicate that the channel size is actually 
unique and well characterized. While the onset of instability is favored at a preexisting 
heterogeneity, the channel growth and orientation is governed by the global flow pattern, 
even in an initially heterogeneous system. 

1. Introduction 

Permeability and flow are closely related by a nonlinear 
feedback, through the dissolution and precipitation of 
minerals, in sedimentary basins or metamorphic system, on a 
large range of spatial scales. At regional scale the 
development of karst in carbonate rocks is the result of 
massive dissolution by subsurface fluid flow [e.g., White, 
1988]. At the scale of a platform reef the very heterogeneous 
texture of the carbonate matrix is due to both the coral 

formation and to coupled reaction and flow within the reef 
[Schreoder and Purser, 1986; Rougetie et al., 1991]. At the 
centimeter scale, experiments on matrix acidizing for the 
study of well stimulation illustrate the positive feedback 
between flow and reaction leading to the infiltration 
instability and eventually to the formation of long narrow 
holes referred to as "wormholes" [Williams et al., 1979]. In 
these three examples, the flow coupled with the transport of 
solutes generated by mineral dissolution leads to self- 
organized enhancement heterogeneity in the rock. In 
particular, in these cases the reaction-flow feedback led to 
cavity formation, and hence these phenomena cannot be 
described via Darcy's law everywhere within the medium. 
Our study is based on a numerical simulation of this 
phenomenon using Brinkman, not Darcy, flow. We show that 
observed channels can constitute a self-organized network 
built by the fluid flow-reaction feedback. 

It is now well known that fluid flow through a soluble 
porous medium may result in the formation of a channel-like 
altered area along an advancing reaction front (Chadam et al. 
[1986]; Ortoleva et al. [1987]; Hoefner and Foglet [1988]; 
Rege and Fogler [1989]; see Ortoleva [1994] for a review; 
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Aharonov et al. [1995] ß Bolton et al [1997], Renard et al. 
[1998]). Here we define fingers, channels wherein the 
dissolution is not total within a channel, for example, the case 
wherein only one mineral dissolves and some matrix still 
remains as an altered porous medium. We define a cavity as a 
void created when the channel interior matrix is completely 
removed through dissolution. The mechanism for this flow- 
reaction instability phenomenon is the following: When 
undersaturated fluid flows through the matrix, a region with 
slightly larger porosity attracts a greater flow-through. Thus 
locally, the rate of dissolution and, consequently, porosity and 
permeability increase in a positive feedback loop. The 
dispersion of the fluid through the tortuous porous medium 
tends to spread the reactive fluid and thus represses the 
channeling instability. 

The characteristic length of the channeling is commonly 
related to two nondimensional numbers, that of Damk6hler, 
Da = G L / V, and that of Peclet Pe =V xL / D, which 
involve the reaction rate G, average fluid velocity V 
molecular dispersion coefficient D, and a length /• 
corresponding to the width of the simulation domain or, in a 
natural system, to the width of the zone which is drained by 
the fluid. Let L r be the reaction front thickness. It corresponds 
to the thickness of the zone wherein the fluid and the matrix 

are out of chemical equilibrium. This thickness is larger for 
slow reaction or large fluid velocity. Note that Da is 
proportional to the L/L r ratio. For Da below 10 '2 
(corresponding to a system wherein Lr >> L) the reaction front 
remains planar. For Da larger than 1 the reaction front tends 
to destabilize [Steefel and Lasaga, 1990]. For these large Da, 
the width of the channel-shape dissolved zone is necessarily 
between a few times L r and L. The length of an elongate 
channel depends on the balance between advection and 
dispersion: When dispersion equilibrates concentration inside 
the channel before the fluid reaches the channel tip, growth 
stops. The Pe number is a measure of the balance between the 
two processes. Ortoleva et al. [1987] have shown analytically 
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that for infinite Pe the channel should be infinitely long. The 
determination of the channel length can only be done via a 
resolution of the complete nonlinear problem [Chadam et al., 
1988]. Initial heterogeneity in the porous medium is an 
additional parameter that affects the characteristic of the 
channel structure. 

A systematic study of the channeling problem has not yet 
been done. At the pore scale, Daccord [1987] did a 
spectacular experiment on plaster that shows the development 
of a highly branched wormhole network. It seems that the 
wormholes develop a complex network that can described by 
a diffusion limited aggregation model. Hoefner and Foglet 
[1988] carried out numerical simulations that were in 
qualitative agreement with acidizing experiments for a large 
range of Da. The instability has also been studied using 
numerical simulation at the pore scale, where the fluid motion 
was described by Stokes equation (see Adler [1992] for a 
detailed review). Concerning the matrix heterogeneity, the 
transport/dissolution feedback enhances the porosity in the 
direction of the macroscopic flow [Bernabe, 1996]. At the 
suprapore (or Darcy) scale an additional scale of 
heterogeneity can interact with the progress of the reaction 
front. 

Fingering has been modeled using the Darcy equation, 
which can be applied in both homogeneous and 
heterogeneous porous media, as long as the dissolution 
process does not increase the porosity dramatically. Chen and 
Ortoleva [1990] modeled many examples of fingers that 
develop and split into branches. It has been shown that an 
increase of the fluid advection rate (increase of Pe) leads to 
narrower and longer fingers [Steefel and Lasaga, 1990; Chen 
and Ortoleva, 1990]. It has not been established whether the 
width and density of developing channels is determined by 
the characteristic of the system; however, numerical 
simulation appears to be a promising way to study this 
phenomenon. 

Numerical simulation of wormholes has been achieved 

using Brinkman's equation. This equation describes fluid 
transport both in porous medimn and voids [Liu et al., 1997]. 
In this study we use our two-dimensional (2-D) Darcy-scale 
Brinkman numerical simulator to characterize the size and 

number of channels which grow in (1) a homogeneous 
medium where only one of two minerals dissolves (yielding 
fingers), (2) a homogeneous medium with one mineral 
(yielding cavities), and (3) a medium with heterogeneous 
initial permeability. We show that the size of channels is 
determined by the system's fluid/rock chemical and 
hydrodynamic characteristics. Additionally, we show that the 
interplay of initial heterogeneity with self-organizing 
infiltration prevents complex channel splitting in a naturally 
heterogeneous medium. Since geological systems wherein 
channeling may occur display a large range of spatial scales, 
we decided to do the simulation at the experimental scale in a 
way that our results may be compared to existing or future 
experimental data. 

2. Model Formulation 

Our model is based on conservation of mass and 

momentum equations. The equations are coupled through the 
dependence of permeability on matrix properties. They are 
solved using finite difference and iterative techniques. 

2.1. Matrix Description and Permeability Law 

The matrix is constituted of spherical grains, each 
consisting of a single mineral, with specified radius and 
number per volume. For a homogeneous medium these 
variables are initially the same everywhere. For a 
heterogeneous medium the radius Ri(x, y) of minerals is 
chosen to be a random distribution. The porosity q• (volume 
fraction of the rock occupied by fluid) satisfies 

0 + Zff_-lniVi = 1, (1) 

(2) 
where N is the number of minerals and ni and Vi are the 
number per rock volume and the volume of mineral i 
spherical grains, respectively. A summary of the notation we 
use can be found in Table 1. The permeability r is a function 
of the porosity and grain radii. The Fair-Hatch empirical 
equation [Bear, 1972, p. 134] is used for porosity smaller than 
50%, in the modified form 

03 1 
= x (3) 

J(1- 0) 2 [•10 niVi / Ri ]2' 
Here J (= 5) is a grain-packing factor and 0 is a geometric 
factor (assumed to be 6 for spherical grains). For porosity 
larger than 50%, the Fair-Hatch equation is not valid. There 
are no experimental data to formulate a permeability law for 
large porosity. We choose to increase the permeability via an 
ad hoc function of porosity in the form tc = 10-•s/(1 - 0) • so 
that tcis, 10'•2m 2 (1 darcy), 10-ram 2, and 10'2m 2 for porosities 
of 50, 70 and 90%, respectively. 

2.2. Chemical Model 

The thermodynamic data for the mineral and aqueous 
reactions are taken from the EQ3NR data bank [Wolery, 
1992], at room temperature and pressure. Since the kinetics of 
the quartz reaction typically more than 6 orders of magnitude 
slower than that of calcite, in our study, quartz is not involved 
in the dissolution-precipitation process. 

The calcite reaction is assumed to proceed via 

calcite + IT = Ca ++ + HCO3'. (4) 

The rate of dissolution of mineral i grains, denoted G• (in 
m s -•) is taken in the form 

k i vi v i 
O i --- '•ii ( X i I-[ a a a- I-[ a • a ) , (5) 

v a <0 v a >0 

with as the activity of aqueous species ct and v/• the 
stoichiometric coefficient for species ct in the mineral i 
reaction. K, is the equilibrium constant for the mineral i 
reaction at room temperature and pressure, and k i (in m s -l) is 
the rate constant of the mineral i reaction. The feedback 
between matrix evolution and reaction is accounted for with 

the grain growth rate: 
8Ri 
oa t = G i . (6) 

The following aqueous reactions are assumed to be fast and 
hence maintained near equilibrium: 

HC1 = IT + Cl-, (7) 
CO2 + H20 = H + + HCO3-, (8) 

H20 = H + + OH-. (9) 
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The system is assumed to support only one fluid phase (no 
out-gazing is considered). The equations of the conservation 
of the aqueous species ct take the form 

t)OCa --V'(-D VC a + 0VCa) 
N f N s 

+ZvafWf+ z i i yaw , (10) 
/=1 j=l 

W i = 4Irgi2Gi . (11) 
Here W e is the reaction rate for the aqueous reaction and N r is 
the number of fast aqueous reaction. The Pi is the molar 
density of mineral i, and D is the dispersion coefficient for 
species in the aqueous fluid, is taken to be the same for all 
species, and is proportional to the magnitude of the flow 
velocity. The analysis of the conservation equations (10), in 
the limit of fast aqueous reaction, is given in chapter 3 of 
Ortoleva [ 1994]. 

2.3. Fluid Mass and Momentum Balance 

The Darcy velocity ½V is an average of the fluid velocity 
over the volume of the rock including solid and pore volumes. 
If the flow is laminar and the porosity is low, Darcy's law 
takes the form 

= -v?. 
Here g (in Pa s) is the fluid viscosity, tc is the permeability, 
and P is the fluid pressure. If the medium contains secondary 
features such as a cavity that is much larger than the volume 
over which Darcy velocity is calculated through averaging, 
this equation does not apply within the cavity because the 
permeability diverges there. In the voids the flow has to be 
calculated with Stokes' equation. This raises the problem of 
the continuity of variables (velocity and pressure) between the 
porous medium and the cavity. To describe such phenomena, 
Brinkman [1947] integrated Stokes' and Darcy's laws in the 
flow law 

Ia tpV - IaV 2 tpV = -V P . (13) 
Numerical solution of Brinkman's equation shows that where 
permeability is smaller than 10 -•ø m 2 (100 darcies), the 
Laplacian term, is negligible compared to the linear velocity 
term and the equation is reduced to Darcy's law. Where 
permeability is larger than 10 -4 m 2, (13) yields Stokes' flow. 
Experimental and numerical studies [Arquis, 1994, 1995] 
show that the Brinkman equation adequately captures the 
velocity of the fluid in the boundary layer between the porous 
medium and the free fluid zone as well. 

During a time step the volume of fluid drained by the 
advective flow is 3 orders of magnitude larger than the 
increase of fluid volume due to the increase of porosity. 
Consequently the system fulfills the quasi-stationary 
approximation [Lichtner, 1988], and mass conservation 
resumes: 

V' (0V) = 0, (14) 

the incompressibility condition. 

2.4. Numerical Simulation Approach 

We numerically solve the equations for the conservation 
of mass for the aqueous species using a finite difference 
technique [Liu et al., 1997]. The Brinkman equation was 

solved using finite difference discretization and a penalty 
technique [Peyret and Taylor, 1982]. The principle of the 
method is based on the introduction of artificial 

compressibility and time dependence to the momentum (13) 
and mass (14) conservation equations such that 

• + •0V -/•V20V = -VP, (15) 

v-(ov) 
ß (16) 

Here t and Z correspond to an artificial time and 
compressibility. Equations (15) and (16) are solved in an 
iterative process until a steady state solution is reached. The 
values of the time step and Z are adjusted to speed 
convergence. 

The physical time step for evolution through all the 
conservation equations is chosen so that a maximum change 
of 1% of the grain radius by dissolution is attained. 
Consequently, this time step controls the change of velocity of 
the fluid and the advancement of the reactions. 

2.5. Initial and Boundary Conditions 

The domain is initially saturated with water at chemical 
equilibrium with all minerals. Upper and lower boundaries of 
the 2-D domain are assumed impermeable: normal velocity 
and normal derivative of the shear velocity are taken to be 
zero, which is compatible with the momentum and mass 
conservation equations. A difference of pressure between the 
inlet (left) and outlet (right) boundaries induces the overall 
flow. The shear velocity and the shear partial derivative of the 
normal velocity are taken to be zero, on both inlet and outlet 
boundaries. 

2.6. Nondimensional Equations and Parameters 

A nondimensional form of the conservation equations 
(10), (13) and (14) clarifies the role of Pe and Da. We use the 
conventional scaling factors (noted with an asterisk) 
introduced by Bdkri et al. [1995]: 

ß x V* V p, PL v*= œv, x v try 
ß tD ß Cma x - C a ß tc 
t =-•-, Co• = - , K' =•, Cma x -- C K 0 

(17) 

with L, V, and D the characteristic length, average interstitial 
velocity and dispersion taken in Pe and Da evaluation. With 
Cmax and • the maximum and average concentration of the 
aqueous species. The system becomes ß 

V* ' (0V*) =0 (18) 

½V* - tc*V*2OV * = -V* P* (19) 

d0Cct --*2 * V* * * * oat, = V c a - Pe (0V ca ) + Pe ' Da 9t(ca ) . (20) 
The last term in (20) is a source term for species ot resulting 
from the mineral and aqueous reactions of (10). In the simpler 
case of a one-mineral reaction with a first-order rate this term 

is c} times Pe Da. In that form the dissolution rate is clearly 
enhanced by large Pe and Da. 
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Ortoleva, 1990] and deep well waste injection [Ortoleva et 
al., 1996]. The evolution of the concentration of aqueous 
species has been fitted to experiments on rock samples [Liu et 
al., 1997]. The solution of Brinkman's equation has been used 
by us earlier for the simulation of wormholing in carbonate 
system [Liu et al., 1997]; these results concerning size, 
shape, and growth rate of the wormholes were comparable to 
experimental results (B. Bazin, personal communication, 
1998). 

3.2. Parameters for the Simulations 

The characteristics of the reactive fluid and the size of the 

porous domain were chosen to get a system with large Pe and 
Da, as is typical of a geological system. Parameters include an 
effective reaction rate of 10'3m s -•. The initial average fluid 
velocity is 10-5m s -• but increases to 10-am s -• during the 
simulation because of the constant pressure boundary 
conditions of the simulations. The dispersion is proportional 
to the velocity and the grain radius and is in the range 10 -9 - 
104 m 2 s 4. The order of magnitude of the characteristic length 
scale L (width of the simulation domain in the vertical 
direction) is 10 '• m. With these parameters we get during the 
simulation a reaction front thickness such that L is at least 20 

times larger than Lr. This system allows the formation of 
several channels. It is important to note that a good numerical 
resolution requires at least a few grid points in the reaction 
front. Our 200 by 200 grid allows us to simulate up to 10 
adjacent channels without compromising the quality of our 
solutions. The length of the domain is 2 times L. These 
parameters bring Da to above 1 and Pe to above 102. As a 
consequence, any heterogeneity can trigger an instability of 
the planar reaction front. The porous medium is taken to be 
characteristic of a sedimentary rock with initial porosity of 
5%, corresponding to a permeability of 10 '25 m 2 (10 -3 
darcies). The concentration of aqueous species in the inlet 
fluid is 0.1 mol kg -• for H + and CI-, 10 -4 mol kg -• for ++ Ca , 

HCO3', CO2 (aq), and SiO2, and I mol kg '• for H20. 
The cases that we present fall into three general series. 

The first is referred to as DR, from Darcy resolution; it yields 
fingering as these systems contain a background insoluble 
quartz matrix. The series of BR (from Brinkman resolution) 
yields cavities. The H series is used to analyze the effect of 
the initial heterogeneity on the development of cavities. 

5 8 11 14 17 20 

Figure 1. Final porosity after -- 2400s, for all finger 
simulations including an initial matrix with 80% quartz and 
15% calcite. The finger is the result of the dissolution of 
calcite. The size of the domain is expressed everywhere in 
10-2m. The dotted area represents the initial hole without 

2 2 

calcite in the matrix. Its size is 1.4 x 10' m by 0.18 x 10- m 
(DR.1), _0.47 x 10 '2 m (DR.2), _ 0.59 x 10 -2 m (DR.3), 

2 2 

0.71 • 10- m (DR.4), and 2.14 x 10- m (DR.5). For DR.6 the 
dotted area does not represent a hole, but the area where the 
initial volume of calcite is perturbed by a white noise. 

3. Numerical Simulations 

3.1. Validation 

The resolution of the chemical equations coupled with 
Darcy's equation has been used for previous studies including 
the fingering in carbonate-cemented sandstone [Chen and 

3.3. Darcy Regime: Reaction Front Fingering 

The porous medium initially contained 15% calcite and 
80% quartz. Fingering develops through the dissolution of 
calcite. We ran the same simulation except for different 
widths of an initial heterogeneity that took the form of a 
rectangle without calcite at the inlet of length 1.4 x 10 '2 m and 
widths 0.18x10 -2 , 0.47x10 -2 , 0.59x10 -2 , 0.71x10 '2 and 
2.14 x 10 -2 m (corresponding to a size between 0.5 and 4 Lr). 
The time for a finger to reach the outlet side of the domain 
was 10- 20 hours, depending on how many fingers develop. 
We analyze the resulting pattern after dissolution of the calcite 
but just before breakthrough at the outlet, regardless of the 
number and shape of the fingers which developed. 

The first result of these simulations (Figure 1) is that 
either one or two fingers develop, depending on the width of 
the initial heterogeneity. When it is narrower than 
0.59 • 10-2m (roughly, 2 Lr), only one finger develops (cases 
DR.1, and DR.2). In these cases the finger widens to 
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1.34 x 10 -2 m by the time it reaches the outlet (at --10 hours). 
The size and growth rate (m s -1) of the fingers are independent 
of the width of the initial heterogeneity in this range of initial 
width. However, when the initial heterogeneity is wider than 
0.59x 10 -2 m (cases DR.3, DR.4, and DR.5) two fingers 
develop starting from each downstream comer of the initial 
heterogeneity; in these cases one of the fingers stops growing 
while the remaining finger grows wider and evolves toward 
the center of the domain, eventually reaching the outlet. The 
wider the initial heterogeneity, the longer both fingers survive. 
This set of simulations suggests that two fingers cannot 
develop too close to one another. Hoefner and Fogler [1988] 
proposed that two fingers could not grow longer than the 
distance between them. Though in our simulation the length 
of the two surviving fingers grows longer than the separating 
distance, there is a qualitative agreement in the fact that the 
length of the fingers is proportional to the distance between 
them. This series illustrates the competition between fingers 
in a system where the dissolution is limited by advection. The 
bending of the remaining finger toward the middle of the 
domain along the largest pressure gradient line, which is 
controlled by the boundaries, illustrates that the largest 
pressure gradient (which induces the highest local fluid 
velocity) is closely related to the shape of the finger. The 
second result is that regardless of the initial heterogeneity, we 
get the same finger width (a few Lr). From the widest 
heterogeneity no wide finger develops' the system rather 
supports two narrower fingers, even if one is to be abandoned 
by the flow early. 

In case DR.6 the homogeneous matrix was perturbed with 
an initial white noise, in a 1.4 x 10 -2 m wide strip so that every 
length scale which can perturb the reaction front is excited. At 
the beginning several small fingers develop. Each of the 
fingers grew at the same rate and thus had the same length 
and, consequently, the same amount of fluid. Essentially, all 
the fluid was drained by the fingers and not by the matrix 
between them. Once the fingers reach a size such that they 
compete for the fluid, those which are closer to each other 
grow slower. Once a finger is slightly shorter than the 
neighbors, it ceases growth. Fingers stopped growing in areas 
where their initial number was the highest. The final pattern 
of dissolution provides a record of the evolution of the flow. 
It is a pure hydrodynamics phenomenon resulting from the 
competition for fluid capture among neighbor_ing fingers. This 
set of simulations (characterized by L, G, V, and D) shows 
that this system leads to the final growth of one stable finger. 
The width of the finger is independent of the size of the initial 
heterogeneity, at the inlet side. It is = 4 times the thickness of 
the reaction front when it reaches the outlet. No very large 
finger develops either from a larger initial heterogeneity or 
from the white noise heterogeneity. In this sense, fingering is 
robust. 

From this result we expect that in an infinitely wide 
domain (large L, Pe, and Da) the width of the developing 
finger will be the same as the size that we found in the 
simulations of Figure 1. The number of actively growing 
fingers will decrease with time because the longer the finger, 
the wider the area that it dominates. The distance between 

surviving fingers and the maximum length reached by a 
growing finger can only be found by the simulation of a large 
domain, for large times. We do not attempt to obtain large- 
time, finger-spacing, and length-scaling laws here, although 
we believe they do exist. 

The simulation of a domain with infinite L cannot be done 

by wraparound boundary conditions because in both periodic 
and no-flow boundaries at top and bottom (in the present 
study), constraints on the amount of drainage are imposed to 
be L times V. It is, however, significant to double the domain 
width L over that of the previous system (which doubles Pe 
and Da as well). In Figure 2 we started the simulation in a 
domain where the initial heterogeneity is generated by the 
same white noise as used for the narrow domain in the lower 

half of the wider domain. In this double-width domain the 

long-time consequence is again a single dominant finger. This 
demonstrates a type of scaling whereby the time to obtain a 
single dominant finger increases with the width of the system 
(although we did not determine the scaling exponent). We 
find that the finger growth rate and size are similar as long as 
more than one finger grows (during the first 800 s). What 
could not be predicted is whether one or two fingers would 
eventually reach the outlet of the domain, in the 2 times wider 
domain. Because of the initial white noise condition one 

finger happened to grow in a more isolated area (and got 
more fluid) in the wider domain than in the narrower one. 
This finger became dominant in the top part of the wider 
domain before one of the two fingers became dominant in the 
narrow domain. Since again in the wider domain only one 
finger reached the outlet, the only prediction which can be 
made is that in an infinitely wide domain the distance 
separating two fingers, longer than the domain length (in 
Figure 2), will be at least larger than L = 0.12 m. 

3.4. Brinkman Versus Darcy Flow: Creation of Cavities 

To compare the development of fingers in a porous 
medium with that of empty cavities, we run the experiments 
with the same set of parameters as in the DR series, except 
that the solid phase is now only calcite. We present two 
simulations, BR.! and BR.2 (Figure 3), with initial 
heterogeneity areas 0.18 x 10 -2 m (< Lr), and 0.71 x 10 -2 m 
(> Lr) respectively. The initial high-porosity area in the matrix 
near the inlet corresponds, to DR.1 and DR.3, respectively. In 
the BR series, whether the initial heterogeneity develops into 
one cavity or splits into two cavities is independent of its 
initial width, for the parameters used here. In case BR.1 the 
two cavities grow with the same width (0.52 x 10 -2 m), but 
unlike in the DR cases, when only one cavity remains, it 
grows without getting wider. A similar trend is observed in 
BR.2' both cavities show the same width (0.59 x 10 -2 m). In 
both BR cases (and another we do not present here) the 
cavities that develop are = 30% narrower than the fingers. 

To see the specific effect of the fluid motion on the 
development of the instability, we compare the flow pattern 
and porosity in a cross section through a finger and a cavity in 
a case where only one straight channel develops (Figure 4). 
The initial porosity is 7% in both cases, with 93 and 35% of 
calcite for BR and DR, respectively. At the end of the 
simulations the increase of porosity through a cross section is 
very similar in both cases: Porosity is constant in the 
unaltered zone, and the transition to the channel is marked by 
a sharp stepwise increase in porosity. It occurs in a zone 
thinner than 0.5 x 10 -2 m, which represents locally the upper 
limit of Lr. This is in agreement with a large Da inducing a 
small Lr compared to L, in both cases. 

In Figure 4 we show that the altered zone is = 30% 
narrower in the BR case than in the DR case. In the BR case 

the velocity profile is parabolic, while in the DR case it is flat 
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Figure 2. Time evolution of porosity for fint•er simulations in a matrix with 80% •luartz and 15% calcite. Fingers are the result 
of dissolution of calcite. Box size is 20 x 10-•-m by (a) 6 x 10am and (b) 12 x 10- m. The initial heterogeneity in permeability 
(domain wide strip) is the same in Figure 2a as in the lower half of Figure 2b. 
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Figure 3. Porosity field after -- 60 hours for the simulations 
of cavities, in a calcite matrix which initially had 5 % porosity. 
The dotted area represents 100% of porosity in the initial 
matrix. Its size is 1.4x 10-2m by 0.18x 10-•m (BR.1) and 
0.71 x 10-2m (BR.2). 

within most of the finger. In the BR case we find laminar flow 
of Poiseuiile in a channel, while in the DR case the velocity 
inside the finger is proportional to the permeability. The 
maximum filtration velocity is the same in both cases since it 
is controlled by the maximum pressure gradient and by the 
permeability between the tip of the finger and the outlet side 
of the domain. As a consequence, the fluid velocity in the 
pore volume is higher in the DR cases where porosity is 
lower. Since dispersion is proportional to fluid velocity, it is 
larger in a larger area along the side of the finger for DR 
cases. This larger dispersion prevents the formation of a 
chemical boundary layer along the side of the finger. In the 
BR case the flow pattern is such that there is a no-slip flow 
boundary condition at the interface between the cavity and the 
nonaltered porous medium. A consequence is that more 
reactive fluid reaches the tip of the channel. This may allow 
the development of longer and narrower cavities. Eventually, 
since fluid velocity is slower, the global flow across a vertical 
section (parallel to the channel development direction) brings 
slightly less reactive fluid to dissolve the calcite, per unit 
time. Additionally, the channel growth is much slower in the 
BR cases because the amount of calcite to dissolve is 40% 

larger. All these differences between the growth of fingers and 
cavities are summarized in Table 1. 

3.5. Cavity Growth in Heterogeneous Media 

In the following simulations the porous medium is 
heterogeneous in the whole domain. At each grid point 
(corresponding to a referenced elementary volume) the radius 
of the spherical grains is chosen from a uniform random 
distribution between the values of 5 x 10 -8 and 10 -5 m. For 
every simulation in this section, we use the same series of 
random numbers; as a consequence, the medium contains the 
same pattern of initial heterogeneity. As in the homogeneous 
cases, the initial porosity is kept at 5 % everywhere. Since the 
permeability of the medium is expressed as a function of 
porosity and grain radius, the initial permeability is correlated 
with the variation in the initial grain size (Figure 5a). 

Heterogeneity focuses fluid where the permeability is 
large. As a result, for the same pressure gradient, and 
averaged permeability, the m/tximum fluid velocity is larger in 
the heterogeneous medium than in the homogeneous one. 
Since fluid focusing induces reaction front instability, we 
expect that heterogeneity will not only induce but also foster 
the development of cavities. As for the homogeneous cases, 
we carry out two kinds of simulations: (1) We favor the 
development of a channel characterized by the width of the 
non-uniformity that we add in the initial matrix (that therefore 
favors the potential development of a wavelength), and (2) all 
the wavelengths are excited at the inlet by a white noise in the 
heterogeneous distribution of the initial matrix. 

First we made a series of three simulations with an 

additional initial disturbance near the inlet side. The length of 
the zone is 1.42x 10 -2 m while its width is first set to 
0.18x 10 -2 m (as in DR.1 and BR.1), in a second case, to 
0.71x10 -2 m (as in DR.3 and BR.2), and, then, to 
1.42 x 10-2m (as in DR.5). Each case ultimately resulted in 
the development of only one cavity with the same final shape 
and width. Similarly, as for DR and BR, the progress and 
destabilization of the reaction front does not depend on the 
size of the initial inlet heterogeneity. 

Case H. 1 (Figure 5b) shows the growth of the channel 
starting from the 0.18 x 10 -2 m wide rectangular heterogeneity. 
The resulting cavity looks very similar to BR. 1. The width of 
the cavity in H. 1 is the same as that of the longest cavity in 
BR.1. As expected, the reaction front is not as smooth as in 
the homogeneous cases. The roughness length scale is 
equivalent to the reaction front thickness. During simulation 
BR.1 the cavity splits when it is 3 x 10 -2 m long. In H. 1 too, 
there is evidence of splitting at 3 x 10 -2 m from the inlet, 
where the cavity is swollen. Indeed, during the simulation the 
splitting aborts soon after it starts. It takes 162 x 103 s (45 
hours) to get to the point of splitting for the case BR.1, but 
only 113.8x 103 s (31.6 hours) for H.1. After the aborted 
splitting, the single cavity of H. 1 grows much faster than the 
double-channel pattern of BR.1 because, as we have already 
noted in section 3.3., one cavity grows faster than do two 
cavities simultaneously. The faster growth rate of the cavity in 
case H. 1 (before the splitting) is a direct consequence of the 
effect of heterogeneity on fluid focusing since the cavity 
extension rate is proportional to the fluid velocity. 

Unlike in a homogeneous medium, there is no two- 
channel solution or splitting in a heterogeneous medium. 
Whatever the width of the initial disturbance at the inlet of the 

domain, only one comer of the initial rectangle produces an 
elongate cavity. A heterogeneous texture favors the biggest 
cavity among all others that are potential instabilities. Because 
of the strong selection process operating in the heterogeneous 
medium, all but a single elongated cavity are repressed even 
at the early stage of evolution. 

In simulation H.2 (Figure 5c) there is no added initial 
heterogeneity near the inlet. This case can be compared to 
case DR.6 (Figure 1). The pattern of dissolution is 
qualitatively similar in both cases: At the beginning several 
narrow channels develop along the inlet side, then all but one 
stop growing, and finally, only one cavity reaches the outlet. 
The difference between H.2 and DR.6 is that a single cavity 
becomes dominant much earlier in the heterogeneous 
medium. As in case H. 1, heterogeneity favors the biggest 
channel of those initiated at the inlet side, favoring one cavity 

much earlier than in a homogeneous medium. 
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Figure 4. Porosity 2 and Darcy velocity across a section of the 
domain (at 4 x 10- m from the inlet) through a finger (DR) 
and a cavity (BR). The X axis of the graph corresponds to the 
vertical direction of the simulation domain. Read 1.e-4 as 
1x 10 '4. 

In both cases H.1 and H.2, the dominant cavity grows 
straight and parallel to the largest pressure gradient. The 
overall length and width of the channels is the same in 
homogeneous and heterogeneous media. At the end of a 
simulation the progress of the reaction front is controlled by 
the overall pressure gradient and not by the local permeability 
as it is earlier during the simulation. 

4. Summary and Discussion 

The development of reaction-induced channels has been 
simulated numerically at experimental lengthscale and 
timescale, in a relatively narrow domain, in a system with 
large Da and Pe. This system has many characteristics of 
geological occurrences. Linear analysis predicts that in such a 
system the reaction front is unstable to the formation of 
channels. Our simulations include nonlinear effects and show 

that the width and number of these channels are determined 

by the characteristic of this system (expressed by Da and Pe). 
We performed three series of simulations to analyze the most 

stable wavelength characterizing the growing channel array: 
(1) the Darcy regime DR, (2) the Brinkman cases BR, and (3) 
heterogeneous cases H. We have determined the width of the 
channel, by initializing the simulation with two types of 
conditions. The initial conditions force the active 

development of one single finger size that is of a size 
independent of the initial introduced disturbance near the 
inlet. On the other hand, the cases with a matrix perturbed by 
a white noise (all instabilities are excited) lead to the 
development of many channels which are soon abandoned in 
favor of one which grows as in the previous situation. We 
have shown that the elongation of the channels results from a 
competition between them to capture the fluid flow. 
Consequently, there are drastic changes in the flow pattern 
during the time the dissolution pattern evolves to the 
development of one channel rather than many. Since in each 
case only one channel with the same characteristic width 
grows to reach the outlet, regardless of the size or geometry of 
the initial matrix heterogeneity near the inlet, we propose that 
the final one-channel pattern is the global attractor of the 
system; that is, it is the long-time state resulting for a large 
class of initial data. 

The influence of matrix heterogeneity on infiltration has 
been analyzed. It appears that the localization of 
hydrodynamic dispersion explains the small differences 
between the BR and DR cases. At the beginning of a DR 
simulation in a homogeneous medium, the reaction front 
progresses as one or two channels depending on the size of 
the initial heterogeneity. Even when the development of an 
initially wider finger is stimulated, the system never lets it 
develop. Instead, two smaller fingers develop, and the time 
during which these two fingers develop together is 
proportional to the distance between them. On the contrary, in 
BR cases the number of channels early in the simulation is 
independent of the initial heterogeneity size near the inlet. 
The same system can develop as one or two long cavities as 
long as numerical noise remains so low that it does not trigger 
any channeling. This short-lasting phenomenon is not 
possible in nature because of omnipresent heterogeneity of 
natural porous media that triggers the early development of 
one of the channels. The difference between the BR and DR 

cases is location of the dispersion at the interface between the 
channel and unaltered zones. In the BR case the majority of 
the dispersion occurs near the tip of the channel while in the 
DR case it is distributed more broadly everywhere inside the 
channel and along the interface. Finally, in the cases studied 
in the H series (which is the BR case with a heterogeneous 

Table 1. Comparison of the Major Characteristics of DR and BR Simulations, Based on Cases DR.1 - DR.6, and BR.I and 
BR.2 

Cavities Porous Fingers 
(BR) (DR) 

Width of single instability 
Width Wd of multiple instability 
Width of instability growth 
Fluid dispersion 
Normalized speed of reaction front 
Two-channels instability 

0.9'10 -2 m 
0.52< Wd <0.74 x 10 -2 m 

constant 

localized in the tip 
1 

independent of initial 
heterogeneity size 

1.34 x 10 -2 m 
0.44 < Wd < 1.0 x 10-2m 

increasing 
inside the finger 

20 

heterogeneity size above which 
two fingers develop 
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Figure 5. (a) Initial heterogeneous permeability field for the 
simulation of cavities in a porous medium heterogeneous 
everywhere (cas_es H.1 and H.2)._ There is an additional hole 
(size is 1.4 x 10 -2 m by 0.18 x 10 -2 m) in the inlet for case H. 1. 
(b) Final porosity of simulation H.1. The initial matrix is pure 
calcite. The porosity is 5%. (c) Final porosity of simulation 
H.2 

medium) the introduction of heterogeneity everywhere in the 
matrix gives a similar result. The instability of the reaction 
front strongly selects a single-channel solution, at a very early 
stage of the evolution. Initial heterogeneity introduced in the 
matrix permeability has the same effect on the reaction front 
instability whether it is introduced near the inlet or 
everywhere in the domain. When the initial matrix is 
heterogeneous everywhere in the domain (i.e., series H), the 
growth of a single cavity is favored (and is faster than in the 
homogeneous case) at the beginning of the simulation. When 
the spatial heterogeneity near the inlet is much larger than the 
characteristic width of a channel for the system, the reaction 
front again evolves into one narrow channel. Focusing favors 
the onset of instability, but once a channel has started growth, 
it is the flow pattern which controls the narrow channel 
growth direction. We expect that a cavity can be captured by 
an already existing fracture if this disturbance captures the 
flow associated with the channel growth. However, the cavity 
may develop next to the fracture when the flow is not fully 
captured by the feature. In a previous work, a simulation was 
used to show that fingering is significantly affected 'by a 
heterogeneity that extended over a spatial length of the order 
of L [Chen and Ortoleva, 1990]. In this paper, it is shown that 
when the heterogeneity includes a length scale smaller than Lr 
the channeling grows parallel to the flow without being 
redirected by the matrix heterogeneity. 

Concerning the time constant for the development of a 
finger or cavity, the progress of the reaction front itself is 
directly related to the magnitude of the flow. A difference 
between BR and DR channeling is that BR is much slower. 
Flow does not boost dramatically the development of a cavity 
because the flow velocity inside the channel is actually 
controlled by the permeability of the matrix lying between the 
tip of the channel and the outlet. If the low permeability of the 
porous media were not actually controlling the magnitude of 
the flow, we expect that the flow, and, consequently, the 
cavity growth, could be much faster than at the stage studied 
in our simulations. A consequence would be a turbulent flow 
due to the nonnegligible inertia in a very low viscosity fluid. 
This turbulence would change the dispersion of the reactive 
molecules in the fluid and would interact with an organized 
advection in the boundary layer next to the solid-fluid 
interface where the chemical gradients are large; this topic is 
beyond the scope of the present study. 

In our simulations the flow pattern is controlled by a 
constant pressure boundary condition. This very specific flow 
corresponds nevertheless to the flow pattern in a limited zone 
of many geological situations at a given scale, which can be 
much larger than the sample scale. Our simulations help one 
to understand mechanisms involved in fluid transfer in the 

crust where the fluid flow induced by convection or 
topography brings reactive fluid (with higher solubility) in 
contact with the matrix. Da remains high when both G and 
V are decreased by the same order of magnitude, which is the 
case in a geological situation because the fluid is usually 
much less reactive than the acid fluid of our experiments, and 
the large-scale Darcy flow is closer to the centimeter per year 
than to the kilometer per year scale. In addition, Da is 
proportional to L. At the scale larger than the reactive front 
width, our study allows an analysis of the interplay between 
reaction flow and initial heterogeneity in a geological system 
where a large-scale flow brings a reactive fluid into a rock. 
Channels will align with the direction of large-scale flow 
streamlines. 

For a large-scale flow of a centimeter per year and value 
of a reaction coefficient for the crust, one expects reaction 
front width ranging between 1 gm and 100 meters [Steefel 
and Lasaga, 1990]. If channels develop with a width of 
100 m, they will not be noticed in core. However, the theory 
may help to identify them on larger-scale data like seismic 
profiles. In other respects our simulations show that close to 
the inlet of reactive fluids, many small channels can develop. 
A common case is that of meteoric water developing a karst 
network in a carbonate formation. Near the surface, numerous 
metric to centimetric cavities develop in a zone called 
"epikarst" [Mangin, 1974' Kafaroglu et al., 1997; Jassim et 
al., 1997]. We believe that this corresponds to the numerous 
short cavities developed at the inlet zone in our model. Water 
is then collected at depth to produce very few outlet pipes at 
the base of the karstic zone. This might result from the 
capture process observed in our model. At a later stage for a 
fully developed karst, the longest channel would modify the 
pressure field in such a way that it would capture the fluid 
from an area of a size comparable to its length. As a result, 
the number of the channel-like fingers or cavities in this area 
is related to the size of the drained area, while the channel is 
wider than the width of the reaction front. If this is taken into 

account, it is possible to estimate the density of major 
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channels. In an area where the large-scale flow is controlled 
by gravity, one can expect channels relatively parallel to each 
other to grow down slope. This analysis is useful to determine 
if the permeability structure of the sedimentary layers is 
dominated by a network of channels or by the matrix 
permeability. This has different consequences for the 
dispersive transport of the fluid, since the flow in a channel is 
orders of magnitude larger than that in a matrix with "good" 
permeability. These issues are central in the analysis of 
contaminant migration and in the context of petroleum 
exploration and production. 

One of the most surprising implications of this study is 
that the long-time consequence of more complex initial data 
can actually lead to the acceleration of the evolution to global 
simplicity. Thus in the white noise case H (initial 
heterogeneity everywhere) the system most rapidly evolves to 
a state with a single cavity. There is a cascade of states from 
one of many small channels to that of fewer but larger 
channels. 

Notation 

am activity of species c•. 
c a nondimensional concentration of aqueous species. 
C,•x maximum concentration of aqueous species, N L -s. 

C average concentration of aqueous species, N L -s. 
Ca concentration of aqueous species c•, N L -s. 
D dispersion coefficient of species c• in water, L 2 T-•. 
Gi growth/dissolution rate of mineral i, L T-•. 
ki rate constant of mineral i reaction, L T-•. 
K i equilibrium constant of reaction for mineral i. 
L length scale of the width of the simulation domain, L. 
Lr thickness of the reaction front, L. 
ni number of mineral i grains per rock volume, L -3. 
N number of minerals. 

P fluid pressure, M L 2 T-•. 
P* nondimensional pressure. 
Ri grain radius of mineral i, L. 

t time. 

t* non-dimensional time. 

V fluid velocity, L T -• 
Vi volume of the grain of mineral i, L -3. 

V* non-dimensional velocity. 
• average interstitial velocity, L T -J 
W f reaction rate of the aqueous species, N L -s T -• 
I4/ reaction rate of the mineral i reaction, N L -• •-J. 
c• aqueous species. 
Z artificial compressibility in the numerical method. 
• rock porosity. 
}c permeability of the porous medium, L 2. 

•Co reference permeability, L 2. 
•:* nondimensional permeability. 
g water viscosity, M L 2. 

vf• stoichiometric coefficient for species c• in the aqueous 
reaction. 

v • stoichiometric coefficient for species c• in the mineral i 
reaction. 

O water mass density, M L 's. 
Oi molar density of i mineral, N L -s. 
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