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A theory of nanoparticle dynamics based on scaling arguments and the Liouville equation is presented. We
start with a delineation of the scales characterizing the behavior of the nanoparticle/host fluid system.
Asymptotic expansions, multiple time and space scale techniques, the resulting coarse-grained dynamics of
the probability densities of the Fokker-Planck-Chandrasekhar (FPC) type for the nanoparticle(s), and the
hydrodynamic models of the host medium are obtained. Collections of nanoparticles are considered so that
problems such as viral self-assembly and the transition from a particle suspension to a solid porous matrix
can be addressed via a deductive approach that starts with the Liouville equation and a calibrated atomic
force field, and yields a generalized FPC equation. Extensions allowing for the investigation of the rotation
and deformation of the nanoparticles are considered in the context of the space-warping formalism.
Thermodynamic forces and dissipative effects are accounted for. The notion of configuration-dependent drag
coefficients and their implications for coagulation and consolidation are shown to be natural consequences of
the analysis. All results are obtained via formal asymptotic expansions in mass, size, and other physical and
kinetic parameter ratios.

I. Introduction

Nanoparticles of natural and engineered origin present a grand
challenge for statistical mechanics. They lie at the boundary
between the macroscopic and microscopic regimes; multiscale
techniques are thus required to gain a fundamental understanding
of their behavior.

Examples of important bionanoparticles and the phenomena
they display abound. Virus self-assembly: this and other aspects
of their life cycle involve millions to hundreds of millions of
atoms simultaneously and therefore cannot readily be analyzed
by a straightforward microscopic approach. The formation and
functioning of mitochondria, ribosomes, and other intracellular
structures and molecular machines are other systems wherein
nanoparticles interact with a host medium via the interplay of
fluctuating and macroscopic forces. Delivery of drugs by
functionalized particles, magnetically directed migration and
heating of drug-bearing particles, and light-detectible imaging
systems seem to have great medical potential. Also nanoparticles
can be combined to form composite materials with interesting
engineering characteristics. The transport of gold and other
particles is key to the formation of deposits, whereas other
particles carry pollutants.

Although atomic-scale systems are dominated by fluctuations,
macroscopic systems can be well-characterized by a reduced
set of average variables. Therefore, a challenge of nanoscience
is that the phenomena of interest can only be understood via a
nesting of atomistic (fluctuating) variables and more macro-
scopic ones.

There is great value in developing a rigorous theory of
nanosystem kinetics starting from the Liouville equation. Unlike
phenomenological approaches, such a deductive approach results
in universal equations in which the only parameters are those
of the atomic force field. The theme of this study is that an
understanding of nanosystems should follow from a delineation

of the space and time scales involved in the system of interest.
The classic example of a nanoparticle phenomenon is the
fluctuating motion of a Brownian particle (BP) in a host medium
of small particles.1 It is shown here that the migration of such
a BP can be understood via an analysis of the Liouville equation
in terms of space and time scales that are natural for its large
mass and size. These factors imply the slowness of the BP
relative to the motion of the host particles due to both inertia
and a spatial averaging (Figure 1). An understanding of the
composite BP/host medium system also must account for the
slow hydrodynamic behavior of the host medium.

Another aspect of the behavior of a nanoparticle is the
dressing of its dynamics as by the vortex of Figure 2. Such
phenomena impart memory and dissipation to the dynamics;
elastic properties of the medium impart rebound and oscillatory
effects (Figure 3) wherein the concept of a co-particle is
introduced. Another facet of this dressing is the effective force
between nanoparticles introduced by their individual interactions
with the host medium (Figure 4). The forces between nanopar-
ticles, and hence the manner in which the multiple nanoparticle† Part of the special issue “Irwin Oppenheim Festschrift”.

Figure 1. A massive and geometrically large Brownian particle
immersed in a host medium experiences many collisions with the small
host particles. If this BP is slow, these collisions tend to cancel an
average, suggesting that the BP only experiences a fluctuating force
that averages out in time and across the BP surface.

21258 J. Phys. Chem. B2005,109,21258-21266

10.1021/jp051381b CCC: $30.25 © 2005 American Chemical Society
Published on Web 08/26/2005



system scales, depend strongly on the geometry of the nano-
particles (Figure 5). It is shown here how these effects result
from the many-body dynamics of a composite nanoparticle/host
medium system.

The multiple scale understanding of nanosystems dates back
to Einstein, Langevin, Smolokowski, Chandrasekhar, and
others.1-4 Deutch and Oppenheim5 presented an approach to
nanoparticle dynamics based on projection operators and a
perturbation scheme in the nanoparticle/host particle mass ratio.

This set the stage for a series of analyses of nanoparticle
dynamics based on the Liouville equation. Shea and Oppenheim6

derived FPC and Langevin equations for a single nanoparticle
in a host medium using projection operators and perturbation
techniques using the mass ratio and macroscopic gradients in
the host medium as perturbation parameters. The present
approach is based on a formal multiple space-time scaling
approach integrated with a statistical argument derived from
the nanoparticle/host particle size ratio that allows for a united
asymptotic expansion to directly arrive at FPC equations for
single and multiple nanoparticle and intra-nanoparticle structural
dynamics. When the slow hydrodynamics of the composite
nanoparticle/host medium system is accounted for, it is shown
formally that the treatment leads to a set of coupled FPC
equations, one for each mode. Shea and Oppenheim6 extended
their work to the case of multiple nanoparticles, introducing a
number of smallness parameters. Here we provide a unified
asymptotic expansion and a seven-time scale formulation that
allows one to capture transitional behaviors (e.g., when the time
scale switches as nanoparticle density increases and the behavior
becomes more like a solid porous matrix than a suspension).
We also introduce the notion of space warping to treat
nanoparticle deformation and rotation, thereby separating the
slow and fast features of these processes.

Nanosystem phenomena can impart a scaling of operators;
we show that a nanoparticle of large surface area tends to
average out individual bombardments of the host medium when
the nanoparticle is slowly moving. This implies that an operator
used to compute the force on the nanoparticle by the host
medium must have a specific scaling property when applied to
functions in Liouville space that correspond to near-equilibrium
behaviors. This is distinct from a perturbation scheme in the
ratio of the host/nanoparticle mass. Such a notion of operator
scaling has also been used to derive reaction rates from a
Liouville equation formulation of the reacting hard sphere
model.7-10

II. Multiple Scale Unfolding and Recomposition

A formal analysis is now presented by which mesoscopic
equations bridging two or more scales are derived. The method
is based on an unfolding of the Liouville equation to reveal its
multiple time and space scale character, followed by a recom-
position of the equation via a perturbation method to arrive at
a coarse-grained equation that captures the mesoscopic phe-
nomenon and averages out the shorter scale variations in a way
that preserves their effect on the long-scale dynamics. The
method allows for a hierarchical treatment leading to progres-
sively coarser grained equations.

If a system evolves on several time scales, it is appropriate
to introduce distinct time variables.11 Let t0 ) t be the
fundamental (i.e., shortest) time variable. Ift0 changes by one
unit, then a typical atomic vibration or collision of a host
medium particle with another or with a nanoparticle takes place.
Because of its mesoscopic nature, the system also evolves on
one or more longer time scales. If the time scales are separated
by an order of magnitude or more, then a parameterε (,1)
can be introduced that reflects the ratio of the characteristic time
of the fundamental scale to that of the next (longer) scale. The
natural time variable for this first long scale ist1 ) εt. As time
changes by a large interval (e.g.,ε-1 fundamental time units),
t1 changes by one unit. This concept can be generalized to a
sequence of times,tn ) εnt, that are presumed to be ordered
with increasing integer powers ofε. There could be other

Figure 2. (a) A moving nanostructure can induce a vortex in the host
medium that feeds back to the dynamics of the structure, creating a
dressed particle with modified behavior. (b) The fluctuating structure
of a polymer can create a set of vortices that implies an effective
hydrodynamic interaction between its ends. Thus, there are three types
of forces on a nanostructure: (1) direct inter- or intraparticle forces;
(2) thermodynamic forces caused by equilibrate changes in the host
fluid properties induced by the instantaneous configuration of the
nanostructure; and (3) effective time-delayed interaction from the
exchange of phonons or vortices with the host medium.

Figure 3. In effect, a nanostructure in a host medium creates a virtual
(correlate) particle with which it interacts to yield a dressing of the
nanostructure’s dynamics by the medium. The spring and resistance
represent the elastic and viscous responses of the host medium.

Figure 4. BPs A and B interact through shared host particles as well
as the direct forces between them, yielding a net effective force.

Figure 5. The configuration of a pair of nanostructures that, when
compared to Figure 4, suggests the strong geometry-dependence of the
contact area and hence the strength and scaling of the interaction
between the nanostructures and with the host medium. These geo-
metrical considerations imply the scaling of various contributions to
the Liouville operator.
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sequences: for example,t0 ) t, t1 ) -(ε2 ln ε)t, t2 ) ε3t, etc.
Only integer power sequences are considered here.

As a mesoscopic system can be described in terms of multiple
time scales, it may similarly involve a number of well-separated
spatial scales. For example, letrb0 ) rb define a position such
that the average nearest-neighbor distance between molecules
in the host medium is one unit. However, there may be other
spatial scales natural to the system. There are lengths character-
izing the size of a nanoparticle or the average distance between
the latter. Other scales that have no direct reflection in the
Liouville equation, such as the width of interfaces in a two-
phase host medium or the Debye length for an electrolyte host
medium, may enter the problem. In analogy to the multiple
times, a set of spatial variables,rbn ) εnrb, n ) 0, 1, ..., that
characterize the atomic, mesoscopic, and longer scale behaviors,
can be introduced.

Underlying these kinematic aspects of a mesoscopic system
are physical factors. For example, the ratio of the mass of a
host medium molecule to that of a nanoparticle can be small.
Expressing this ratio as a power ofε allows one to see how the
separations of physical scales (associated with mass or the
strength/range of interaction potentials) imply the kinematic
scales.

As the above time and space variables are natural for
describing a mesoscopic system, the probabilityF for the state
of the many-body system should be written as a function of
these variables. IfF depends independently on two timest0 and
t1, then∂F/∂t ) ∂F/∂t0 + ε∂F/∂t1 (on the basis of the chain rule).
Similar considerations follow for spatial derivatives. As shown
more explicitly in later sections, the spatio-temporal scaling
and the separation of the magnitudes of physical factors imply
that the Liouville operatorL may be written as a sum of terms
of the formεnL n in which L n is an operator with respect to the
momenta and the various scaled spatial variables for each
particle. With this, the Liouville equation takes the form

The multiple scale analysis of these systems reflects the
phenomenon of interest. For example, a theory can be developed
for the slow overall conformational changes of a nanoparticle
in an aqueous medium: for the result of interest, one averages
out the short time scale vibrational/collisional behavior. This
suggests a physical picture in which the lowest orderF reflects
a state of equilibrium for the fast host medium and intra-
nanoparticle modes. Mesoscopic theory then takes the form of
an equation for the slow variables evolving in the presence of
rapidly fluctuating ones. Specifically, one obtains an FPC
equation for the slow variable reduced probability distribution.
Deriving such results directly from the Liouville equation is
the objective of this and later sections.

For cases in whichε , 1, an expansion forF,

can be attempted. This is not a straightforward Taylor series
for F. Rather, the postulated dependence of theFn on the multiple
space and time variables introduces a type of infinite re-
summation that ensures that the expansion is valid for all times,
including t f ∞.

In many phenomena in nanoscience, one is interested in
behaviors wherein the fast processes are at equilibrium. In this

case the leading termF0 does not depend ont0. ThusF0 evolves
slowly in time, for example, on mesoscopic or longer scales,
and hence the O(ε0) term in eq II.1 implies

In the simplest case,F0 is thus taken to have the equilibrium
form F0 ) Wexp(-âH0)/Q in whichH0 is the Hamiltonian from
which L 0 is constructed. If〈...〉 indicates an integration over all
variables on whichL 0 operates, then the partition functionQ
) 〈e-âH0〉 is independent of these variables. In many problems
of interest, the host medium supports multiple phases (e.g., liquid
vs gas). The resulting interfaces are configured, for example,
with gas over liquid in a weak gravitational field. The latter
field plays no significant role energetically because the multi-
phase configuration results from the cooperativity due to host
molecule/host molecule interaction. Hence, althoughH0 may
not have any appreciable, explicit dependence on the position
of the nanoparticle, nanoparticle position dependence can appear
in Q as a consequence of the choice of the ensemble (i.e., gas
overlying liquid).

There are more general solutions of eq II.3, that is,F0 is
expressed as a linear combination of null vectors ofL 0. These
are discussed further in the appendix in the context of the
hydrodynamic modes of the host fluid/nanoparticle system.

From the form ofF0, W is seen as the probability distribution
for the variables describing the longer scale behavior of the
system.

Collecting O(ε) terms in eq II.1 yields

This equation has the formal solution

in which F1
0 is F1 at t0 ) 0. The fact thatL 0H0 ) 0 implies

The second term on the right-hand side (RHS) appears to
diverge ast0 f ∞. ForF1 to be well-behaved, this term must be
balanced by a contribution from the last term. This is the case
if

The D 1 operator simplifies in many cases because〈L 0A〉 for
any functionA frequently vanishes.

To O(ε2) one obtains

Using arguments as those for O(ε), one may derive an equation

∑
n)0

ε
n∂F

∂tn
) ∑

n)0

ε
nL nF (II.1)

F ) ∑
n)0

∞

Fnε
n (II.2)

L 0F0 ) 0 (II.3)

( ∂

∂t0
- L 0)F1 ) -

∂F0

∂t1
+ L 1F0 (II.4)

F1 ) eL 0t0 F1
0 + ∫0

t0dt′0 exp[L 0(t0 - t′0)][-
∂F0

∂t1
+ L 1F0]

(II.5)

F1 ) eL 0t0F1
0 - t0

e-âH0

Q
∂W
∂t1

+

∫0

t0 dt′0 exp[L 0(t0 - t′0)]L 1
e-âH0

Q
W (II.6)

∂W
∂t1

) D1W (II.7)

D1W≡ lim
t0f∞

1
t0
∫0

t0 dt′0 〈exp[L 0(t0 - t′0)]L 1W
e-âH0

Q 〉 (II.8)

( ∂

∂t0
- L 0)F2 ) -

∂F0

∂t2
-

∂F1

∂t1
+ L 2F0 + L 1F1 (II.9)
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of the form∂W/∂t2 ) D 2W in which D 2 is a linear operator.
In obtaining this result, the term∂W/∂t1 is replaced byD 1W
and is bundled intoD 2W.

Generalizing the above arguments to O(εn) and introducing
linear operatorsDn (n ) 1, 2, ...) yields

Suppose that only the behavior on time scales greater thant0
but shorter thantm+1 is sought (m g1). In this case,t1 can be
thought of as the new fundamental time appropriate for thet1
and slower behavior. Lettingτ ) t1, multiplying eq II.10 by
εn-1, summing fromn ) 1 to n ) m, and using the chain rule
yields the FPC equation

This recomposed Liouville equation serves as the basis for a
rigorous theory of the slow (i.e.,t1, ..., tm-dependent) dynamics
of a multiscale system. The levelm at which the development
is truncated depends on the phenomenon of interest: for
example, the latter is presumed to only involve dynamics on
the tm scale or shorter. The remainder of this paper is focused
on implementing this unfolding/recomposition prescription for
nanoparticles in a host medium. Generalized FPC equations for
slow behavior are obtained. The above unfolding of the Liouville
equation and recomposition into coarse-grained equations can
be repeated, yielding a hierarchy of theories for the longer and
longer space-time scale behaviors.

A challenge for the theory of mesoscopic systems is the
tendency of these systems to transition from one space-time
scaling behavior to another. For example, interacting nanopar-
ticles evolve on a number of scales that depend on their
individual conformation and that relative to others. As these
nanoparticles can experience large conformational changes or
approach each other, such a system may switch between slow
and fast behavior due to collision or self-assembly into complex
structures. This switching is captured by eq II.11, as shown more
explicitly in later sections.

III. A Structureless Nanoparticle in a Host Fluid

Consider a system ofN host particles, labeled 1, ...,N, and
a nanoparticle, labeledN + 1. Let the ratio of the mass of a
typical host particle (m) to that of the nanoparticle beε2 for ε

, 1 (i.e., mN+1 ) ε-2m). Other scalings could be adopted as
appropriate and would evoke different behavioral regimes.
Assuming that the momentum distribution is near equi-
librium, the typical kinetic energy of a particle is 3/2kBT. Hence,
the typical momentum of the nanoparticle is of the order

xmN+1kBT, so thatpbN+1 ) ε-1PB introduces a momentumPB that
is appropriate for the nanoparticle. With this, the typical velocity
of the nanoparticle is O(ε), and in a time characteristic of that
for collisions between, or with, the host particles, the nanopar-
ticle only moves a distance of O(ε). This suggests that the short
time scale host dynamics could reach equilibrium with the
instantaneous nanoparticle configuration. Long time and length
scale variables are needed to capture the overall nanoparticle
migration of interest here. These are found to bet4 ) ε4t andRB

) ε3rbN+1. The latter assumptions are found to be natural at a
later stage in the development and, in effect, imply a choice of
the phenomenon of interest (i.e., Brownian motion).

It is convenient to define relative coordinatessbi ) rbi - rbN+1

for theN host particles. With this, the probability densityF(pb1,
sb1, ..., pbN, sbN, PB, RB, t0, t1, t2, t3, t4; ε) satisfies

The factors¥B andFB are defined via

Here,V is the (N + 1)-body potential and is assumed to only
depend on the relative configuration. The operator¥B is assumed
to be O(ε0) when applied to any quasi-equilibrium probability
under the notion that it involves many vector contributions,
which tend to cancel. A notable exception is extreme regions
of configuration space associated with shock waves or vortices
in the host medium induced by a high-velocity nanoparticle
(Figure 2). The scaling adopted here is valid for the quasi-
equilibrium host medium relevant for classic Brownian motion,
however.

To examine the¥B-scaling ansatz more closely, let the host
particles have a radiusRh such thatRB ≈ ε-1Rh for a nanoparticle
of size RB. The numberNh of host particles in a monolayer
around the nanoparticle is then 4πRB

2 times 2Rh times the
density of host particles{∼[(4/3)πRh

3]-1 for a liquid host}.
Thus, Nh is O(ε-2). For nanoparticle motion only driven by
fluctuations of the host, in the largeRB (ε f 0) limit, the net
force on the nanoparticle imposed by the host is due to the
residual fluctuations from the large but finiteNh statistics. The
central limit theorem suggests that the net force on the
nanoparticle by the host particles (assuming short-range forces)
is of the orderNh

-1/2, that is, O(ε). This is taken as a justification
for the scaling implied in eq III.5.

With this,ε2 is seen as a natural parameter in terms in which
F can be expanded. From eq III.1 it is seen that timest1 andt3
can be ignored as the RHS has no explicitε andε3 terms. Thus,
the present treatment is a three-time theory. Note that initial
data, host medium hydrodynamic modes, or space and time
scales arising from host multiphase behaviors could evokeε

and ε3 behavior, however. Thus, we assume thatF can be
constructed as an asymptotic expansion inε2:

At O(ε0), the Liouville equation allows for solutionsF0 that are
independent of the microscopic timet0 so that L 0F0 ) 0.

∂W
∂tn

) DnW (II.10)

∂W
∂τ

) DW (II.11)

D ) ∑
n)1

m

Dnε
n-1 (II.12)

∑
n)0

4

ε
n ∂F

∂tn
) (L 0 + ε

2L 1 + ε
4L 2)F (III.1)

L 0 ) -∑
i)1

N {pbi

mi

‚
∂

∂sbi

-
∂V

∂sbi

‚
∂

∂pbi
} (III.2)

L 1 ) - PB
m

‚ ¥B - FB ‚ ∂

∂PB
(III.3)

L 2 ) - PB
m

‚ ∂

∂RB
(III.4)

¥B )
1

ε
∑
i)1

N ∂

∂sbi

, FB) -
1

ε

∂V

∂ rbN+1

) ¥BV (III.5)

F ) ∑
n)0

∞

Fn(pb1, sb1, ..., pbN, sbN, PB, RB, t0, t2, t4)ε
2n (III.6)
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This has the quasi-equilibrium solution

The Hamiltonian for the medium in the force field of the
nanoparticle is denotedH0 andQ is the partition function:

The function W depends only on the large-scale variables
describing the state of the nanoparticle.

To O(ε2)

in which we henceforth drop the 0 ont0 for simplicity. Equation
III.9 yields the solution

in which F1
0 is the value ofF1 at t ) 0. Because it involves the

evolution operator exp(L 0t), F1 involves short time scale,
fluctuating host dynamics.

The secular (divergent ast f ∞) behavior inF1 must be
removed if the asymptotic expansion is to be well-behaved. The
removal of the secular behavior inF1 implies

Use has been made of the fact that (1)〈∂A/∂pbi〉 ) 0B for any
factor A that vanishes at largepbi and (2) periodic boundary
conditions onF with respect to thesbi are imposed. It is concluded
thatW has not2-dependence, which implies thatF1 has no such
dependence either.

The O(ε4) terms yield

Applying 〈...〉 to eq III.12 yields

in which âF ) -ln Q introduces the host medium for energy
F (for further discussion see Section VI). In the above equation,
the fact that〈∂A/∂sbi〉 ) 0B and 〈∂A/∂pbi〉 ) 0B for any relevantA
has again been used.

The final result of this computation, an equation forW, arises
out of an examination of the larget behavior ofF2. Assuming
that all the initial data forF are captured inF0, that is, the fast
variables are in equilibrium andF1

0 is zero, integrating eq III.13
with respect tot from 0 to tmax yields 〈F2〉(tmax), which has to
be finite at all times for the self-consistency of the asymptotic
expansion. The sum of all of the terms in〈F2〉 that are found to
diverge astmax f ∞ must thus balance, yielding

in whichγ is the drag coefficient that can be expressed in terms
of the force autocorrelation function

with FB(τ) ) exp(-L 0τ)FB(0). Thus, the FPC equation with
thermodynamic force-∂F /∂RB follows from a scaling analysis
of the Liouville equation directly. The present derivation clarifies
the quantitative relations among the scales and their physical
origins and provides the expected expression for the drag
coefficient. Certain issues remain open, however, some of which
are addressed in the following sections and in the appendix.

IV. Multiple Nanoparticles on Seven-Time Scales

As two nanoparticles approach each other, the behavior may
switch from a slow random walk to a rapid acceleration as
strong, short-range forces dominate. A conformational change
of a given nanoparticle can decrease its effective surface area
and, hence, the scalings of the averaging of fluctuating forces
imposed by the host medium or its interaction with other
nanoparticles (Figures 4 and 5). The behavior of a large number
of nanoparticles in a host fluid can transition from that of a
low viscosity suspension to that of a rigid, fluid-filled porous
matrix as density (and hence congestion) increases beyond a
critical level. Because of the importance of the large number
of time scales that can arise in the multiple nanoparticle problem,
the unfolding/recomposition method of Section II is ideally
suited.

Consider the dynamics of a multiple nanoparticle system in
which (1) the structures are strongly affected by the host
medium, and (2) several spatial scales must be accounted for
because of the direct and indirect interactions between the
nanoparticles (Figures 4 and 5). As suggested in Figure 5,
several scalings are possible depending on the geometries of
each nanoparticle and the strength of the coarse-grained interac-
tion these geometries imply.

A collection ofNB spherical nanoparticles in a host medium
of N particles (N . NB) is used to illustrate the approach. Let
the nanoparticles be at positionsxbk, and, in analogy to the single
nanoparticle case, have massesε-2Mk and momentaε-1PBk, in
whichk ) 1, ...,NB (for ε , 1). The host particles are described
by their positionsrbi, momentapbi, and massesmi, in which i )
1, ..., N. The goal is to identify the time and length scales
characterizing the dynamics of the multiple interacting nano-
particle/host fluid system. To understand the range of possible
effects, first we limit the description of the nanoparticles to their
location, ignoring their internal structure and orientation (how-
ever, see Section V).

In addition to the variables introduced above, letXBk ) εxbk,
YBk ) ε3xbk, RBi

(1) ) εrbi, RBi
(3) ) ε3rbi, andtn ) εnt for integern.

Assume that the potential energy of the system can be written
as

F0 )
exp(-âH0)

Q
W(PB, RB, t2, t4) ) F̂W (III.7)

Q ) ∫d3p1d
3s1 ... d3pNd3sN exp{-âH0} ) 〈e-âH0〉 (III.8)

( ∂∂t
- L 0)F1 ) -

∂F0

∂t2
+ L 1F0 (III.9)

F1 ) eL 0tF1
0 + ∫0

t
dt′ exp[L 0(t - t′)]L 1F0 - t

∂W
∂t2

F̂ (III.10)

∂W
∂t2

) 〈L 1F0〉 ) 0 (III.11)

( ∂

∂t
- L 0)F2 ) -

∂F0

∂t4
+ L 1F1 - PB

m
‚ [∂W

∂RB
F̂ + W

∂F̂
∂RB] (III.12)

∂

∂t
〈F2〉 ) - ∂W

∂t4
+ 〈L 1e

L 0tF1
0〉 +

∫0

t
dt′〈L 1 exp[L 0(t - t′)]L 1F0〉 - PB

m
‚ [∂W

∂RB
+ âW

∂F

∂RB ]
(III.13)

∂W
∂t4

+ PB
m

‚ ∂W

∂RB
) γ

m
∇PB‚(PBW) + γ

â
∇P

2W - âPB
m

‚ ∂F

∂RB
W

(III.14)

γ ) â
6∫-∞

∞
〈F̂FB(0)‚FB(τ)〉dτ (III.15)

V( rb1 ... rbN,xb1 ... xbNB
) ) V0( rb1 ... rbN,xb1 ... xbNB

) + ε
2VBB

S

(XB1 ... XBNB
) + ε

5V
Bh

L (RB1
(1) ... RBN

(1),XB1 ... XBNB
) (IV.1)
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in whichsbik ) rbi - xbk andSBik ) RBi
(1) - XBk. In this expression,Vh

is the interaction of host particles in the absence of any
nanoparticles,Uk

S is the strong, short-range nanoparticle-host
interaction, Uik

L is the weak, long-range nanoparticle-host
interaction, andVBB is a direct interaction between nanoparticles.
In what follows, an FPC equation for a reduced probability
density is constructed: it accounts for the fluctuating forces the
host medium exerts on the nanoparticles that are taken to scale
with a power ofε reflecting nanoparticle size. The ansatz of eq
IV.1 is only one of the possible scaling approaches. The idea
that the direct inter-nanoparticle interaction scales asε2 is meant
to imply that the strong attractive nanoparticle-host interaction
forbids the nanoparticles from coming into direct contact. Other
scalings must be used if this is not the case.

Once the physical picture has been set forth (i.e., the ansatz
of eq IV.1), the formal unfolding/recomposition analysis of
Section II can be carried out. The Hamiltonian describing the
system is written as

With this, the (N + NB)-body probability distributionF(pbi, rbi,
RBi

(1), RBi
(3); i ) 1, ...,N; PBk, xbk, XBk, YBk; k ) 1, ...,NB; tn, n g 0; ε)

evolves via

and L 7 is the same asL 6 with ∂/∂RBi
(1) and ∂/∂pbi replaced by

∂/∂XBk and∂/∂PBk. Note that

is O(ε0) if within the range of Uk
L there are O(ε-3) host

particles. Finally,L 5, L 8, L 9 ... ) 0.
To O(ε0), the Liouville equation allows for thet0-independent

solution

in which W depends on thePBk, xbk, XBk, YBk, RBi
(1), RBi

(3), andtn for n
> 0. The partition functionQ is given by

In principle, Q depends on all spatial variables exceptrbi.
With this partition function, associate a free energyF via
Q ) exp(-âF ). From Figure 5 it is seen that the forces in-
duced on one nanoparticle by another depend on the geometry
of the contact zone. Thus, the host average{i.e., as weighted
by exp[-â(H0 - F )]} depends on the configuration{xbk; k )
1 ... NB} of the nanoparticles, their contact areas (not addressed
explicitly here), and possibly theXBk andYBk in ways that depend
on the scales of spatial variations in the host medium (i.e., due
to phase interfaces).

A variety of scaling behaviors and associated thermodynamic
forces may arise from the gradients ofF with respect to the
nanoparticle configuration. For example, there could be a long-
range ordering induced in the host medium byUk

S. Thus, a
nanoparticle pair could experience long-range thermodynamic
forces induced by the host medium. Such effects depend on
temperature and the mean density of the host (e.g., the proximity
to the host medium critical point). For example, in a liquid/gas
coexistence-supporting system, a cluster of nanoparticles could
be bound in a host duplet, implying thatF could depend on
the longer scale variablesXBk, YBk, RBi

(1), and RBi
(3) in ways that

depend on the size and shape of the host droplet and the width
of the liquid/gas interface. Scaling of the multiple nanoparticle
system is seen to allow one to capture both long- and short-
range thermodynamic forces including more subtle effects not
seen directly in the Hamiltonian (e.g., phase boundaries and
droplets). The theory outline above may be closed in O(ε7) to
yield a recomposed equation for the dependence ofW on the
PBk, xbk, XBk, YBk, RBi

(1), andRBi
(3), and on the scaled timest1, ..., t7.

This formalism allows one to analyze a full range of phenomena,
from the self-assembly of a virus to the dynamics of a
deformable porous medium, that accounts for the fluctuating
and coherent forces imposed by the host medium.

The viscous drag factors that arise depend on the configu-
ration of the nanoparticle array. One expects that theories of
virus self-assembly based on Langevin equations for the
interacting units should contain such configuration-dependent
drag coefficients. The interaction between units of a self-
assembling structure, as mediated by a fluctuating host fluid, is
taken into account by the present formalism.

V. Conformational and Rotational Dynamics

A nanoparticle experiences continuous rotational and internal
vibrational/conformational fluctuations. In this section it is
shown that mesoscopic behavior emerges not only from both
the large mass and the size of a nanoparticle, but also from the

∂Vk
L

∂XBk

) ε
3 ∑

i)1

N ∂Uik
L

∂XBk

(IV.11)

F0 )
exp(-âH0)

Q
W (IV.12)

Q ) ∫ d3p1d
3r1 ... d3pNd3rN exp(-âH0) (IV.13)

V0 ) Vh( rb1 ... rbN) + ∑
k)1

NB

Uk
S(sb1k ... sbNk)

VBh
L ) ∑

k)1

NB

∑
i)1

N

Uik
L (SBik) ) ∑

k)1

NB

Vk
L(SB1k, ..., SBNk) (IV.2)

H ) H0 + HB (IV.3)

H0 ) ∑
i)1

N pi
2

2mi

+ V0,

HB ) ∑
k)1

NB Pk
2

2Mk

+ ε
2VBB

S + ε
5VBh

L (IV.4)

∑
n)0

∞

ε
n[ ∂

∂tn
- L n]F ) 0 (IV.5)

L 0 ) -∑
i)1

N (pbi

mi

‚
∂

∂ rbi

-
∂V0

∂ rbi

‚
∂

∂pbi
) (IV.6)

L 2 ) -∑
k)1

NB (PBk

Mk

‚
∂

∂XBk
) (IV.7)

L n ) -∑
i)1

N pbi

mi

‚
∂

∂RBi
(n)

, n ) 1,3 (IV.8)

L 4 ) -∑
k)1

NB (PBk

Mk

‚
∂

∂YBk

-
∂VBB

S

∂XBk

‚
∂

∂PBk

-
∂Vk

L

∂XBk

‚
∂

∂PBk
) (IV.9)

L 6 ) ∑
i)1

N

∑
k)1

NB ∂Uik
L

∂RBi
(1)

‚
∂

∂pbi
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collective behavior of a large number of its constituent atoms
or molecules bound as a deformable structure (e.g., a viral
envelope).

Consider a nanoparticle made ofN* particles, labeledj ) 1,
..., N*, immersed in a host medium ofN particles, labeledi )
1, ... N*. The center of massrbcom of the nanoparticle is given
by

in which rbj
/ is the location of particlej in the nanoparticle, and

Mj is its mass (M ) M1 + ...MN/). Define N* displacements
via σbj ) rbj

/ - rbcom. In analogy to the scaling ansatz of Section
III, assume thatM ) m/ε2 for a typical massmof a host particle.
With Jaqaman and Ortoleva12 it is convenient to introduce a
set of collective coordinatesΓ1, ..., Γ3N*-3 such that

in which σbj
o is a reference configuration, andfBn is a basis

function. With these coordinates and their time derivativesΓ̇n,
one may rewrite the Liouville equation. The advantage is that
one can choose thefBn so that a relatively small subset of theΓn

captures the slow dynamics of the nanostructure, and thereby
one may carry out a multiple scale analysis involving the
dynamics of the slow internal modes of the nanoparticle coupled
to the Brownian motion of the center of mass and the host
medium.

The amplitudes of the modes defined in eq V.2 provide a
starting point for a multiple scale treatment of the deforming,
rotating structure. Assuming that theΓn of eq V.2 can be divided
into fast and slow groups, the lowest order solution of the
Liouville equation in the multiple scale formalism involves an
equilibrium factor that consists of the potential of the host
particles and the nanoparticle-host interaction. As the latter
involves the slow as well as the fast mode amplitudes, there is
a nontrivial coupling between the slow modes of the nanoparticle
and the host medium. The result is a recomposed equation for
the probabilityWof the long-time behavior of the coupled slow
migration, rotation, and deformation of the nanoparticle. This
equation involves thermodynamic and drag forces for the
dynamics of migration, rotation, and slow deformation modes.
All these effects depend on partition functions and fluctuating
force correlation functions from the host and internal mode
dynamics.

For a rigid structure, only the rotational modes of eq V.2 are
needed, that is,

for a 3× 3 rotation matrixΓBB that can be expressed in terms of
three Euler angles. With this, one can recast the Liouville
equation in terms of the Euler angles and their time derivatives,
the position and momentum of the center of mass, and the state
of the N host particles. As with the large BP asymptotics of
previous sections, one may analyze large moment-of-inertia
asymptotics (and similarly for slow bending, dilatation, torsion,
or other large-scale, slow modes of a nonrigid structure). As
the frequencies of these modes can imply a large range of time
scales, a variety of scaling behaviors and asymptotic analyses
can emerge.

To illustrate the range of possibilities, reconsider the scaling
of the net force acting on the center of mass. This scaling
depends on the surface area of the nanostructure. Letλ be the
longest length characterizing the size of the nanostructure. If
the structure is spherical and compact (e.g., not an empty shell),
then λ3 scales as the total massM and, hence, asε-2 so that
surface area scales asε-4/3. If the nanostructure is a hollow
sphere, circular disk, or a rod, then surface area scales asε-2.
With this, it is seen that the statistics of the random force scales
with a power ofε that depends on the geometry of the structure,
which is also the case for the moment of inertia.

A distinct class of considerations arises when the internal
dynamics of the nanostructure is considered. Although the
overall migration and rotation of a nanostructure can be slow,
its internal dynamics can be considered on the same level as
that of the host medium. Hence, the lowest order solution of
the Liouville equation is that which is for the nanostructure at
a given position and orientation, but, like the host medium, all
other internal degrees of freedom are at equilibrium. Thus, one
may investigate a variety of distinct scalings for the fluctuating
dynamics of a nanostructure.

VI. Further Developments

A scaling approach for deriving FPC-type equations has been
presented. These equations yield the dynamics of the slow
variable reduced probability density. Computer molecular
dynamics and Monte Carlo methods can be used to provide
values of generalized drag coefficients and thermodynamic
forces. In this way mesoscopic dynamics is derived from an
atomic force field to arrive at a parameter-free theory. The FPC
equations obtained capture the richness of mesoscopic phenom-
ena, which, by definition, follow from the interplay of deter-
ministic and stochastic behaviors.

Practical considerations limit the direct numerical solution
of FPC equations. However, such equations are equivalent to
Langevin equations2. Thus, a promising approach is to set forth
the Langevin equation corresponding to a given FPC equation
and then proceed in a Monte Carlo fashion.

The interaction of a nanoparticle with a nonuniform host
medium is accounted for in the present formalism. Applications
include the traversal of the outer cell membrane by a virus and
the dynamics of nanoparticles at oil/water or other phase
boundaries, which are common features of natural and engi-
neered systems. The transport of gold colloids to form gold
deposits or the process of mineral particle transport during
petroleum production are other examples. For these systems,
the partition function of Sections III-V depends on the position
and orientation of the nanoparticles. The partition function is
that for the host medium equilibrated with the instantaneous
nanoparticle configuration. It can be written as exp(-âF ) in
which the free energyF depends on the configuration of the
nanoparticles. In this case, the nanoparticles are driven by the
gradient ofF with respect to the state of the nanoparticles.
This thermodynamic force appears in the FPC equation for the
nanoparticles (e.g., eq III.13).

Estimates of the dependence ofF on nanoparticle config-
uration can be obtained. Consider the situation of Figure 7 in
which a structure is passing between two phases (e.g., a virus
entering a host cell membrane). LetA I andA II be the surface
areas of the particle exposed to Phases I and II, respectively.
Let σI andσII be the interaction free energies (energy/area of
the nanoparticle/medium contact). If these surface energies are
the same for all points on the surface of the nanoparticle, and
F I is the free energy of the system when the particle is

rbcom )
1

M
∑
j)1

N*

Mj rbj
/ (V.1)

σbj ) ∑
n)1

3N*-3

Γn fBn(σbj
o) (V.2)

σbj ) ΓBB σbj
o (V.3)
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completely immersed in Phase I, far from the interface, then

in which the areas depend on the nanoparticle positionRB and
the orientation (specified by Euler anglesω). In this manner
one may formulate the FPC equation to simulate a virus or other
particle as it interacts with an interface. This provides a guideline
for developing the more rigorous approaches of Sections III-
V.

An outstanding challenge is continuous scaling. For example,
as a nanostructure propagates through a host medium it may
interact with the phonons or varieties the medium supports.
These disturbances have a continuous range of characteristic
times that span many orders of magnitude. Thus, there may not
be a well-defined separation of scales or a natural small
parameter. However, dimensional analysis suggests that the size
of a nanoparticle divided by its speed is a characteristic time
that is likely selected from the spectrum of time scales for the
composite host/nanoparticle system. Other characteristic times
can be constructed from particle size and host medium viscosity.
Thus, there may be ways to select relevant subsets of host modes
from the continuum so that continuously scaled systems could
be treated rigorously by a multiscale approach. The co-particle
model of Figure 3 could be a basis for an approach to vortices
(Figure 2) and phonons. In the appendix it is shown how the
introduction of discrete host modes results in a set of coupled
FPC equations, one for each eigenfunction of the host medium
Liouville operator. Each of the probability functions that arise

in this theory describes the evolution of the nanoparticles as
influenced by a given host mode.

In conclusion, rigorous approaches to the dynamics of
nanosystems can be developed for obtaining parameter-free or
few-parameter models. Therefore, predictive modeling of nano-
systems can be achieved.
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Appendix: Slow Host and Intrastructural Modes

Slow modes in the composite nanoparticle/host medium
system warrant care in a multiple scale analysis. Neglect of the
effects of these modes results in the omission of host vortex
phenomena as shown in Figure 2 or the slow compressional,
bending, twisting, or other large-scale dynamics of the nano-
particles. A formal analysis, based on the spectrum of the
Liouville operator, is now set forth. In the main body of this
work, it was assumed that the smallness of the host particles
relative to the nanoparticle implied that the host dynamics is
fast relative to that of the nanostructure. However, as suggested
in Figure 2, the motion of a nanoparticle can create long-lived,
large spatial scale hydrodynamic disturbances in the host. This
implies that the Liouville operatorL h for the nanostructure-
free host medium has small eigenvalues. This causes a
breakdown of the multiscale development set forth in Sections
III -V. The origin of this breakdown is a feedback wherein the
large-scale motion of the nanoparticle induces hydrodynamic
motion in the host which, in turn, pushes on the nanoparticle.
Because of the large number of host particles involved, the
induced host medium disturbance has a large cumulative mass,
and the time scale of the host hydrodynamic disturbances can
be comparable to that of the motion and deformation of the
nanoparticle.

If the nanoparticle is imparted a kinetic energy on the order
of k BT, then its velocity (and, for the phenomena of interest,
the velocity induced in the disturbed host medium) is of O(ε)
when the nanoparticle has a mass of O(ε-2). Thus, the term
mi

-1 pbi ‚∂/∂rbi in L h consists of a factor, O(ε), from pbi/mi divided
by a length that is roughly the size of the nanoparticle [e.g.,
O(ε-1)], yielding an effective O(ε2) contribution toL h. This
suggests that the motion of the nanoparticle excites modes of
L h with eigenvalues of O(ε2). An alternative argument is that
a vortex acts as a correlate particle (Figure 3): like the
nanoparticle, the correlate has a velocity of O(ε) and it operates
on the lengthscale of the size of the nanoparticle [e.g., O(ε-1)].
Assuming that these modes contribute a term inL h that is of
the magnitude of an effective velocity [here O(ε)] divided by a
characteristic length [here O(ε-1)], then such a term is O(ε2).
In summary, it is expected that the relevant eigenvalues of the
interacting nanoparticle/host system are of O(ε2). In the above
arguments we have assumed that the length scale of the
disturbance in the host fluid is the same as the size of the
nanoparticle. In reality it can be quite different, being related
to the velocity of the particle and the viscosity of the host
fluid.

Let |n〉 be thenth eigenfunction ofL h with eigenvalueλn:

In what follows, it is assumed that the eigenfunctions are

Figure 6. Poliovirus proteins self-assemble into a capsid. The shape
and fluctuations of the proteins mediate their hierarchical self-assembly
into protomers, then into pentamers, and finally into a capsid. The
stability of the capsid depends on the composition and temperature of
the host fluid as well as the structure of the proteins.

Figure 7. A nanoparticle shown passing from Phase I to Phase II
because of the difference in its interaction with the light and dark host
particles. The dynamics of the structure is driven by both random
fluctuating forces and the thermodynamic effect of the fraction of the
nanoparticle’s surface exposed to Phase I vs Phase II.

F (RB,ω) ) F I - (A I + A II)σI + A I σI + A II σII

(VI.1)

L h|n〉 ) λn|n〉 (1)
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orthonormal (〈n′|n〉 ) δnn′) and that the spectrum ofL h is
discrete. There is a wide range of eigenvalues: some correspond
to slow conservation-derived modes (λn small); others are fast,
localized, or particle-like modes (λn large). On the basis of the
above arguments, assume that the modes that are relevant to
the phenomena of interest can be divided into two well-defined
groups:

for λn
/ constant asε f 0. With this, L h may be divided into

fast and slow parts via a spectral decomposition. The introduc-
tion of projection operators|n〉〈n| yields

For L s, the sum is restricted to modes with eigenvalues that
scale asε2, and similarlyL f.

With the above equation and the formalism of Section II,
one may reexamine Brownian motion by now allowing for the
effects of slow behavior induced in the host medium.

With the above equation, the Liouville equation for the
composite nanoparticle/host medium system is assumed to be

Unlike in Section III, L h now has an O(ε2) contributionL s,
whereasL 2 is from the motion of the nanoparticle itself. An
expansion ofF in ε implies that if Hf is the Hamiltonian
generatingL f, then to O(ε0)

for a set of functionsWn that depend on the slow timest1 ) εt
andt2 ) ε2t, the scaled nanoparticle coordinate, and momentum
PB. The higher order problems are similar to those discussed in
Section III. Using a solubility condition, one finds that thet1-
dependence of theWn is generated by

for operatorsD nn′
(1) related toL 1. To O(ε2) one has

From this equation one may extract a set of coupled linear
equations for thet2-scale evolution of theWn. The resulting
equations for∂Wn/∂t1 and ∂Wn/∂t2 can be recomposed into a
single, long-time equation as shown in Section II. This formal
construction of the coupled nanoparticle/host medium equations
suggests the scenarios by which the host medium hydrodynamic
modes can be excited, allowing for a wide range of behaviors
for nanoparticle motion.

The above results do not make the detailed connection
between the vortices and theWn. This would follow from a
detailed examination of the properties of the eigenfunctions|n〉
that correspond to hydrodynamic behavior.

The lowest order probability (5) accounts for the slow
nanoparticle/hydrodynamic behavior in terms of a joint prob-
ability that is expressed as a sum of slow modes|n〉. This
suggests a phenomenological approach wherein the nanoparticle/
host system is modeled via a Langevin equation for the
nanoparticle coupled to the host fluid via a mesoscopic fluid
mechanical model with fluctuating forces and fluxes, and is
subjected to boundary conditions at the surface of the nano-
particle or body forces within the host continuum imposed by
the nanoparticle. However, the results obtained above show that
one must cast the problem in terms of a joint coarse-grained
probability (i.e., the sum of theWn|n〉 terms) and not as a product
of W and host hydrodynamic factors.
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