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A theory of nanoparticle dynamics based on scaling arguments and the Liouville equation is presented. We
start with a delineation of the scales characterizing the behavior of the nanoparticle/host fluid system.
Asymptotic expansions, multiple time and space scale techniques, the resulting coarse-grained dynamics of
the probability densities of the FokkePlanck-Chandrasekhar (FPC) type for the nanoparticle(s), and the
hydrodynamic models of the host medium are obtained. Collections of nanoparticles are considered so that
problems such as viral self-assembly and the transition from a particle suspension to a solid porous matrix
can be addressed via a deductive approach that starts with the Liouville equation and a calibrated atomic
force field, and yields a generalized FPC equation. Extensions allowing for the investigation of the rotation
and deformation of the nanoparticles are considered in the context of the space-warping formalism.
Thermodynamic forces and dissipative effects are accounted for. The notion of configuration-dependent drag
coefficients and their implications for coagulation and consolidation are shown to be natural consequences of
the analysis. All results are obtained via formal asymptotic expansions in mass, size, and other physical and
kinetic parameter ratios.

|. Introduction

Nanoparticles of natural and engineered origin present a grand
challenge for statistical mechanics. They lie at the boundary
between the macroscopic and microscopic regimes; multiscale
techniques are thus required to gain a fundamental understanding Brownian
of their behavior. particle

Examples of important bionanoparticles and the phenomena
they display abound. Virus self-assembly: this and other aspects
of their life cycle involve millions to hundreds of millions of
atoms simultaneously and therefore cannot readily be analyzed
by a straightforward microscopic approach. The formation and
functioning of mitochondria, ribosomes, and other intracellular Figure 1. A massive and geometrically large Brownian particle
structures and molecular machines are other systems wherei mmersed in a host medium experiences many collisions with the small

. . . . : . ost particles. If this BP is slow, these collisions tend to cancel an
nanoparticles interact with a host medium via the interplay of average, suggesting that the BP only experiences a fluctuating force

fluctuating and macroscopic forces. Delivery of drugs Dy ihat averages out in time and across the BP surface.
functionalized particles, magnetically directed migration and

heating of drug-bearing particles, and light-detectible imaging of the space and time scales involved in the system of interest.
systems seem to have great medical potential. Also nanoparticlesThe classic example of a nanoparticle phenomenon is the
can be combined to form composite materials with interesting fluctuating motion of a Brownian particle (BP) in a host medium
engineering characteristics. The transport of gold and other of small particles. It is shown here that the migration of such
particles is key to the formation of deposits, whereas other a BP can be understood via an analysis of the Liouville equation
particles carry pollutants. in terms of space and time scales that are natural for its large
Although atomic-scale systems are dominated by fluctuations, mass and size. These factors imply the slowness of the BP
macroscopic systems can be well-characterized by a reducedelative to the motion of the host particles due to both inertia
set of average variables. Therefore, a challenge of nanosciencé&nd a spatial averaging (Figure 1). An understanding of the
is that the phenomena of interest can only be understood via acomposite BP/host medium system also must account for the
nesting of atomistic (fluctuating) variables and more macro- slow hydrodynamic behavior of the host medium.
scopic ones. Another aspect of the behavior of a nanoparticle is the
There is great value in developing a rigorous theory of dressing of its dynamics as by the vortex of Figure 2. Such
nanosystem kinetics starting from the Liouville equation. Unlike phenomena impart memory and dissipation to the dynamics;
phenomenological approaches, such a deductive approach resultglastic properties of the medium impart rebound and oscillatory
in universal equations in which the only parameters are those effects (Figure 3) wherein the concept of a co-particle is
of the atomic force field. The theme of this study is that an introduced. Another facet of this dressing is the effective force
understanding of nanosystems should follow from a delineation between nanoparticles introduced by their individual interactions
with the host medium (Figure 4). The forces between nanopar-
T Part of the special issue “Irwin Oppenheim Festschrift”. ticles, and hence the manner in which the multiple nanoparticle
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This set the stage for a series of analyses of nanoparticle

; : ' dynamics based on the Liouville equation. Shea and Oppefheim
y : : : derived FPC and Langevin equations for a single nanopatrticle
in a host medium using projection operators and perturbation

techniques using the mass ratio and macroscopic gradients in
the host medium as perturbation parameters. The present
approach is based on a formal multiple spatime scaling
approach integrated with a statistical argument derived from
the nanoparticle/host particle size ratio that allows for a united
asymptotic expansion to directly arrive at FPC equations for
(a) (b) single and multiple nanoparticle and intra-nanoparticle structural
Figure 2. (a) A moving nanostructure can induce a vortex in the host dynamics. When the slow hydrodynamics of the composite
medium that feeds back to the dynamics of the structure, creating a hanoparticle/host medium system is accounted for, it is shown
dressed particle with modified behavior. (b) The fluctuating structure formally that the treatment leads to a set of coupled FPC
of a polyme_r can crqate a set of_vortices that implies an effective equations, one for each mode. Shea and Opper‘ihﬁitanded
hydrodynamic interaction between its ends. Thus, there are three YPeSheir work to the case of multiple nanoparticles, introducing a

of forces on a nanostructure: (1) direct inter- or intraparticle forces; b f f t H id fied
(2) thermodynamic forces caused by equilibrate changes in the host"UMOEr OF Smaliness parameters. Fere we provide a unine

fluid properties induced by the instantaneous configuration of the @symptotic expansion and a seven-time scale formulation that
nanostructure; and (3) effective time-delayed interaction from the allows one to capture transitional behaviors (e.g., when the time
exchange of phonons or vortices with the host medium. scale switches as nanopatrticle density increases and the behavior
becomes more like a solid porous matrix than a suspension).
We also introduce the notion of space warping to treat
nanoparticle deformation and rotation, thereby separating the
slow and fast features of these processes.

Nanosystem phenomena can impart a scaling of operators;

Co-particle Particle we show that a nanoparticle of large surface area tends to

Figure 3. In effect, a nanostructure in a host medium creates a virtual average out individual bombardments of the host medium when
(correlate) particle with which it interacts to yield a dressing of the the nanoparticle is slowly moving. This implies that an operator
nanostructure’s dyrjamics py the medium. The spring and re;sistanceused to compute the force on the nanoparticle by the host
represent the elastic and viscous responses of the host medium. medium must have a specific scaling property when applied to
functions in Liouville space that correspond to near-equilibrium
behaviors. This is distinct from a perturbation scheme in the
ratio of the host/nanoparticle mass. Such a notion of operator
scaling has also been used to derive reaction rates from a
Liouville equation formulation of the reacting hard sphere
model?~10

)

Spring

[I. Multiple Scale Unfolding and Recomposition

A formal analysis is now presented by which mesoscopic
equations bridging two or more scales are derived. The method
Figure 4. BPs A and B interact through shared host particles as well is based on an unfolding of the Liouville equation to reveal its
as the direct forces between them, yielding a net effective force. multiple time and space scale character, followed by a recom-
position of the equation via a perturbation method to arrive at
a coarse-grained equation that captures the mesoscopic phe-
nomenon and averages out the shorter scale variations in a way
that preserves their effect on the long-scale dynamics. The
method allows for a hierarchical treatment leading to progres-

Figure 5. The configuration of a pair of nanostructures that, when sively coarser grained equations. . o .
compared to Figure 4, suggests the strong geometry-dependence of the |f @ system evolves on several time scales, it is appropriate
contact area and hence the strength and scaling of the interactionto introduce distinct time variablés. Let t = t be the
between the nanostructures and with the host medium. These geofundamental (i.e., shortest) time variabletdichanges by one
metri(_:al qonsiderations imply the scaling of various contributions to unit, then a typical atomic vibration or collision of a host
the Liouville operator. medium particle with another or with a nanoparticle takes place.
Because of its mesoscopic nature, the system also evolves on
system scales, depend strongly on the geometry of the nano-one or more longer time scales. If the time scales are separated
particles (Figure 5). It is shown here how these effects result by an order of magnitude or more, then a parametéxl)
from the many-body dynamics of a composite nanoparticle/host can be introduced that reflects the ratio of the characteristic time
medium system. of the fundamental scale to that of the next (longer) scale. The
The multiple scale understanding of nanosystems dates backnatural time variable for this first long scaletis= ¢t. As time
to Einstein, Langevin, Smolokowski, Chandrasekhar, and changes by a large interval (e.g-' fundamental time units),
others!= Deutch and Oppenhefpresented an approach to t; changes by one unit. This concept can be generalized to a
nanoparticle dynamics based on projection operators and asequence of timed, = ", that are presumed to be ordered
perturbation scheme in the nanoparticle/host particle mass ratiowith increasing integer powers af. There could be other
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sequences: for example,=t, t; = —(€2 In o), t, = €%, etc. case the leading terpy does not depend dg. Thuspg evolves

Only integer power sequences are considered here. slowly in time, for example, on mesoscopic or longer scales,
As a mesoscopic system can be described in terms of multipleand hence the @f) term in eq 1.1 implies

time scales, it may similarly involve a number of well-separated _

spatial scales. For example, igt= T define a position such Lo =0 (1.3)

that the average nearest-neighbor distance between molecules . . T

in the host medium is one unit. However, there may be other In the simplest casen is thus taken to have the equilibrium

spatial scales natural to the system. There are lengths characterf@M po = Wexp(=Ho)/Q in which Ho is the Hamiltonian from

izing the size of a nanoparticle or the average distance betweenVhich-/0is constructed. It.. [indicates an integration over all

the latter. Other scales that have no direct reflection in the \iariail/)jlfs_or_] which/o operates, then the partition functi@h
Liouville equation, such as the width of interfaces in a two- @ oLlis mdependen_t of these varlablt_es. In many problt_am_s
phase host medium or the Debye length for an electrolyte host ©f interest, the host medium supports multiple phases (e.qg., liquid

medium, may enter the problem. In analogy to the multiple VS gas). The resulting interfaces are configured, for example,

times, a set of spatial variableg, = ¢, n = 0, 1, ..., that with gas over liquid in a weak gravitational field. The latter
characterize the atomic, mesoscopic, and longer scale behaviorsf,'eId plays no S|gp|f|cant role energetically beqa_use the multi-
can be introduced. phase configuration results from the cooperativity due to host

Underlying these kinematic aspects of a mesoscopic systemM0lecule/host molecule interaction. Hence, althotghmay
are physical factors. For example, the ratio of the mass of a Nt have any appreciable, explicit dependence on the position
host medium molecule to that of a hanoparticle can be small. of the nanoparticle, nanoparticle position dependence can appear
Expressing this ratio as a poweroéllows one to see how the I Q as a consequence of the choice of the ensemble (i.e., gas
separations of physical scales (associated with mass or the®
strength/range of interaction potentials) imply the kinematic
scales.

As the above time and space variables are natural for
describing a mesoscopic system, the probabdifgr the state

verlying liquid).

There are more general solutions of eq 1.3, thatpisjs
expressed as a linear combination of null vectorg@fThese
are discussed further in the appendix in the context of the
hydrodynamic modes of the host fluid/nanoparticle system.
of the many-body system should be written as a function of From the_ form ofpo, W'S seen as the probability dist_ribution
these variables. |§ depends independently on two tirtggnd for the variables describing the longer scale behavior of the
ty, thendpldt = dpldto + €dpldty (on the basis of the chain rule).  SYStem. . .

Similar considerations follow for spatial derivatives. As shown ~ Collecting Of) terms in eq I1.1 yields

more explicitly in later sections, the spatiemporal scaling 5 9p
and the separation of the magnitudes of physical factors imply (_ —“/6)/01 =_ 0 + 100 (11.4)
that the Liouville operatar” may be written as a sum of terms 3t oty

of the forme" /7, in which_/;, is an operator with respect to the Thi ion h he f | soluti
momenta and the various scaled spatial variables for each Is equation has the formal solution
particle. With this, the Liouville equation takes the form

, to ., - , oo
=€ p] + j;Odto expl/ oty — to)] [_ s + /100
1

nzb6 o, - nZoenJ;'p (1) (I1.5)

. _ in which pf is p; atty = 0. The fact that/sHo = 0 implies
The multiple scale analysis of these systems reflects the
phenomenon of interest. For example, a theory can be developed e FHo gw
for the slow overall conformational changes of a nanoparticle P1~ 0 Q a_tl
in an aqueous medium: for the result of interest, one averages ~fHo

i ibrati isi i i 0 o , N

out the short time scgle vpramonal/colhsmnal behavior. This L/;O dt, exp[/ ot — t)]/ =W (I1.6)
suggests a physical picture in which the lowest orgesflects Q

a state of equilibrium for the fast host medium and intra- . .
nanoparticle modes. Mesoscopic theory then takes the form of _The second term on the right-hand side (.RHS) appears to
diverge adp — . For p; to be well-behaved, this term must be

an equation for the slow variables evolving in the presence of L L
rapidly fluctuating ones. Specifically, one obtains an FPC palanced by a contribution from the last term. This is the case

equation for the slow variable reduced probability distribution.

e’%pd — ¢ +

Deriving such results directly from the Liouville equation is oW
the objective of this and later sections. o 2w (1.7)
For cases in whicle < 1, an expansion fop, !
] 1t Q o . e_ﬂHOD
< DW= lim = " dty [exp[y/o(ty — to)]/ W—— 1.8
p=S pe (11.2) 1 o, to‘[o 0 P oty — to)]7 0 (1.8)

&
The &1 operator simplifies in many cases becauggAllfor
can be attempted. This is not a straightforward Taylor series any functionA frequently vanishes.

for p. Rather, the postulated dependence ofthen the multiple To O(?) one obtains

space and time variables introduces a type of infinite re-

summation that ensures that the expansion is valid for all times, D _ o) = %_a_f’l_,_ Py (1.9)
includingt — oo, o, O P2 o, ot oot L 1P .

In many phenomena in nanoscience, one is interested in
behaviors wherein the fast processes are at equilibrium. In thisUsing arguments as those for€}(one may derive an equation
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of the formaW/at, = &,W in which &, is a linear operator.
In obtaining this result, the terr®\W/at; is replaced by” W
and is bundled inta/ W.

Generalizing the above arguments tac®@nd introducing
linear operators/, (n =1, 2, ...) yields

oW

=W
o, "

(11.10)

Suppose that only the behavior on time scales greatertghan
but shorter tharin1 is sought (h >1). In this caset; can be
thought of as the new fundamental time appropriate fortthe
and slower behavior. Letting = t;, multiplying eq 11.10 by
€1, summing fromn = 1 ton = m, and using the chain rule
yields the FPC equation

o (I1.11)

m
@:

n=

Dt (1.12)
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= % n+1. The latter assumptions are found to be natural at a
later stage in the development and, in effect, imply a choice of
the phenomenon of interest (i.e., Brownian motion).

It is convenient to define relative coordina®s=T1, — Tn+1
for the N host particles. With this, the probability densjigp,
St oa P S PR T, U, B, 3, ) €) satisfies

4

This recomposed Liouville equation serves as the basis for a

rigorous theory of the slow (i.ety, ..., tyrdependent) dynamics

of a multiscale system. The level at which the development

is truncated depends on the phenomenon of interest: for
example, the latter is presumed to only involve dynamics on
thety, scale or shorter. The remainder of this paper is focused
on implementing this unfolding/recomposition prescription for

nanoparticles in a host medium. Generalized FPC equations for

slow behavior are obtained. The above unfolding of the Liouville
equation and recomposition into coarse-grained equations ca
be repeated, yielding a hierarchy of theories for the longer and
longer spacetime scale behaviors.

A challenge for the theory of mesoscopic systems is the
tendency of these systems to transition from one sptoe
scaling behavior to another. For example, interacting nanopar-
ticles evolve on a number of scales that depend on their
individual conformation and that relative to others. As these
nanoparticles can experience large conformational changes o

approach each other, such a system may switch between slov?

and fast behavior due to collision or self-assembly into complex
structures. This switching is captured by eq 11.11, as shown more
explicitly in later sections.

Ill. A Structureless Nanoparticle in a Host Fluid

Consider a system afl host particles, labeled 1, .N, and
a nanoparticle, labeleN + 1. Let the ratio of the mass of a
typical host particlerf) to that of the nanoparticle bé for ¢
< 1 (i.e., mn+1 = € 2m). Other scalings could be adopted as
appropriate and would evoke different behavioral regimes.
Assuming that the momentum distribution is near equi-
librium, the typical kinetic energy of a particle is 3T. Hence,
the typical momentum of the nanoparticle is of the order
/My 1Kg T, SO thafn, = 1P introduces a momentumthat
is appropriate for the nanoparticle. With this, the typical velocity
of the nanoparticle is @, and in a time characteristic of that
for collisions between, or with, the host particles, the nanopar-
ticle only moves a distance of €)( This suggests that the short
time scale host dynamics could reach equilibrium with the
instantaneous nanoparticle configuration. Long time and length

n

9
an L e+ E0+ E (11.1)
& ot
) NP8 v 9
o= D\ T T TS (1.2
=(m ds;  9s; Ip
P = = 0
[ 1=——+E— = .
H=— F = (I1.3)
, P 9
Sy=— :
2= e (111.4)
The factorsE andF are defined via
U LN i \VAR
E=-S—F=-"= =ZV (111.5)
€410, € 0T\

Here,V is the (N + 1)-body potential and is assumed to only
depend on the relative configuration. The oper&d assumed
to be O€% when applied to any quasi-equilibrium probability
under the notion that it involves many vector contributions,
which tend to cancel. A notable exception is extreme regions
of configuration space associated with shock waves or vortices
in the host medium induced by a high-velocity nanoparticle
(Figure 2). The scaling adopted here is valid for the quasi-
equilibrium host medium relevant for classic Brownian motion,
however. _

To examine the&E-scaling ansatz more closely, let the host
particles have a radilg, such thaRs ~ ¢ IR, for a nanoparticle
of size Rs. The numbem;, of host particles in a monolayer
r S . .

round the nanoparticle is thent&; times R, times the
density of host particle:?‘,~[(4/3):er‘]‘l for a liquid hos}.
Thus, Ny is O(?). For nanoparticle motion only driven by
fluctuations of the host, in the lard®s (¢ — 0) limit, the net
force on the nanoparticle imposed by the host is due to the
residual fluctuations from the large but finitg statistics. The
central limit theorem suggests that the net force on the
nanopatrticle by the host particles (assuming short-range forces)
is of the ordeN, %2, that is, O€). This is taken as a justification
for the scaling implied in eq III.5.

With this, €2 is seen as a natural parameter in terms in which
p can be expanded. From eq Ill.1 it is seen that titaemndts;
can be ignored as the RHS has no explainde? terms. Thus,
the present treatment is a three-time theory. Note that initial
data, host medium hydrodynamic modes, or space and time
scales arising from host multiphase behaviors could ewoke
and €3 behavior, however. Thus, we assume tpatan be
constructed as an asymptotic expansior?n

00

=" pn(P 31 - P Sp Ps R 1, 1, )€ (111.6)

n=

scale variables are needed to capture the overall nanoparticleAt O(e?), the Liouville equation allows for solutions that are

migration of interest here. These are found td4re ¢t andR

independent of the microscopic tintg so that /o0 = O.
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This has the quasi-equilibrium solution

= WW(E, R t, t,) = pW

The Hamiltonian for the medium in the force field of the
nanoparticle is denoteldp and Q is the partition function:

Po (I1.7)

Q= [dp,d’s, ... pyd’sy exp{ —BH} = @0 (lIl.8)

The function W depends only on the large-scale variables
describing the state of the nanopatrticle.
To O(?)

Ipg

0 o
8t2 +"/ 1Po

o~

in which we henceforth drop the 0 dgifor simplicity. Equation
I11.9 yields the solution

Lolpi=- (11.9)

t I Vel I vl BWA
+ f(; dt’ exp[yo(t — )] 100 — IEP

7t 0

pL=¢€"%; (111.10)

in which pf is the value ofp; att = 0. Because it involves the
evolution operator exp(ot), p1 involves short time scale,
fluctuating host dynamics.

The secular (divergent @s— o) behavior inp; must be
removed if the asymptotic expansion is to be well-behaved. The
removal of the secular behavior | implies

oW

at, =Wip=0

(I11.11)

Use has been made of the fact that @ap,O= 0 for any
factor A that vanishes at largpg and (2) periodic boundary
conditions orp with respect to thg are imposed. It is concluded
thatW has nat,-dependence, which implies thathas no such
dependence either.

The O¢?) terms yield

9 _ , 9o | P [ow, 3P
i =T iz - = |—= = .
(3t ~ ())Pz at, + 7101 m IBRP + VVEJ (1.12)
Applying [1.Cto eq 111.12 yields
9 _ W ot 0
at':‘bz[j: at, + e %ot
it 5 P [aw DT
dt'Ly expl/ot — ) e — - | == + =
Jo ALY Pl T PR
(111.13)

in which 7 = —In Q introduces the host medium for energy
7 (for further discussion see Section VI). In the above equation,
the fact that®A/ds0= 0 and @BA/dp; = 0O for any relevantA

has again been used.

The final result of this computation, an equationWgrarises
out of an examination of the largebehavior ofp,. Assuming
that all the initial data fop are captured impo, that is, the fast
variables are in equilibrium am:f is zero, integrating eq 111.13
with respect ta from 0 to tyax Yields [p2[{tmay), Which has to
be finite at all times for the self-consistency of the asymptotic
expansion. The sum of all of the terms[[that are found to
diverge astmax — © must thus balance, yielding

Ortoleva

W, B aw_y

B Yoy BP AT
K m R i Ve (W) BV w

" afim.m)

in whichy is the drag coefficient that can be expressed in terms
of the force autocorrelation function

v="% [, BF(0)-F(o)dr (11.15)

with F(r) = exp(—/or)F(0). Thus, the FPC equation with
thermodynamic force-9.7/9R follows from a scaling analysis

of the Liouville equation directly. The present derivation clarifies
the quantitative relations among the scales and their physical
origins and provides the expected expression for the drag
coefficient. Certain issues remain open, however, some of which
are addressed in the following sections and in the appendix.

IV. Multiple Nanoparticles on Seven-Time Scales

As two nanopatrticles approach each other, the behavior may
switch from a slow random walk to a rapid acceleration as
strong, short-range forces dominate. A conformational change
of a given nanoparticle can decrease its effective surface area
and, hence, the scalings of the averaging of fluctuating forces
imposed by the host medium or its interaction with other
nanoparticles (Figures 4 and 5). The behavior of a large number
of nanoparticles in a host fluid can transition from that of a
low viscosity suspension to that of a rigid, fluid-filled porous
matrix as density (and hence congestion) increases beyond a
critical level. Because of the importance of the large number
of time scales that can arise in the multiple nanoparticle problem,
the unfolding/recomposition method of Section Il is ideally
suited.

Consider the dynamics of a multiple nanoparticle system in
which (1) the structures are strongly affected by the host
medium, and (2) several spatial scales must be accounted for
because of the direct and indirect interactions between the
nanoparticles (Figures 4 and 5). As suggested in Figure 5,
several scalings are possible depending on the geometries of
each nanoparticle and the strength of the coarse-grained interac-
tion these geometries imply.

A collection of Ng spherical nanoparticles in a host medium
of N particles N> Ng) is used to illustrate the approach. Let
the nanoparticles be at positioks and, in analogy to the single
nanoparticle case, have masgedVlx and momenta 1Py, in
whichk=1, ...,Ng (for ¢ < 1). The host particles are described
by their positiong’j, momentgp;, and massesy, in whichi =
1, ..., N. The goal is to identify the time and length scales
characterizing the dynamics of the multiple interacting nano-
particle/host fluid system. To understand the range of possible
effects, first we limit the description of the nanoparticles to their
location, ignoring their internal structure and orientation (how-
ever, see Section V).

In addition to the variables introduced above, Xgt= X,
Yv = €%, RV = 1, RY = &%, andt, = €Mt for integern.
Assume that the potential energy of the system can be written
as

= = o o N\ (r T s T 2\ /S
V(P PoXy e X)) = Vo(Ty o T Xy o Xyy) + € Vg

(X X)) +VERWLRE®X, . Xy) (V.1)
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L e Vi N AU
Vo=Vi(Fy... Ty + Zuk(slk'"SNk) —=Y — (IV.11)
k= Bxk = 8Xk
Ng N _ Ng _ _
V|Esh = Z Uili(sﬁk) = Zvl'z(slk, Sy (V.2) is Q(eo) if .within’ the range ofUj there are Q{3) host
== k= particles. Finally,/s, /8, {9 ... = 0.
o ~ To O(), the Liouville equation allows for thig-independent
in whichg, =T; — % andS, = R* — X,. In this expressiony;, solution

is the interaction of host particles in the absence of any

nanoparticleslJ; is the strong, short-range nanopartietest exppH,)

interaction, Uh( is the weak, long-range nanopartieleost P0=TW

interaction, and/gg is a direct interaction between nanoparticles.

In what. follows, an FP.C equation for a reduceq probability which W depends on Bk, %, Xe, Y, ER’I_(l), *Rl_(a), andt, for n

density |s_constructed: it accounts fqr the fluctuating forces the - o The partition functiorQ is given by

host medium exerts on the nanopatrticles that are taken to scale

with a power ofe reflecting nanoparticle size. The ansatz of eq 2 a 3

IV.1 is only one of the possible scaling approaches. The idea Q= f &®pyd’r; ... pyd’ry exp-pHy)  (IV.13)

that the direct inter-nanoparticle interaction scales?@s meant

to imply that the strong attractive nanopartieleost interaction N principle, Q depends on all spatial variables except

forbids the nanoparticles from coming into direct contact. Other With this partition function, associate a free energy via

scalings must be used if this is not the case. Q = exp(=p.7). From Figure 5 it is seen that the forces in-
Once the physical picture has been set forth (i.e., the ansatzduced on one nanoparticle by another depend on the geometry

of eq IV.1), the formal unfolding/recomposition analysis of Of the contact zone. Thus, the host avergge., as weighted

Section Il can be carried out. The Hamiltonian describing the bY €xpE=A(Ho — 7)]} depends on the configuratidiX; k =

(IV.12)

system is written as

H = Hy + Hg (IV.3)
NP
Ho= S —+V,,
=12m
Ng Pi
(IV.4)

Ho =S — + &S, + VL
B kZZMk BB Bh

Withﬂthis, the N + NE)-bodX plobability distributionp(p;, Ti,
RY, R i =1, ..,N; P, % X Yi; k=1, ...,Ng; tn, n = 0; €)
evolves via

o d
2w
L, N Moo (IV.6)
o = m 8?, a_r.l a_pl .
Ne E>k a
Nz :_Z — (IvV.7)
2 Alm, ax
ND)
—fjn: _Z_. —_ ! n:1!3 (IV'8)
= m 8R1-(n)
om B ave 5 oM
%//4:_2_'?— = = — = = (|V.9)
& Mk 3Yk an 8Pk an oP,
N Ng 8U:I( 9
7= 2 (IV.10)
1I=1k= 8R1(1) 8pl

and /7 is the same ag’s with a/aﬁﬂl’ and d/dp; replaced by
dl0X and 9/0Px. Note that

1...Ng} of the nanoparticles, their contact areas (not addressed
explicitly here), and possibly thé andY in ways that depend

on the scales of spatial variations in the host medium (i.e., due
to phase interfaces).

A variety of scaling behaviors and associated thermodynamic

forces may arise from the gradients @f with respect to the
nanoparticle configuration. For example, there could be a long-
range ordering induced in the host medium lb?. Thus, a
nanoparticle pair could experience long-range thermodynamic
forces induced by the host medium. Such effects depend on
temperature and the mean density of the host (e.g., the proximity
to the host medium critical point). For example, in a liquid/gas
coexistence-supporting system, a cluster of nanoparticles could
be bound in a host duplet, implying that could depend on
the longer scale variable¥, Yi, RY, and R® in ways that
depend on the size and shape of the host droplet and the width
of the liquid/gas interface. Scaling of the multiple nanoparticle
system is seen to allow one to capture both long- and short-
range thermodynamic forces including more subtle effects not
seen directly in the Hamiltonian (e.g., phase boundaries and
droplets). The theory outline above may be closed ia"\p
yield a recomposed equation for the dependenc&/aihn the
Pi %o Xo Yio RY, andR®, and on the scaled timds, ..., t;.
This formalism allows one to analyze a full range of phenomena,
from the self-assembly of a virus to the dynamics of a
deformable porous medium, that accounts for the fluctuating
and coherent forces imposed by the host medium.

The viscous drag factors that arise depend on the configu-
ration of the nanoparticle array. One expects that theories of
virus self-assembly based on Langevin equations for the
interacting units should contain such configuration-dependent
drag coefficients. The interaction between units of a self-
assembling structure, as mediated by a fluctuating host fluid, is
taken into account by the present formalism.

V. Conformational and Rotational Dynamics

A nanoparticle experiences continuous rotational and internal
vibrational/conformational fluctuations. In this section it is
shown that mesoscopic behavior emerges not only from both
the large mass and the size of a nanopatrticle, but also from the
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collective behavior of a large number of its constituent atoms  To illustrate the range of possibilities, reconsider the scaling
or molecules bound as a deformable structure (e.g., a viral of the net force acting on the center of mass. This scaling

envelope). depends on the surface area of the nanostructurel betthe
Consider a nanoparticle madeNf particles, labelegl= 1, longest length characterizing the size of the nanostructure. If

..., N*, immersed in a host medium of particles, labeled = the structure is spherical and compact (e.g., not an empty shell),

1, ...N*. The center of mas&°™ of the nanoparticle is given  then A2 scales as the total masé and, hence, as? so that

by surface area scales as*3. If the nanostructure is a hollow

sphere, circular disk, or a rod, then surface area scales?as
eom L X With this, it is seen that the statistics of the random force scales
r=— Z M; T; (V.1) with a power ofe that depends on the geometry of the structure,
M= which is also the case for the moment of inertia.

A distinct class of considerations arises when the internal
I . . dynamics of the nanostructure is considered. Although the
M is Its mass W = M + ...Myx). Define N* displacements oo\ migration and rotation of a nanostructure can be slow,
via G; = T;' — T°°™. In analogy to the scaling ansatz of Section s jnternal dynamics can be considered on the same level as
IIl, assume tha = nVe? for a typical massnof a host particle.  hat of the host medium. Hence, the lowest order solution of
With Jagaman and Ortole¥ait is convenient to introduce a e | jouville equation is that which is for the nanostructure at
set of collective coordinates, ..., I'sy* -3 such that a given position and orientation, but, like the host medium, all
other internal degrees of freedom are at equilibrium. Thus, one

in which?}" is the location of particl¢ in the nanoparticle, and

5 = R L @9 (V.2) may in\_/estigate a variety of distinct scalings for the fluctuating
i nZl nom ) dynamics of a nanostructure.
in which 3° is a reference configuration, arfd is a basis V1. Further Developments
function. With these coordinates and their time derivatiVgs A scaling approach for deriving FPC-type equations has been
one may rewrite the Liouville equation. The advantage is that presented. These equations yield the dynamics of the slow
one can choose tHgso that a relatively small subset of thg variable reduced probability density. Computer molecular

captures the slow dynamics of the nanostructure, and therebygynamics and Monte Carlo methods can be used to provide
one may carry out a multiple scale analysis involving the values of generalized drag coefficients and thermodynamic
dynamics of the slow internal modes of the nanoparticle coupled forces. In this way mesoscopic dynamics is derived from an
to the Brownian motion of the center of mass and the host atomic force field to arrive at a parameter-free theory. The FPC
medium. equations obtained capture the richness of mesoscopic phenom-
The amplitudes of the modes defined in eq V.2 provide a ena, which, by definition, follow from the interplay of deter-
starting point for a multiple scale treatment of the deforming, ministic and stochastic behaviors.
rotating structure. Assuming that thg of eq V.2 can be divided Practical considerations limit the direct numerical solution
into fast and slow groups, the lowest order solution of the of FpC equations. However, such equations are equivalent to
Liouville equation in the multiple scale formalism involves an Langevin equatiods Thus, a promising approach is to set forth

equilibrium factor that consists of the potential of the host {he | angevin equation corresponding to a given FPC equation
particles and the nanopartiel@ost interaction. As the latter 5 then proceed in a Monte Carlo fashion.

involves the slow as well as the fast mode amplitudes, there is  he interaction of a nanoparticle with a nonuniform host
a nontrivial coupling between the slow modes of the nanopatrticle
and the host medium. The result is a recomposed equation for
the probabilityW of the long-time behavior of the coupled slow
migration, rotation, and deformation of the nanopatrticle. This
equation involves thermodynamic and drag forces for the
dynamics of migration, rotation, and slow deformation modes.
All these effects depend on partition functions and fluctuating
force correlation functions from the host and internal mode
dynamics.

For a rigid structure, only the rotational modes of eq V.2 are
needed, that is,

medium is accounted for in the present formalism. Applications
include the traversal of the outer cell membrane by a virus and
the dynamics of nanoparticles at oil/water or other phase
boundaries, which are common features of natural and engi-
neered systems. The transport of gold colloids to form gold
deposits or the process of mineral particle transport during
petroleum production are other examples. For these systems,
the partition function of Sections HV depends on the position
and orientation of the nanoparticles. The partition function is
that for the host medium equilibrated with the instantaneous
nanoparticle configuration. It can be written as exg(7) in
- Y which the free energy” depends on the configuration of the
0;=10; (V.3) nanoparticles. In this case, the nanoparticles are driven by the
- gradient of 7 with respect to the state of the nanoparticles.
for a 3 x 3 rotation matrixI" that can be expressed in terms of This thermodynamic force appears in the FPC equation for the
three Euler angles. With this, one can recast the Liouville nanoparticles (e.g., eq 111.13).
equation in terms of the Euler angles and their time derivatives, Estimates of the dependence @f on nanoparticle config-
the position and momentum of the center of mass, and the stateuration can be obtained. Consider the situation of Figure 7 in
of the N host particles. As with the large BP asymptotics of which a structure is passing between two phases (e.g., a virus
previous sections, one may analyze large moment-of-inertia entering a host cell membrane). Let' and._¢ " be the surface
asymptotics (and similarly for slow bending, dilatation, torsion, areas of the particle exposed to Phases | and I, respectively.
or other large-scale, slow modes of a nonrigid structure). As Let o' ando' be the interaction free energies (energy/area of
the frequencies of these modes can imply a large range of timethe nanoparticle/medium contact). If these surface energies are
scales, a variety of scaling behaviors and asymptotic analysesthe same for all points on the surface of the nanopatrticle, and
can emerge. F!is the free energy of the system when the particle is

=
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in this theory describes the evolution of the nanoparticles as
influenced by a given host mode.

In conclusion, rigorous approaches to the dynamics of
nanosystems can be developed for obtaining parameter-free or
few-parameter models. Therefore, predictive modeling of nano-
systems can be achieved.
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Appendix: Slow Host and Intrastructural Modes

Figure 6. Poliovirus proteins self-assemble into a capsid. The shape  Slow modes in the composite nanoparticle/host medium
and fluctuations of the proteins mediate their hierarchical self-assembly system warrant care in a multiple scale analysis. Neglect of the
into protomers, then into pentamers, and finally into a capsid. The effects of these modes results in the omission of host vortex
T e e oot ad 1GMReraLe fphenomena s show in Figure 2 of the siow compressional,
bending, twisting, or other large-scale dynamics of the nano-
particles. A formal analysis, based on the spectrum of the
Liouville operator, is now set forth. In the main body of this
work, it was assumed that the smallness of the host particles
relative to the nanoparticle implied that the host dynamics is
fast relative to that of the nanostructure. However, as suggested
in Figure 2, the motion of a nanoparticle can create long-lived,
large spatial scale hydrodynamic disturbances in the host. This
implies that the Liouville operatar’, for the nanostructure-
Figure 7. A nanoparticle shown passing from Phase | to Phase Il free host medium hgs small eigenvalues. Thls. causes a
because of the difference in its interaction with the light and dark host breakdown Of, the multlscale development setforth in Sgctlons
particles. The dynamics of the structure is driven by both random !ll —V. The origin of this breakdown is a feedback wherein the
fluctuating forces and the thermodynamic effect of the fraction of the large-scale motion of the nanoparticle induces hydrodynamic
nanoparticle’s surface exposed to Phase | vs Phase II. motion in the host which, in turn, pushes on the nanoparticle.
Because of the large number of host particles involved, the
completely immersed in Phase |, far from the interface, then induced host medium disturbance has a large cumulative mass,
and the time scale of the host hydrodynamic disturbances can

‘:7_(QR,Q) =T7'— (L' + A"+ e+ " be comparable to that of the motion and deformation of the
(VI.1) nanoparticle.

_ If the nanoparticle is imparted a kinetic energy on the order

in which the areas depend on the nanoparticle posR@nd of #gT, then its velocity (and, for the phenomena of interest,

the orientation (specified by Euler angled. In this manner the velocity induced in the disturbed host medium) is 0é)O(
one may formulate the FPC equation to simulate a virus or otherwhen the nanoparticle has a mass o&@). Thus, the term
particle as it interacts with an interface. This provides a guideline m=17; -3/df; in %} consists of a factor, @), from pi/m; divided
for developing the more rigorous approaches of Sections Il by a length that is roughly the size of the nanoparticle [e.g.,
V. O(e7Y)], yielding an effective Q) contribution to/}. This

An outstanding challenge is continuous scaling. For example, suggests that the motion of the nanoparticle excites modes of
as a nanostructure propagates through a host medium it may;}, with eigenvalues of Q#). An alternative argument is that
interact with the phonons or varieties the medium supports. a vortex acts as a correlate particle (Figure 3): like the
These disturbances have a continuous range of characteristicanoparticle, the correlate has a velocity o€)X(nd it operates
times that span many orders of magnitude. Thus, there may noton the lengthscale of the size of the nanoparticle [e.g:; )
be a well-defined separation of scales or a natural small Assuming that these modes contribute a ternyinthat is of
parameter. However, dimensional analysis suggests that the sizehe magnitude of an effective velocity [heredf}(divided by a
of a nanoparticle divided by its speed is a characteristic time characteristic length [here ©()], then such a term is @X).
that is likely selected from the spectrum of time scales for the In summary, it is expected that the relevant eigenvalues of the
composite host/nanoparticle system. Other characteristic timesinteracting nanoparticle/host system are oé(In the above
can be constructed from particle size and host medium viscosity.arguments we have assumed that the length scale of the
Thus, there may be ways to select relevant subsets of host modesdisturbance in the host fluid is the same as the size of the
from the continuum so that continuously scaled systems could nanoparticle. In reality it can be quite different, being related
be treated rigorously by a multiscale approach. The co-particle to the velocity of the particle and the viscosity of the host
model of Figure 3 could be a basis for an approach to vortices fluid.
(Figure 2) and phonons. In the appendix it is shown how the  Let |nObe thenth eigenfunction of/}, with eigenvaluel,:
introduction of discrete host modes results in a set of coupled o
FPC equations, one for each eigenfunction of the host medium /pINC= AgIn0] @
Liouville operator. Each of the probability functions that arise In what follows, it is assumed that the eigenfunctions are
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orthonormal [@'|nd= Jny) and that the spectrum ofy, is

discrete. There is a wide range of eigenvalues: some correspond

to slow conservation-derived modédls, 6mall); others are fast,
localized, or particle-like moded(large). On the basis of the

above arguments, assume that the modes that are relevant t
the phenomena of interest can be divided into two well-defined

groups:

_ | Ay, fast modes

= 2
A%e?, slow modes @

n

for Ay constant ag — 0. With this, 7/, may be divided into

fast and slow parts via a spectral decomposition. The introduc-

tion of projection operatorgn| yields

Ortoleva

for operators () related ta/. To O?) one has

D do o1 o
Si—— =t —— Lo, — (Lt L 7
(’Vf ato) P2 8'[2 atl < 1P1 32 Y s)Po ( )
Rrom this equation one may extract a set of coupled linear
equations for the,-scale evolution of tha\,. The resulting
equations foroW,/at; and dW,/at, can be recomposed into a
single, long-time equation as shown in Section II. This formal
construction of the coupled nanoparticle/host medium equations
suggests the scenarios by which the host medium hydrodynamic
modes can be excited, allowing for a wide range of behaviors
for nanoparticle motion.

The above results do not make the detailed connection
between the vortices and th&,. This would follow from a

detailed examination of the properties of the eigenfunctjons
that correspond to hydrodynamic behavior.

The lowest order probability (5) accounts for the slow
nanoparticle/hydrodynamic behavior in terms of a joint prob-
ability that is expressed as a sum of slow modigs This
suggests a phenomenological approach wherein the nanopatrticle/
For_ /s the sum is restricted to modes with eigenvalues that host system is modeled via a Langevin equation for the
scale ag?, and similarly./7. nanoparticle coupled to the host fluid via a mesoscopic fluid

With the above equation and the formalism of Section I, mechanical model with fluctuating forces and fluxes, and is
one may reexamine Brownian motion by now allowing for the subjected to boundary conditions at the surface of the nano-
effects of slow behavior induced in the host medium. particle or body forces within the host continuum imposed by

With the above equation, the Liouville equation for the the nanoparticle. However, the results obtained above show that
composite nanoparticle/host medium system is assumed to bedone must cast the problem in terms of a joint coarse-grained
probability (i.e., the sum of thé/,|nCterms) and not as a product
of W and host hydrodynamic factors.

o o 2.
W= T €€

s

L= O aintn| 3)

n

9 o 2 270 92)
FEliten+t et e (4)
References and Notes

(1) Chandrasekhar, &strophys. J1943 97, 255.

(2) McQuarrie, D. A.Statistical MechanigsHarper and Row: New
York, 1976.

(3) Tokuyama, K.; Oppenheim, I. Third International Symposium on
Slow Dynamics in Complex Systems, Sendai, Japan, Ne¥, 2003; AIP
Conference Proceedings: Melville, NY, 2003.

(4) Coffey, W. T.; Kalmykov, Y. P.; Waldron, J. TThe Langein

Unlike in Section IIl, /4 now has an Qf) contribution./,
whereas/”, is from the motion of the nanoparticle itself. An
expansion ofp in € implies that if H; is the Hamiltonian
generating/%, then to O€°)

exp(—pHy) © I Equation With Applications to Stochastic Problems in Physics, Chemistry
Po=——— W, (P, X, t;, t,)|n] (5) and Electrical EngineeringWorld Scientific Publishing Co.: River Edge,
0 Q " ' NJ, 2004
n 1 .
(5) Deutch, J. M.; Oppenheim, [Faraday Discuss. Chem. Sd987,
83, 1-20.

for a set of function§\, that depend on the slow timés= et
andt; = €2, the scaled nanoparticle coordinate, and momentum
P. The higher order problems are similar to those discussed in
Section lll. Using a solubility condition, one finds that the
dependence of th@/, is generated by

(6) Shea, J.-E.; Oppenheim,Rhysica A 1998 250, 265-294.
(7) Bose, S.; Ortoleva, Bl. Chem. Phys1979 70, 3041-3056.
(8) Bose, S.; Ortoleva, FPhysics Lett1979 A69, 367—369.
(9) Bose, S.; Bose, S.; Ortoleva, .Chem. Physl98Q 72, 4258~
4263.
(10) Bose, S.; Medina-Noyola, M.; Ortoleva, .Chem. Phys1981,
75, 1762-1771.

oW, (11) Ortoleva, PNonlinear Chemical Wees John Wiley and Sons:

=5 gy (6) New York, 1992.

at Z =7 i (12) Jagaman, K.; Ortoleva, B. Comput. Chem2002 23, 484—
1

491.



