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Abstract

Using multiscale analysis and methods of statistical physics, we show that a solution to the N -atom Liouville equation can be
decomposed via an expansion in terms of a smallness parameter ε, wherein the long scale time behavior depends upon a reduced
probability density that is a function of slow-evolving order parameters. This reduced probability density is shown to satisfy the
Smoluchowski equation up to O(ε2) for a given range of initial conditions. Furthermore, under the additional assumption that
the nanoparticle momentum evolves on a slow time scale, we show that this reduced probability density satisfies a Fokker–Planck
equation up to O(ε2). This approach has applications to a broad range of problems in the nanosciences.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Nanosystems are currently of great interest in the fundamental and applied life sciences. A major unresolved
challenge is to develop a predictive approach to these systems that capture the inter-communication among the
processes operating on differing scales in space and time. The premise of the present work is that one can introduce
order parameters (slowly varying quantities that capture the essence of large-scale bionanosystem phenomena) and
then, using Newton’s equations for the N -atom system, derive equations for stochastic order parameter dynamics.

Examples of bionanosystems abound in nature and medicine. Viruses are supra-million atom entities with complex
structural and functional characteristics, including dramatic transitions, interactions with host cells, and self-assembly
of subunits. Ribosomes are of size and complexity similar to viruses, and mediate an important intercellular process
— translation of mRNA into proteins. Protein nanoviruses conduct electric currents, allowing some bacteria to
exploit oxide mineral grains when performing oxidation in the oxygen-poor subsurface. In addition to these natural
phenomena, scientists are currently developing nanocapsules for the delivery of therapeutic payloads (such as drugs,
siRNA, or genes) to diseased tissues, and for medical imaging by equipping nanoparticles with flourescent subunits
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while other subunits are designed to bind with diseased cell membrane-bound proteins. Finally, researchers are
designing mutated viruses with diminished viralence to serve as vaccines.

To address all of these applications, one would like to develop predictive modules with the ability to efficiently
simulate the dynamics of bionanosystems. Such programs should include the following characteristics :

• an underlying all-atom description to evaluate the interaction of bionanosystems with selected molecules,
membranes, or other features in their background microenvironment;

• a model that does not require recalibration with each new application;
• an approach that builds in the detailed physical molecular laws and the predictive power following from them;
• an approach that is computationally feasible.

Considering this list, we suggest that a multiscale analysis of the equations of N -atom physics will fulfill each of
these requirements. Molecular Dynamics (MD) is a current state-of-the-art software package that efficiently performs
simulations of Newton’s equations for each of N atoms in a system of interest. An efficient MD code, NAMD, has
previously been used to simulate a whole virus using a 1024 CPU supercomputer, but the process proceeds at a rate of
about 1 nanosecond of simulated time per day. The typical timescale for a viral structural transition is on the order of
a millisecond or greater. Thus, the aforementioned MD code and hardware would take 3,000 years or longer to attain
meaningful results. As bionanosystems evolve due to the cross-talk between processes which take place on many
scales in both space and time, a computational algorithm based on a multiscale approach seems like a natural choice.

The use of multiscale techniques in statistical mechanics beginning with the Liouville equation has a long history
(see Refs. [10,6,7,11], and more recently Refs. [5,2,3]). In the present work, we demonstrate several new elements
of the analysis. In our approach, the nanoparticle’s internal atomic state, as well as that of the microenvironment, are
maintained allowing for a more natural and symmetric starting description. Additionally, we utilize a version of the
Gibbs postulated equivalence of ensemble and long-time averages, following classical results within ergodic theory. A
precise representation is obtained for the momentum factor in the normalization constant for the lowest-order N -atom
probability density in a perturbation expansion of a solution to the Liouville equation. As a result, Fokker–Planck and
Smoluchowski equations are derived which describe the stochastic dynamics of these slow-evolving order parameters.
These results can then be utilized in the production of an efficient software module that can model nanoparticle
behavior over long time scales, thereby capturing the necessary structural dynamics of a virus.

In recent investigations (see Refs. [2,3]), the reduced probability density, W , was shown to obey an unconserved
equation of Fokker–Planck type up to O(ε2). The derivation of this equation was inconsistent with the mathematical
framework of differential equations as the thermal average and the derivatives with respect to order parameters ∂

∂Φ

and ∂
∂Π do not commute. In the work that follows, we eliminate ambiguities regarding the permutation of the thermal

average and these derivatives. Additionally, the lowest order distribution was previously taken to be independent of
the conjugate momentum Π . This is done in error, causing the lowest order dependence on the slow variable Π to
be lost and propagating this throughout the multiscale analysis. In Section 3, we rigorously correct these mistakes
and establish many of the ideas of Ref. [3] on a more precise footing by showing that the correction to the reduced
probability density W̃ indeed satisfies a Fokker–Planck equation in conservative form. Prior to this, we show in
Section 2 that if the momentum is an atomically varying quantity, rather than a slowly varying order parameter, then
W̃ directly satisfies the Smoluchowski diffusion equation up to O(ε2). In both sections, our derivations occur from
the starting point of the general kinetic equation so that the resulting coarse-grained equations do not arrive from
solubility conditions, but from a rational expansion of the Liouville equation.

2. Multiscale analysis: Smoluchowski equation

A central goal of multiscale analysis is to rigorously derive coarse-grained equations starting from a more
fundamental, final scale theory. The Liouville equation has been a common starting point. The challenge is that
while the Liouville equation preserves probability by construction, it is not guaranteed that a given truncation of the
equation will be conserving. A re-examination of multiscale analysis for the Liouville equation is now carried out to
identify potential difficulties of this type that may arise, and to set forth techniques to resolve them. In this section we
resolve probability conservation violations when the momentum is not a slow variable.

Consider the Liouville equation in a multiscale framework wherein order parameters are introduced. We consider
an N -atom system consisting of a nanoparticle of N∗ atoms and a host medium of N − N∗ atoms. For each atom
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i = 1, . . . , N , we write pi , ri ∈ R3, and mi > 0 as the momentum, position, and mass of atom i respectively. In
addition, we use the notation Γ = {r1, p1, . . . , rN , pN }. For each i = 1, . . . , N , define the indicator function

θi =

{
1, if atom i is in the nanoparticle
0, otherwise.

For the nanoparticle, we define its total mass

m =

N∑
i=1

miθi ,

the center of mass

R =

N∑
i=1

mi

m
riθi , (1)

and the total momentum

P =

N∑
i=1

piθi . (2)

To begin the multiscale analysis, we first introduce a dimensionless scaling parameter ε in the mass terms by
writing

ε =
m̂

m
, (3)

where m̂ is the mass of a typical atom. In the case that all atoms in the nanoparticle have the same mass, mi = m̂ for
all i = 1, . . . , N∗, it follows that m̂

m =
1

N∗ . Hence, ε ≈ (N∗)−1. In this section, we make the following assumptions:

1. The total nanoparticle momentum does not evolve slowly — P is O(ε0).
2. The net force on the nanoparticle is not decreased due to cancelation of atomic contributions — f is O(ε0).
3. Large migration distances are not a consideration — R is O(ε0).

As a result, order parameters are O(ε0) and need not be scaled in ε, even though Newton’s equations show that they
evolve slowly as dR

dt =
P
m = ε P

m̂ = O(ε). We note that other scalings would be appropriate to capture different
behavioral regimes.

Let us assume ρ satisfies the Liouville equation

∂ρ

∂t
= −

N∑
i=1

[
pi

mi
·

∂

∂ri
+ Fi ·

∂

∂pi

]
ρ ≡ Lρ, (4)

where we define Fi to be the force on atom i and t to be time. In addition, we assume throughout that ρ decays at
infinity (a standard assumption for a probability density) so that boundary terms do not appear in the calculations from
integration by parts. Denote the collection of all atomic positions by Γr = {r1, . . . , rN }. Given the probability density,
ρ(Γ , t), we define

W̃ (R, t) =

∫
∆(Γ ∗

r , R)ρ(Γ ∗, t)dΓ ∗, (5)

where

∆(Γ ∗
r , R) = δ(R − R∗), (6)

R is the center of mass order parameter, and

R∗
=

N∑
i=1

mi

m
r∗

i θi
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is the Γ ∗
r -dependent value of R. Then, using the dependence of W̃ on ρ, a solution to the Liouville equation, we may

show that W̃ must satisfy a conserved equation. Since ρ satisfies (4), we find

∂W̃

∂t
=

∫
∆

∂ρ

∂t
(Γ ∗, t)dΓ ∗

= −

∫
∆

(
N∑

i=1

p∗

i

mi
·

∂ρ

∂r∗

i
+ Fi ·

∂ρ

∂p∗

i

)
dΓ ∗

=

∫
ρ

(
N∑

i=1

p∗

i

mi
·

∂∆
∂r∗

i
+ Fi ·

∂∆
∂p∗

i

)
dΓ ∗

= −

∫
ρ

(
N∑

i=1

p∗

i

mi
·
∂ R∗

∂r∗

i
+ Fi ·

∂ R∗

∂p∗

i

)
∂∆
∂ R

dΓ ∗

=
∂

∂ R

(∫
ρ∆LR∗dΓ ∗

)
= −

∂

∂ R

(∫
ρ∆

P∗

m
dΓ ∗

)
.

Thus, the reduced probability density, W̃ , satisfies

∂W̃

∂t
= −ε

∂

∂ R

(∫
ρ∆

P∗

m̂
dΓ ∗

)
. (7)

Next, we attempt to determine ρ up to O(ε). The N -atom probability density, ρ(Γ , t), is then assumed to be
expressed as a function of an additional argument, Υ(Γ , t, ·) in such a way that when the last argument is evaluated
at R, ρ is obtained, i.e ρ(Γ , t) = Υ(Γ , t, R). Instead of labeling this new function, we will just extend our previous
notation and refer to it as ρ(Γ , t, R). This displays the dependence of the probability density on multiple scales
of motion. Hence, ρ depends on the all-atom descriptive variables Γ , as well as on R defined by (1), the latter an
expression of the fact that ρ has indirect dependence on the all-atom state through order parameters and thus depends
on the all-atom state in several, distinct ways.

We apply the Liouville operator to ρ(Γ , t, R) and invoke the chain rule to find

∂ρ

∂t
= −L0ρ −

N∑
i=1

pi

mi
·

dR

dri

∂ρ

∂ R
.

Using (1) this becomes

∂ρ

∂t
= −L0ρ −

P

m
·

∂ρ

∂ R
. (8)

Here, we are writing L0 instead of L because these derivatives are taken at constant values of R. By introducing (3)
into (8), the Liouville equation (4) transforms into a multiscale equation (see Refs. [2,3] for more details) as

∂ρ

∂t
= (L0 + εL1) ρ, (9)

where

L0 = −

N∑
i=1

[
pi

mi
·

∂

∂ri
+ Fi ·

∂

∂pi

]
(10)

and

L1 = −
P

m̂
·

∂

∂ R
. (11)
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Again, it must be noted that L and L0, while seemingly exact in definition, differ because the differentiation in L0
is performed at constant values of order parameters R. Additionally, the differentiation in L1 is performed at fixed
values of Γ . Further details regarding the all-atom, multiscale analysis (AMA) for the Liouville equation can be found
in Refs. [2,3,5,9]. The operators (10) and (11) differ from that of the previously mentioned papers [2,3] since in that
work the conjugate momentum Π is treated as an order parameter. In the work that follows in this section, we treat
this momentum term as a micro-variable instead.

Assuming the net force on the nanoparticle does not experience cancelation due to fluctuating terms, it can be
written in terms of the individual atomic forces as

f =

N∑
i=1

Fiθi . (12)

We let V (Γr ) be the N -atom potential so that ∂V
∂ri

= −Fi for every i = 1, . . . , N . Next, we assume that ρ may be
expressed as a power series in ε:

ρ =

∞∑
n=0

ρnεn . (13)

A set of time variables, defined via tn = εn t , is introduced to capture effects of processes occurring on the various
timescales. The chain rule implies

∂

∂t
=

∞∑
n=0

εn ∂

∂tn
. (14)

We then expand (9) using (13) and (14) and separate ε scales. Define for n ∈ {0} ∪ N,

Λn =
∂

∂tn
− Ln (15)

where we take Ln = 0 for n > 1. The expansion yields the equations

Λ0ρ0 = 0,

and for n ∈ N,

Λ0ρn = −

n∑
i=1

Λiρn−i .

Assuming the statistical state of the system has quasi-equilibrium character, the lowest order distribution ρ0 is
taken to be independent of t0. Thus, to lowest order we find

L0ρ0 = 0. (16)

This implies ρ0 is a function of the conserved dynamical variables, notably the total energy H , as well as of R. The
latter occurs because the derivatives ∂

∂ri
and ∂

∂pi
in L0 are to be taken at constant R, and thus L0 R = 0. Then, we can

define

H =

N∑
i=1

(
p2

i

2mi
+ V (Γr )

)
and notice that L0 H = 0.

Using the entropy maximization principle, one arrives at the nanocanonical solution to (16) from [2]:

ρ0 =
e−β H W (R, t)

Q
≡ ρ̂W, (17)
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where

Q(β, R) =

∫
∆(Γ ∗

r , R)e−β H∗

dΓ ∗. (18)

Here ∆ is defined as in (6) and H∗ is the Γ ∗-dependent value of H . For convenience we write t for the collection of
slow time variables t = {t1, t2, . . .}. As is standard in multiscale theory, determination of W is delayed until higher
orders in the analysis. With this, ρ0 is seen to factorize into the conditional probability ρ̂ (i.e. for Γ given R), multiplied
by the reduced probability W for the slowly evolving state of the order parameter R. We define the thermal average
of a given dynamical variable, A(Γ ) by

Ath
≡

∫
ρ̂∆ A(Γ ∗)dΓ ∗. (19)

Now, we will assume that the nanocanonical ensemble obeys the Gibbs hypothesized equivalence between the long-
time and ensemble averages. More specifically, we utilize a classical theorem of Birkhoff ([4] can provide more detail)
which states that the thermal average of a dynamical variable A(Γ ) and its long-time average are equal. Using classical
semigroup methods from applied partial differential equations (see Ref. [8] for more detail), one may show that the
linear operator L0 is the infinitesimal generator of a strongly continuous semigroup on the function space L2(Γ ). This
semigroup is then well-defined and denoted by eL0t0 . Hence, in the analysis that follows, we will rely extensively on
the property:

lim
t→∞

1
t

∫ 0

−t
e−L0s Ads = Ath (20)

for all dynamical variables A(Γ ). Thus, the long-time average or time evolution of a variable does not affect the
value of its thermal average as defined in (19). The survey [4] or the classic article [1] can provide more background
information and detail from an ergodic theory perspective.

To O(ε) one finds

Λ0ρ1 = −Λ1ρ0. (21)

Using the previously constructed semigroup eL0t0 , Eq. (21) admits the solution

ρ1 = eL0t0 A1 −

∫ t0

0
eL0(t0−t ′0)Λ1ρ0dt ′0

= eL0t0 A1 −

∫ t0

0
eL0(t0−t ′0)

[
ρ̂

∂W

∂t1
+

P

m̂
ρ̂ ·

∂W

∂ R
+

P

m̂
·

∂ρ̂

∂ R
W

]
dt ′0.

The first order initial condition A1 is, for now, undetermined and has the dependence A1(Γ , R, t). As a consequence
of the cross-level communication inherent to multiscale analysis, the behavior of ρ1 at large t0 provides information
about the t1-dependence of W , while the analysis of (7) provides a necessary condition on A1 that ensures the equation
determining W̃ is closed. Letting s = t ′0 − t0, one obtains

ρ1 = eL0t0 A1 − t0ρ̂
∂W

∂t1
+ ρ̂

[
β f thW −

∂W

∂ R

]
·

∫ 0

−t0
e−L0s P

m̂
ds. (22)

In this equation, β f th
=

∂
∂ R (ln Q), so that f th is the force averaged via the nanocanonical ensemble. This term occurs

because of the dependence of ρ̂ on R and we will verify the expression for ∂ρ̂
∂ R in the Appendix. Thus, using the Gibbs

hypothesis (20), we find

f th
= lim

t0→∞

1
t0

∫ 0

−t0
e−L0s f ds. (23)

Next, we remove secular behavior from the t0-dependence in ρ1, thereby imposing the additional condition that
ρ1 remains bounded as t0 → ∞. Using (22), it can be seen that if ρ1 grows in t0, it must do so at least linearly.
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Hence, we may ensure that ρ1 does not grow in t0 by requiring that limt0→∞
1
t0

ρ1 = 0. We then divide by t0, take the

limit as t0 → ∞ in Eq. (22), and use (20). Notice that (P)th
= 0, as it involves terms of the form

∫
pi exp

(
p2

i
2mi

)
dpi .

Assuming the first order initial data is taken in the nullspace of L0, that is L0 A1 = 0, use of (20) yields

lim
t0→∞

ρ1

t0
= −

∂W

∂t1
.

Hence, we find

∂W

∂t1
= 0 (24)

and the reduced probability density W is independent of t1. Note that this property follows regardless of the choice of
A1 in the nullspace of L0. Using this in (22), we find

ρ1 = A1 + ρ̂

[
β f thW −

∂W

∂ R

] ∫ 0

−t0
e−L0s P

m̂
ds, (25)

concluding the O(ε) analysis, although A1 and W are not yet determined.
At this point, one would expect to conduct a O(ε2) analysis of the problem and determine an equation for ∂W

∂t2
.

However, this is unnecessary as the correction to the reduced probability density depends only on ρ0 and ρ1 up to
O(ε2). Instead, define for all n = 0, 1, 2, . . .

W̃n(R, t) =

∫
∆(Γ ∗

r , R)ρn(Γ ∗, t)dΓ ∗ (26)

so that, using (5) and (13), we may write

W̃ =

∞∑
n=0

εnW̃n . (27)

Hence, we expand W̃ and ρ in powers of ε as in (13) and (27). Using (17) and (19), the lowest order correction, W̃0,
can be calculated as

W̃0 =

∫
∆(Γ ∗

r , R)ρ0(Γ ∗, t)dΓ ∗

=

∫
∆ρ0(Γ ∗, t, R∗)dΓ ∗

=

∫
∆ρ̂ W (R∗, t)dΓ ∗

= W (R, t).

For ε → 0, one may see that W̃ → W . Hence, as the long time scales tend to zero, the correction tends to the
reduced probability density. The O(ε) correction can be determined using (20) and (25), so that

W̃1 =

∫
∆ρ1(Γ ∗, t)dΓ ∗

=

∫
∆

[
A1 − ρ̂

(
∂W

∂ R
− β f thW

)
·

∫ 0

−t0
dse−L0s P∗

m̂

]
dΓ ∗

=

∫
∆A1(Γ ∗, R∗, t)dΓ ∗

−

∫
∆ρ̂

(
∂W

∂ R
− β f thW

)
·

∫ 0

−t0
e−L0s P∗

m̂
dsdΓ ∗

∣∣∣∣
R=R∗

=

∫
∆A1(Γ ∗, R∗, t)dΓ ∗

+

(∫
∆ρ̂

∫ 0

−t0
e−L0s P∗

m̂
dsdΓ ∗

)
·

(
−

∂W

∂ R
(R, t) + β f thW (R, t)

)
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=

∫
∆A1(Γ ∗, R∗, t)dΓ ∗

+

[∫ 0

−t0

(
e−L0s P

m̂

)th

ds

]
·

(
−

∂W

∂ R
+ β f thW

)
=

∫
∆A1(Γ ∗, R∗, t)dΓ ∗.

Now, we may write ρ(Γ , t) in terms of its expansion up to O(ε). Using (17) and (25) in the right side of (7), we
find ∫

∆
P∗

m̂
ρ(Γ ∗, t)dΓ ∗

=

∫
∆

P∗

m̂
ρ(Γ ∗, t, R∗)dΓ ∗

=

∫
∆

P∗

m̂
(ρ0 + ερ1) dΓ ∗

=

∫
∆ρ̂

P∗

m̂
W (R∗, t)dΓ ∗

+ ε

∫
∆

P∗

m̂
A1(Γ ∗, R∗, t)dΓ ∗

+ ε

[∫
∆ρ̂

P∗

m̂

∫ 0

−t0
e−L0s P∗

m̂
ds

(
β f thW (R∗, t) −

∂W

∂ R
(R∗, t)

)
dΓ ∗

]

=

(
P

m̂

)th

W (R, t) + ε

∫
∆

P∗

m̂
A1(Γ ∗, R∗, t)dΓ ∗

+ ε

(
P∗

m̂
·

∫ 0

−t0
e−L0s P∗

m̂
ds

)th (
β f thW (R, t) −

∂W

∂ R
(R, t)

)
= ε

∫
dΓ ∗∆

P∗

m̂
A1(Γ ∗, R∗, t) + ε

γ

m̂2

(
β f thW (R, t) −

∂W

∂ R
(R, t)

)
where the diffusion coefficient is

γ =

∫ 0

−t0
(P(0) · P(s))th ds (28)

and we use the notation P(s) = e−L0s P . Thus, (7) becomes

∂W̃

∂t
= −ε2 ∂

∂ R
·

(∫
∆

P∗

m̂
A1(Γ ∗, R∗, t)dΓ ∗

)
+ ε2 ∂

∂ R
·

[
γ

m̂2

(
∂W

∂ R
− β f thW

)]
.

Using the expressions for W̃0 and W̃1, we can expand the reduced probability density as W̃ = W̃0 + εW̃1. Then,
isolating W̃k terms and imposing the condition that A1 must stay bounded for large R, we find that this equation is
closed only if A1 = 0. Thus, up to O(ε2), the conserved equation (7) becomes the Smoluchowski equation:

∂W̃

∂t
= ε2 ∂

∂ R
·

[
γ

m̂2

(
∂

∂ R
− β f th

)
W̃

]
. (29)

Hence, in the case of fast-evolving momentum, due to P and f being O(ε0), the resulting behavior of the reduced
probability density is governed by the Smoluchowski equation (29). In the next section, we alter these assumptions
on the behavior of nanoparticle momentum and determine the corresponding changes in the structure of the equation
for W̃ .

3. Multiscale analysis: Fokker–Planck equation

In this section, we again use multiscale techniques to show that under similar circumstances, the correction to the
reduced probability density, W̃ , satisfies a Fokker–Planck equation. In this situation, the momentum is not considered
an atomistic variable, but instead as an order parameter. Hence, we define Γ , m, R, and P as before, but reformulate
the problem to allow for the differing behavior of this slowly-evolving quantity.
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To begin the multiscale analysis, we again introduce a dimensionless scaling parameter ε in the mass terms by
writing

ε =
m̂

m
, (30)

where m̂ is the mass of a typical atom. In this section, however, the assumptions on the system of interest change. We
are now interested in significant migration distances on the order of the nanoparticle diameter, which we take to be

O(ε−
1
2 ), and hence scale R to be O(ε−

1
2 ). Additionally, under the assumption that the system is near equilibrium, the

nanoparticle kinetic energy, P2

2m is O(ε0). Using the mass ratio scaling, this implies that P = O(ε−
1
2 ), as well. Finally,

we assume that the net force on the nanoparticle is reduced due to cancelation of atomic contributions, thus causing

the momentum to evolve slowly. Hence, f is assumed to be O(ε
1
2 ). A more detailed description of these assumptions

can be found in Ref. [3].
Under these considerations, define the scaled order parameters Φ and Π by

Φ = ε
1
2 R (31)

and

Π = ε
1
2 P, (32)

respectively. The scaled net force f can then be written in terms of the individual atomic forces as

f = ε−
1
2

N∑
i=1

Fiθi , (33)

and we let V (Γr ) be the N -atom potential so that ∂V
∂ri

= −Fi for every i = 1, . . . , N .
Let us assume ρ satisfies the Liouville equation (4) where we again consider Fi to be the force on atom i and t

to be time. In addition, we denote the collection of all atomic positions by Γr = {r1, . . . , rN }. Given the probability
density, ρ(Γ , t), we define

W̃ (Φ,Π , t) =

∫
∆(Γ ∗,Φ,Π )ρ(Γ ∗, t)dΓ ∗, (34)

where

∆(Γ ∗,Φ,Π ) = δ(Φ − Φ∗)δ(Π − Π ∗), (35)

and the terms

Φ∗
= ε

1
2

N∑
i=1

mi

m
r∗

i θi

and

Π ∗
= ε

1
2

N∑
i=1

p∗

i θi

are the Γ ∗-dependent values of Φ and Π . Then, using the dependence of W̃ on ρ, a solution to the Liouville equation,
we may show that W̃ must satisfy a conserved equation similar to that of the previous section. Since ρ satisfies (4),
we find

∂W̃

∂t
=

∫
∆

∂ρ

∂t
(Γ ∗, t)dΓ ∗

= −

∫
∆

(
N∑

i=1

p∗

i

mi
·

∂ρ

∂r∗

i
+ Fi ·

∂ρ

∂p∗

i

)
dΓ ∗
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=

∫
ρ

(
N∑

i=1

p∗

i

mi
·

∂∆
∂r∗

i
+ Fi ·

∂∆
∂p∗

i

)
dΓ ∗

= −

∫
ρ

(
N∑

i=1

p∗

i

mi
·
∂ R∗

∂r∗

i
+ Fi ·

∂ R∗

∂p∗

i

)
ε

1
2
∂∆
∂Φ

dΓ ∗

−

∫
ρ

(
N∑

i=1

p∗

i

mi
·
∂ P∗

∂r∗

i
+ Fi ·

∂ P∗

∂p∗

i

)
ε

1
2
∂∆
∂Π

dΓ ∗

= ε
1
2

∂

∂Φ

(∫
ρ∆LR∗dΓ ∗

)
+ ε

1
2

∂

∂Π

(∫
ρ∆LP∗dΓ ∗

)
= −ε

1
2

∂

∂Φ

(∫
ρ∆

P∗

m
dΓ ∗

)
− ε

1
2

∂

∂Π

(∫
ρ∆

N∑
i=1

Fiθi dΓ ∗

)
.

Thus, the reduced probability density, W̃ , satisfies

∂W̃

∂t
= −ε

∂

∂Φ

(∫
ρ∆

Π ∗

m̂
dΓ ∗

)
− ε

∂

∂Π

(∫
ρ∆ f dΓ ∗

)
(36)

which is in conservative form.
Next, we conduct a multiscale analysis in order to determine ρ up to O(ε). Similar to the previous section, the N -

atom probability density, ρ(Γ , t), is assumed to be expressed as a function of two additional arguments, Υ(Γ , t, ·, ·)
in such a way that when the last two arguments are evaluated at Φ and Π , ρ is obtained, i.e ρ(Γ , t) = Υ(Γ , t,Φ,Π ).
Instead of labeling this new function, we will just extend our previous notation and refer to it as ρ(Γ , t,Φ,Π ).

We apply the Liouville operator to ρ(Γ , t,Φ,Π ) and invoke the chain rule to find

∂ρ

∂t
= −L0ρ −

N∑
i=1

pi

mi
·

dΦ
dri

∂ρ

∂Φ
−

N∑
i=1

Fi ·
dΠ
dpi

∂ρ

∂Π
.

Using (31) and (32) this becomes

∂ρ

∂t
= −L0ρ − ε

1
2

P

m

∂ρ

∂Φ
− ε f

∂ρ

∂Π
. (37)

Here, we are writing L0 instead of L because these derivatives are taken at constant values of Φ and Π . By introducing
(30) and (32) into (37), the Liouville equation (4) transforms into a multiscale equation as

∂ρ

∂t
= (L0 + εL1) ρ, (38)

where

L0 = −

N∑
i=1

[
pi

mi
·

∂

∂ri
+ Fi ·

∂

∂pi

]
(39)

and

L1 = −
Π
m̂

·
∂

∂Φ
− f ·

∂

∂Π
. (40)

Again, it must be noted that L and L0, while seemingly exact in definition, differ because the differentiation in L0
is performed at constant values of order parameters Φ and Π . Additionally, the differentiation in L1 is performed at
fixed values of Γ . Unlike the previous section, the operators (10) and (11) are now the same as that of the previously
mentioned papers [2,3] since the conjugate momentum Π is formulated as an order parameter.
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Next, we assume that ρ may be expressed as a power series in ε:

ρ =

∞∑
n=0

ρnεn . (41)

A set of time variables, defined via tn = εn t , is introduced to capture effects of processes occurring on the various
timescales. The chain rule implies

∂

∂t
=

∞∑
n=0

εn ∂

∂tn
. (42)

We then expand (38) using (41) and (42) and separate ε scales. Define for n ∈ {0} ∪ N,

Λn =
∂

∂tn
− Ln, (43)

where we take Ln = 0 for n > 1. The expansion yields the equations

Λ0ρ0 = 0,

and for n ∈ N,

Λ0ρn = −

n∑
i=1

Λiρn−i .

Assuming the statistical state of the system has quasi-equilibrium character, the lowest order distribution ρ0 is
taken to be independent of t0. Thus, to lowest order we find

L0ρ0 = 0. (44)

This implies ρ0 is a function of the conserved dynamical variables, notably the total energy H , as well as of Φ
and Π . The latter occurs because the derivatives ∂

∂ri
and ∂

∂pi
in L0 are to be taken at constant Φ and Π , and thus

L0Φ = L0Π = 0. As before, we define

H =

N∑
i=1

(
p2

i

2mi
+ V (Γr )

)
and notice that L0 H = 0.

Using the entropy maximization principle and proceeding as in Ref. [2], one arrives at the nanocanonical solution
to (44):

ρ0 =
e−β H W (Φ,Π , t)

Q
≡ ρ̂W, (45)

where

Q(β,Φ,Π ) =

∫
∆(Γ ∗,Φ,Π )e−β H∗

dΓ ∗. (46)

This form of the nanocanonical solution is slightly different from that of Ref. [2] since it was stated in that article that
Q is independent of Π . We find that this is not the case and determine the exact manner in which the Π dependence
can be computed in the Appendix. Here, ∆ is defined as in (35) and H∗ is the Γ ∗-dependent value of H . We label t as
the collection of slow time variables t = {t1, t2, . . .}. As before, we define the thermal average of a given dynamical
variable, A(Γ ) by

Ath
=

∫
∆ρ̂ A(Γ ∗)dΓ ∗ (47)
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and use the Gibbs Hypothesis:

lim
t→∞

1
t

∫ 0

−t
e−L0s Ads = Ath (48)

for all dynamical variables A(Γ ). Notice that the thermal average, and thus the statements (47) and (48), depend upon
the new order parameter Π because of (35).

To O(ε) one finds

Λ0ρ1 = −Λ1ρ0 (49)

and using the semigroup eL0t0 defined in Section 2, this equation admits the solution

ρ1 = eL0t0 A1 −

∫ t0

0
eL0(t0−t ′0)Λ1ρ0dt ′0

= eL0t0 A1 −

∫ t0

0
eL0(t0−t ′0)

[
ρ̂

∂W

∂t1
+

Π
m̂

∂ρ̂

∂Φ
W +

Π
m̂

ρ̂
∂W

∂Φ
+ f

∂ρ̂

∂Π
W + f ρ̂

∂W

∂Π

]
dt ′0

= eL0t0 A1 −

∫ t0

0
eL0(t0−t ′0)

[
ρ̂

∂W

∂t1
−

Π
m̂

βρ̂ f thW +
Π
m̂

ρ̂
∂W

∂Φ
+ β f ρ̂

Π
m̂

W + f ρ̂
∂W

∂Π

]
dt ′0

where we have used the results

∂ρ̂

∂Φ
= −βρ̂ f th

and

∂ρ̂

∂Π
= βρ̂

Π
m̂

.

These derivatives will be verified in the Appendix. The first order initial condition A1 is, for now, undetermined and has
the dependence A1(Γ ,Φ,Π , t). As a consequence of the cross-level communication inherent to multiscale analysis,
the behavior of ρ1 at large t0 provides information about the t1-dependence of W , while the analysis of (36) provides
a necessary condition on A1 that ensures the equation determining W̃ is closed. Letting s = t ′0 − t0, one obtains

ρ1 = eL0t0 A1 − t0ρ̂
∂W

∂t1
− ρ̂β

Π
m̂

W ·

∫ 0

−t0
e−L0s

(
f − f th

)
ds

− t0ρ̂
Π
m̂

·
∂W

∂Φ
− ρ̂

∂W

∂Π
·

∫ 0

−t0
e−L0s f ds. (50)

Next, we remove secular behavior from the t0-dependence in ρ1. As before, we assume that ρ1 remains bounded as
t0 → ∞. Using (50), it can be seen that if ρ1 grows in t0, it must do so at least linearly. Hence, we may ensure that ρ1
does not grow in t0 by requiring that limt0→∞

1
t0

ρ1 = 0. We then divide by t0, take the limit as t0 → ∞ in the above
equation, and use (48). Assuming the first order initial data is in the nullspace of L0, this yields

lim
t0→∞

ρ1

t0
= −

∂W

∂t1
−

Π
m̂

·
∂W

∂Φ
− f th

·
∂W

∂Π
.

Hence, we find

Λth
1 ≡

∂W

∂t1
+

Π
m̂

·
∂W

∂Φ
+ f th

·
∂W

∂Π
= 0 (51)

and W satisfies a Liouville equation in (t1,Φ,Π ) space. Note that (51) follows regardless of the choice of A1 in the
nullspace of L0. Using this in (50), we find

ρ1 = A1 − ρ̂

[
β

Π
m̂

W +
∂W

∂Π

] ∫ 0

−t0
e−L0s

(
f − f th

)
ds, (52)

concluding the O(ε) analysis, although A1 and W are not yet determined.
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As before, the correction to the reduced probability density depends only on ρ0 and ρ1 up to O(ε2). Hence, define
for every n = 0, 1, 2, . . .

W̃n(Φ,Π , t) =

∫
∆(Γ ∗,Φ,Π )ρn(Γ ∗, t)dΓ ∗ (53)

so that, using (34) and (41), we may write

W̃ =

∞∑
n=0

εnW̃n . (54)

In addition, we may expand W̃ and ρ in powers of ε as in (41) and (54). Using (48), the lowest order correction, W̃0,
can be calculated as

W̃0 =

∫
∆(Γ ∗,Φ,Π )ρ0(Γ ∗, t)dΓ ∗

=

∫
∆ρ0(Γ ∗, t,Φ∗,Π ∗)dΓ ∗

=

∫
∆ρ̂ W (Φ∗,Π ∗, t)dΓ ∗

= W (Φ,Π , t).

For ε → 0, one may see that W̃ → W . Hence, as the long time scales tend to zero, the correction tends
to the reduced probability density. The O(ε) correction can be determined using (47). Notice that (48) implies(
e−L0τ A

)th
= Ath for any finite value of τ ∈ R. Using this and (52), we find

W̃1 =

∫
∆ρ1(Γ ∗, t)dΓ ∗

=

∫
∆

[
A1 − ρ̂

(
∂W

∂Π
+ β

Π ∗

m̂
W

)
·

∫ 0

−t0
dse−L0s

(
f − f th

)]
dΓ ∗

=

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

−

∫
∆ρ̂

(
∂W

∂Π
+ β

Π ∗

m̂
W

)
·

∫ 0

−t0
e−L0s

(
f − f th

)
dsdΓ ∗

∣∣∣
(Φ,Π )=(Φ∗,Π ∗)

=

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

−

[∫
∆ρ̂

∫ 0

−t0
e−L0s

(
f − f th

)
dsdΓ ∗

]
·

(
∂W

∂Π
(Φ, t) + β

Π
m̂

W (Φ, t)

)
=

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

−

∫ 0

−t0

(
f (s) − f th

)th
ds ·

(
∂W

∂Π
+ β

Π
m̂

W

)
=

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

where we use the notation f (s) = e−L0s f . Now, we may write ρ(Γ , t) in terms of its expansion up to O(ε). Using
(45) and (52) in the first term on the right side of (36), we find∫

∆
Π ∗

m̂
ρ(Γ ∗, t)dΓ ∗

=

∫
∆

Π ∗

m̂
ρ(Γ ∗, t,Φ∗,Π ∗)dΓ ∗

=

∫
∆

Π ∗

m̂
(ρ0 + ερ1) dΓ ∗

=

∫
∆ρ̂

Π ∗

m̂
W (Φ∗,Π ∗, t)dΓ ∗

+ ε

∫
∆

Π ∗

m̂
A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗
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− ε

[∫
∆ρ̂

Π ∗

m̂

(
β

Π ∗

m̂
W +

∂W

∂Π

)
·

∫ 0

−t0
dse−L0s

(
f − f th

)
dΓ ∗

]

=
Π
m̂

W (Φ,Π , t) + ε
Π
m̂

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

− ε
Π
m̂

(
β

Π
m̂

W +
∂W

∂Π

)
·

(∫ 0

−t0
( f (s) − f th)ds

)th

=
Π
m̂

W (Φ,Π , t) + ε
Π
m̂

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗.

Similarly, the second term on the right side of (7) becomes∫
∆ fρ(Γ ∗, t)dΓ ∗

=

∫
∆ fρ(Γ ∗, t,Φ∗,Π ∗)dΓ ∗

=

∫
∆ f (ρ0 + ερ1) dΓ ∗

=

∫
∆ρ̂ f W (Φ∗,Π ∗, t)dΓ ∗

+ ε

∫
∆ f A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

− ε

[∫
∆ρ̂ f

(
β

Π ∗

m̂
W +

∂W

∂Π

)
·

∫ 0

−t0
dse−L0s

(
f − f th

)
dΓ ∗

]

= f thW (Φ,Π , t) + ε

∫
∆ f A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

− ε

(
β

Π
m̂

W +
∂W

∂Π

)(∫ 0

−t0
f (0) · ( f (s) − f th)ds

)th

= f thW (Φ,Π , t) + ε

∫
∆ f A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

− εθ

(
β

Π
m̂

W +
∂W

∂Π

)
where

θ =

∫ 0

−t0

[
( f (0) · f (s))th

− f th
· f th

]
ds. (55)

Thus, (36) becomes

∂W̃

∂t
= −ε

∂

∂Φ
·

(
Π
m̂

W (Φ,Π , t)

)
− ε2 ∂

∂Φ
·

(
Π
m̂

∫
∆A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

)
− ε

∂

∂Π
·

(
f thW (Φ,Π , t)

)
+ ε2 ∂

∂Π
·

[
−

∫
∆ f A1(Γ ∗,Φ∗,Π ∗, t)dΓ ∗

+ θ

(
β

Π
m̂

W +
∂W

∂Π

)]
.

Using the expressions for W̃0 and W̃1, we can expand the reduced probability density as W̃ = W̃0 + εW̃1. Then,
isolating W̃k terms and imposing the condition that A1 must stay bounded for large Φ and Π , we find that this equation
is closed only if A1 = 0. Thus, up to O(ε2), the conserved equation (36) becomes the Fokker–Planck equation:

∂W̃

∂t
= −ε

∂

∂Φ
·

(
Π
m̂

W̃

)
− ε

∂

∂Π
·

(
f thW̃

)
+ ε2 ∂

∂Π
·

[
θ

(
β

Π
m̂

+
∂

∂Π

)
W̃

]
. (56)

Hence, under the assumption that momenta have (comparatively) large values and evolve slowly, i.e., P = O(ε−
1
2 )

and f = O(ε
1
2 ), the reduced probability density obeys a Fokker–Planck equation given by (56).
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Appendix

We first verify the Φ derivative of ρ̂ used in the derivation of both equations. In Section 2, the variable R is used
instead of Φ (as order parameters are unscaled with respect to ε), but the statements that follow can be applied exactly
to R in the same manner as Φ. We claim

∂ρ̂

∂Φ
= −βρ̂ f th.

Using (17) or (45), we see that

∂ρ̂

∂Φ
= −

e−β H

Q2

∂ Q

∂Φ
.

Notice that ∂
∂Φ

(
e−β H

)
= 0 since Φ derivatives are to be taken at constant values of Γ . Using (18) or (46), we see that

∂ Q

∂Φ
=

∫
∂∆
∂Φ

e−β H∗

dΓ ∗

= −

∫
∂∆
∂Φ∗

e−β H∗

dΓ ∗

= ε−
1
2

∫
∆

∂

∂ R∗

(
e−β H∗

)
dΓ ∗.

Now, since this integration is performed over all values of Γ ∗, and hence Γ ∗ is not fixed, the energy depends upon
the center of mass through the potential function. Notice, we may calculate ∂V

∂ R as V depends upon R implicitly in the
following manner. For every i = 1, . . . , N , write the residual displacement of each atomic position as ri = σi + Rθi .
Here the N variables {R, σ1, . . . , σN−1} constitute a complete set of variables as we may write σN in terms of each of
the other σi using the constraint

N∑
i=1

σiθi = 0,

which follows by the definition of the residual coordinates. This change of variables is just a set of linear functions
with constant coefficients, hence the Jacobian is constant and

∂V

∂ R
=

N∑
i=1

∂V

∂ri
θi = −ε

1
2 f.

Since the kinetic energy is independent of Γr , we find

∂

∂ R∗

(
e−β H∗

)
= −βe−β H∗ ∂V ∗

∂ R∗
= βε

1
2 f ∗e−β H∗

.

Using this, the derivative of Q becomes

∂ Q

∂Φ
= ε−

1
2

∫
∆e−β H∗

βε
1
2 f ∗dΓ ∗

= β

∫
∆e−β H∗

f ∗dΓ ∗.

Hence, using the modified Gibbs Hypotheses in either section (20) or (48), we find

∂ρ̂

∂Φ
= −

e−β H

Q2

∂ Q

∂Φ

= −ρ̂

(
1
Q

·
∂ Q

∂Φ

)
= −ρ̂β

∫
1
Q

∆e−β H∗

f ∗dΓ ∗
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= −βρ̂

(∫
∆ρ̂ f ∗dΓ ∗

)
= −βρ̂ f th

and the verification of this derivative is complete.
Next, we verify the Π derivative of ρ̂ used in Section 3. We claim

∂ρ̂

∂Π
= βρ̂

Π
m̂

.

First, we use (46) and rewrite Q in terms of its Π dependence using the Fourier transform. Since the potential and
kinetic energies depend exclusively on ri and pi variables respectively, we separate Q into two different integrals
involving these variables. In addition, we separate the momentum integrals into the momenta of particles in the host
medium, denoted Γ0 = {pi : θi = 0} and those in the nanoparticle, denoted Γ1 = {pi : θi = 1}. Using the notation

K0 =

N∑
i=1

p2
i

2mi
(1 − θi )

and

K1 =

N∑
i=1

p2
i

2mi
θi

for the kinetic energies of the host medium and nanoparticle, respectively, we write Q as

Q(β,Φ,Π ) =

(∫
δ(Φ − Φ∗)e−βV ∗

dΓ ∗
r

)(∫
e−βK ∗

0 dΓ ∗

0

)(∫
δ(Π − Π ∗)e−βK ∗

1 dΓ ∗

1

)
. (57)

Keeping the Γ ∗
r and Γ ∗

0 integrals as they are (notice further that the Γ ∗

0 integral is constant), we focus on the Γ ∗

1
integral. We may again split the Γ ∗

1 integral into one each in the x, y, and z directions. We will consider the integral
in the x-direction, labeled Ix , and state that the results we obtain will follow for the integrals in the other directions in
the same manner.

Now, we relabel the momenta in the nanoparticle, 1 through M , and write their x-coordinates as x1 through xM .
Then, write the x-directional Dirac mass δ(Πx − Π ∗

x ) using the Fourier transform of the function f (k) = 1 as

δ(Πx − Π ∗
x ) =

1
√

2π

∫
∞

−∞

exp

[
ik

(
Πx −

√
ε

M∑
l=1

xl

)]
dk.

Then, using the Inverse Fourier Transform on the resulting Gaussians

exp(−λk2) =
1

√
2π

∫
∞

−∞

1
√

4πλ
exp (−ikz) exp

(
−

z2

4λ

)
dz.

and (30), we find

Ix =
1

√
2π

∫ ∫
∞

−∞

exp

[
ik

(
Πx −

√
ε

M∑
l=1

xl

)]
dk

× exp
(

−
β

2m1
x2

1

)
· · · exp

(
−

β

2mM
x2

M

)
dx1 · · · dxM

=
1

√
2π

∫
∞

−∞

exp (ikΠx )

[∫
exp

(
−ik

√
εx1

)
exp

(
−

β

2m1
x2

1

)
dx1

]
· · ·

[∫
exp

(
−ik

√
εxM

)
exp

(
−

β

2mM
x2

M

)
dxM

]
dk

=

∫
∞

−∞

eikΠx

[√
m1

β
e−

εm1k2

2β

]
· · ·

[√
mM

β
e−

εmM k2

2β

]
dk
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=

√
m1

2πβ
· · ·

√
mM

2πβ

∫
∞

−∞

exp (ikΠx ) exp
[
−

εk2

2β
m

]
dk

= C1 exp
(

−
β

2m̂
Π 2

x

)
where

C1 =

√
m1

2πβ
· · ·

√
mM

2πβ
·

√
2πβ

m̂
.

We extend this in the y and z directions and multiply to find∫
δ(Π − Π ∗)e−βK ∗

1 dΓ ∗

1 = (C1)
3 exp

(
−

β

2m̂
Π 2
)

.

Thus, we can write

Q(β,Φ,Π ) = Q1(Φ)(C1)
3C2 exp

(
−

β

2m̂
Π 2
)

,

where

Q1(Φ) =

(∫
δ(Φ − Φ∗)e−βV ∗

dΓ ∗
r

)
and

C2 =

(∫
e−βK ∗

0 dΓ ∗

0

)
.

Finally, ρ̂ can be expressed in the form

ρ̂ =
e−β H

Q1(Φ)(C1)3C2
exp

(
β

2m̂
Π 2
)

. (58)

Taking a Π derivative in (58), which must be done at fixed values of Γ , we find

∂ρ̂

∂Π
= βρ̂

Π
m̂

and the verification of this derivative is complete.
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