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A quantum nanosystem �such as a quantum dot, nanowire, superconducting nanoparticle, or
superfluid nanodroplet� involves widely separated characteristic lengths. These lengths range from
the average nearest-neighbor distance between the constituent fermions or bosons, or the lattice
spacing for a conducting metal, to the overall size of the quantum nanosystem �QN�. This suggests
the wave function has related distinct dependencies on the positions of the constituent fermions and
bosons. We show how the separation of scales can be used to generate a multiscale perturbation
scheme for solving the wave equation. Results for electrons or other fermions show that, to lowest
order, the wave function factorizes into an antisymmetric �fermion� part and a symmetric
�bosonlike� part. The former manifests the short-range/exclusion-principle behavior, while the latter
corresponds to collective behaviors, such as plasmons, which have a boson character. When the
constituents are bosons, multiscale analysis shows that, to lowest order, the wave function can also
factorize into short- and long-scale parts. However, to ensure that the product wave function has
overall symmetric particle label exchange behavior, there could, in principle, be states of the boson
nanosystem where both the short- and long-scale factors are either boson- or fermionlike; the latter
“dual fermion” states are, due to their exclusion-principle-like character, of high energy �i.e., single
particle states cannot be multiply occupied�. The multiscale perturbation analysis is used to argue for
the existence of a coarse-grained wave equation for bosonlike collective behaviors. Quasiparticles,
with effective mass and interactions, emerge naturally as consequences of the long-scale dynamics
of the constituent particles. The multiscale framework holds promise for facilitating QN computer
simulations and novel approximation schemes. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2877226�

I. INTRODUCTION

In a quantum nanoparticle or nanodroplet �QN�, there
are at least two characteristic lengths: �1� the size of the QN
and �2� the average distance between the nearest-neighbor
constituent fermions or bosons. For a conductor or semicon-
ductor, the latter is the spacing of the ion core lattice. For a
superfluid or Fermi liquid droplet, the short scale is deter-
mined by the density of the constituent bosons or fermions.
The approach presented here is based on the hypothesis the
wave function for a QN reflects the multiple length scale
character of the system, and this notion can be used to de-
velop a scheme for constructing the wave function. In this
and the next two sections we focus on fermions, while com-
ments on bosons and conclusions are set forth in Sec. IV.

Multiscale techniques have been used to analyze a vari-
ety of natural and engineered systems. When there is a wide
separation of scales, the ratio of the small to the large char-
acteristic length, time, mass, or other quantity has been used
to develop approximation schemes.1–10 The multiscale per-
turbation approach of this type, which is closest to the one
used here for the QN problem, was developed for the classi-
cal Liouville equation.5,11–24

Real-space decomposition techniques, the hybrid
quantum-mechanics/molecular-mechanics �QM/MM� and
hybrid quantum-mechanics/quantum-mechanics �QM/QM�
approaches are used in electronic structure theory,25–34 where
a core region is designated to be treated with higher level of
accuracy, along with the utilization of approximations of de-
creasing accuracy to solve the wave equation in regions of
increasing distance from a local core site of interest. When
there is no wide separation of scales, Laplace transformation
techniques have been utilized to divide the interaction poten-
tial into a set of wave vector intervals to yield a discrete
approximation.25,27 In contrast, here we propose a scheme
that utilizes a rigorous multiscale analysis with key advan-
tages in applications to QNs.

Recent multiscale formulations of the Liouville equation
for classical N particle systems introduce order parameters
corresponding to collective, slow behaviors.23,24,35 It was
shown how such order parameters can be introduced without
the need for tedious book keeping to conserve the number of
degrees of freedom. In particular, it was shown that this can
be accomplished when there is a clearer separation of scales.
In the present application to QNs, convenient order param-
eters are found to be vectors that track the long-scale migra-
tion of the constituent particles as they traverse the QN. Thisa�Electronic mail: ortoleva@indiana.edu.
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approach also treats all constituent particles, both within and
outside the nanoparticle, in a symmetric manner, and enables
the N-body potential to be simultaneously expressed in terms
of particlelike variables and the order parameters. This ap-
proach captures the coarse-grained configuration of the con-
stituent particles and the associated disturbances of density-
like variables. More precisely, we derive a coarse-grained
wave equation for the collective and “dressed” particlelike
excitations.

A key to the present approach is the existence of a small
parameter �, the length scale ratio, and the ansatz that the
wave function depends on both the positions of the constitu-
ent particles and the scaled positions, and that these two
dependencies can be determined when � is small. By con-
struction, the scaled constituent particle positions change by
one unit as it traverses the QN, while the short-scale position
variable changes by many units, i.e., by �−1, as the constitu-
ent particle traverses the QN. With this, we solve the wave
equation via perturbation expansion in �. To the lowest order
in �, we find solutions to the wave equation that factorizes
into two parts. The first captures short-scale motion and as-
sociated close encounters between constituent particles. For
fermions, close encounters are strongly constrained by the
exclusion principle; thus, the short-scale factor in the lowest
order wave function is antisymmetric with respect to a per-
mutation of particle labels. The second factor captures the
overall profile �or envelope� of the wave function. Such
long-scale behavior does not have a dominant exclusion
principle flavor and, consequently, it is symmetric, as re-
quired to keep the overall fermion wave function antisym-
metric. For electrons, the long-scale factor is expected to
capture plasmons, while for other Fermi systems it is related
to density or spin waves. Selected comments are made on
boson nanodroplets and future applications.

II. MULTISCALE PERTURBATION APPROACH

The proposed multiscale analysis of quantum nanosys-
tems proceeds in several steps. �1� The N-particle potential
energy is rewritten to make the multiscale character of the
QN explicit. �2� A set of descriptive variables �order param-
eters� is introduced that evolve much more slowly than the
short-scale, particle-particle collisional dynamics. The lattice
spacing for the ion cores in a conducting solid and the aver-
age nearest-neighbor distance for a liquid are much smaller
than the size of the QN �essentially by definition of a QN�.
This suggests that the wave function has multiscale structure.
�3� Identify a perturbation parameter �, notably the ratio of
the short to long characteristic lengths, and construct solu-
tions to the wave equation as an expansion in �.

The N-particle potential V and wave function � are writ-
ten in the multiscale form; for example,

V = V�r�1, . . . ,r�N;�r�1, . . . ,�r�N� � V�r,R� , �2.1�

where r�i is the position of the ith of N particles and R� i=�r�i.
The dependence on r���r�1 , . . . ,r�N�� reflects the average in-
terparticle spacing within the QN. The dependence on
R����r�1 , . . . ,�r�N�� reflects variations in the potential energy
due to the long-range interactions experienced across the

QN, i.e., and not limited to nearest numbers. For a metal, the
R dependence also represents the effect of the ion cores that
confine the electrons to the QN. Since � is the ratio of the
average interparticle distance to overall QN size, the poten-
tial as in Eq. �2.1� is expressed in terms of its �0 and �−1

length scale dependencies on particle positions. This sug-
gests that the wave function should also express this dual
dependence

��r,R,�� . �2.2�

In this multiscale formulation, the R� i dependence reflects the
long-range character of � due to particle motion across the
QN. However, R should not be regarded as a distinct dy-
namical variable. Rather the presence of R reflects a distinct
way in which � depends on r, i.e., both directly and via R.
We show below that one can construct both the r and the R
dependencies of � in a self-consistent manner if � is small,
e.g., the average interparticle spacing is much less than QN
size. In fact, for a QN constituted of N particles, � is
O�N−1/3� so we expect the multiscale approach should be of
interest for QNs consisting of 1000 particles or more. Due to
the dependence of � on R, the multiscale theory discussed
here is reminiscent of the Born–Oppenheimer separation. It
is, however, important to note that R, here, is not a distinct
dynamical variable. In this sense, the approach also differs
from standard coordinate transformations36 well known in
scattering theory.

The wave equation for N identical particles reads, ne-
glecting spin effects,

�K + V�� = E� �2.3�

for kinetic and potential energies K and V, and energy eigen-
value E. It is convenient to introduce the gradient �0 and
associated Laplacian �0

2 in 3N dimensional r space and,
similarly, �1 and �1

2 for R space. The chain rule and the
multiscale form for � in Eq. �2.2� imply

�H0 − ��0 · �1 −
�2

2
�1

2 + �2V2	� = E� , �2.4�

H0 = − 1
2�0

2 + V0. �2.5�

A key first step in the multiscale analysis is to separate the
long- and short-scale dependencies in the N-particle poten-
tial. We have expressed the potential as V=V0�r�
+�2V2�r ,R�. We neglect any first order contributions to V in
�. In the limit of small �, an adiabatic separation between the
short and long range is valid in which case infinitesimal
changes in the scaling parameter � do not change the full
potential V. Hence, we assume that V is stationary with re-
spect to small changes in � and a first order term need not be
included. We have separated V into contributions to various
orders in �: the lowest order problem is taken to reflect the
short-range interactions while the perturbative term has
mixed character. We adopt this separation scheme because it
yields a transparent picture as the multiscale analysis un-
folds. Specific formulation of the separation of the N-particle
potential into short- and long-range parts can be accom-
plished in a number of ways, including a scheme, as sug-
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gested elsewhere, involving the separation of the Laplace
transformation of the two body potential into short- and
long-scale contributions. The Laplace transformation
scheme25,27 could be used in this way. �0 is a gradient with
respect to r at constant R when operating on � in the mul-
tiscale form �Eq. �2.2��, and conversely for �1.

Writing � as an expansion in � and examining the wave
equation to each order in �, we construct the solution. The
lowest order problem reads

H0�0 = E0�0. �2.6�

There are solutions to the lowest order equation of the form

�0 = �̂�r���R� . �2.7�

Note that E0 has no R dependence since V0 is independent of

R. Thus, �̂ only describes the short-range character of the
wave function; � expresses its long-scale character. How-
ever, � does not reflect the short-scale detail that could en-
able it to support the many quasi-single-particle states
needed to fill all levels up to the Fermi energy. This suggests

that for fermions �̂ is antisymmetric and, hence, � must be
symmetric, i.e., � is bosonlike. It is concluded that fermion
systems support bosonlike, collective modes as described by
�.

The above analysis and scaling of V are consistent with
the notion that the �1 terms ensure that � has no short-scale
behavior in R. Since these gradient terms enter at higher
order in �, then, so should the R dependence of the potential.
Thus, we assumed that V0 is independent of R to arrive at a
self-consistent picture.

To O���, the wave equation implies

H1�0 + H0�1 = E1�0 + E0�1, H1 = − �0 · �1. �2.8�

To simplify the equations introduce a bracket notation so that
�0 is written �
0�. Labeling the states of the unperturbed
system n=0,1 , . . ., taking them to be orthonormal ��m 
n�
=�mn�, and 
0� to be nondegenerate, one obtains

E1 = − �0
�0
0� · �1�/� . �2.9�

Note that the quantity �0
�0
0� implies an integration in r, as
is standard in the bracket notation. Considering the system to
be finite �so that 
0� vanishes at infinity�, the matrix element
of �0 in Eq. �2.9�, i.e., �0
�0
0�, is zero; hence E1 vanishes.
For example, we have d3Nr��0�

* ��0 /�x1 for the component

of �0 for particle one along the x axis. If �0 is real, this
reduces to 1

2 d3Nr���0
2� /�x1, which is zero since �0→0 for

the finite nanostructure. Collecting terms in Eq. �2.8�, one
obtains

�1 = �
n�0


n�
�n
�0
0�

�E�0� − E�n��
�1� . �2.10�

Note that E�n� is the energy of the nth level of H0, i.e.,
H0
n�=E�n�
n�.

To O��2�, one obtains

H0�2 − �0 · �1�1 − 1
2�1

2�0 + V2�0 = E0�2 + E2�0.

�2.11�

Since V0 is independent of R, all E�n� and 
n� are also inde-
pendent of R. Taking the inner product of Eq. �2.11� with �0

yields

�− 1
2�1 · �= �1 + U�� = E2� , �2.12�

U�R� = �0
V2
0� , �2.13�

�i�i��� = �ii����� + 2�
n�0

�0
�0i�
n��n
�0i���
0�

�E�n� − E�0��
,

�,�� = 1,2,3; i,i� = 1, . . . ,N . �2.14�

The matrix elements in Eq. �2.14� are independent of i and i�
due to the exchange symmetry of the states 
n�, n=0,1 , . . .,
and that they involve integration over all particle coordi-
nates. Thus, �i�i��� takes the form

�i�i��� = �ii����� + ����, �2.15�

where the second term has no dependence on particle label
and the � tensor is defined upon comparing Eqs. �2.13� and
�2.14�.

The matrix ���� expresses the anisotropy of the short-
scale states 
n�, n=0,1 , . . ., and Eq. �2.14� shows in detail the
structure of �= as it appears in Eq. �2.12�.

A few comments are in order regarding Eq. �2.12�. Equa-
tion �2.12� is a coarse-grained Schrödinger equation, where
the eigenvalues of the inverse of �= act like effective masses
for the long-range motion of the constituent particles as de-
scribed by �. Furthermore, �= is defined by the short-range
character of the wave function. While �= is symmetric in
particle label ii�, it is not diagonal so that the effective
masses, defined as the eigenvalues of the inverse of �= , are
truly many-body quantities. Thus, the effective masses can
depart dramatically from those of the particles themselves
�the latter being one in the present units where 	 is one as
well�. Thus, ���� expresses the departure of the quasiparti-
cles, described by the coarse-grained wave equation, from
that of the behavior of the original constituent particles. The
perturbation analysis yields a course-grained equation for �
with E2 as an eigenvalue. The quantity �= in Eq. �2.12� may
also be interpreted as a gauge transformation, or a metric
tensor, where the long-range variables are now coupled as a
result of the off-diagonal elements of �= . The choice of gauge
depends on the momentum �or flux�, i.e., �0 at the short
range. Thus, one may interpret the coupling of long-range
and short-range behaviors �through �= � as predominantly flux
dependent. Note the initially orthogonal set of long-range
variables are now coupled as a result of the gauge transfor-
mation.

Associated with the coarse-grained Schrödinger equation
�2.12� is the functional E2���:
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E2��� =
d3NR� 1

2�1�*�= �1� + U
�
2�
d3N
�
2

. �2.16�

Minimization of E2 with respect to � yields Eq. �2.12� and
therefore provides a starting point for a variational technique.

These results can be used to generate a QN theory based
on a numerical or approximate analytical solution of the low-
est order problem. These results can also serve as the starting
point of a phenomenological theory, or to motivate a varia-
tional approach as in the next section.

III. MEAN-FIELD, PHENOMENOLOGICAL FERMION
MODEL

The analysis of the previous section suggests that for
low energy states of a fermion system, the coarse-grained
wave function ��R� is symmetric with respect to particle
label exchange. As the lowest order wave function is a prod-

uct of a rapidly fluctuating factor �̂ and a smoothly varying

factor �, � acts like an “envelope” for the “wave packet” �̂.
This implies the eigenstates of the coarse-grained wave equa-
tion correspond to collective modes of a QN. In the follow-
ing, we explore this picture via a phenomenological ap-
proach.

Assume that U�R� contains effective one and two body
interactions:

U = �
i


�R� i� + �
i�j

u�R� i,R� j� . �3.1�

Here, 
 is an effective “external” field representing confine-
ment effects �as from the ion core lattice in a conductor or an
average interaction in liquid helium III�; correlations be-
tween the long-scale motions of the particles are accounted
for via the effective two body interaction 
. Since � is sym-
metric, we consider mean field solutions � that are a product
of single-particle functions, i.e.,

� = ��R� 1� ¯ ��R� N� �3.2�

involving one single-particle function �. Recalling �Eqs.
�2.13� and �2.14�� the elements of �= , a variational calculation
based on Eqs. �3.2� and �2.16� implies

−
1

2 �
�,��

����� + �����
�2�

�X��X��
+ �N − 1� �

�,��

����

� d3R�
���R� ��
�X��

�

���R� �
�X�

+ 
�R� ���R� � + �N − 1�

� d3R�u�R� ,R� ��
��R� ��
2��R� � = E*��R� � �3.3�

for � component X� of R� and single-particle energy Es. Note
terms from d3R�� /�X� vanish as � approaches zero at in-
finity. Small eigenvalues of ���� correspond to a large effec-
tive mass associated with collective behavior. Thus, it is ex-
pected that small eigenvalues of ����+���� indicate an
excitation that simultaneously involves many particles mov-
ing in a coordinated fashion. The energetics and precise char-

acter �i.e., profile ��R� �� depends on the interplay of effective

mass and the coarse-grained potential U�R� 1 , . . . ,R� N�.
The total energy E2, as a deviation from E�0�, associated

with the coarse-grained � dynamics is given by

E2 = NE* �3.4�

for the N-particle QN. The forms of u and 
 determine the
allowed E* values, i.e., the spectrum of the bosonlike exci-
tations of the fermion nanosystem. Since all particles move
in a coordinated fashion in these �-produce states, it is sug-
gested that this corresponds to the spectrum of collective,
QN-wide modes.

If the effective potential 
eff,


eff�R� � = 
�R� � + �N − 1� � d3R�u�R� 1R� ��
��R� ��
2 �3.5�

has a minimum for a range of � profiles, then the QN sup-
ports self-sustained local zones of accumulating constituent
particle density. For conducting QNs, one suspects that this
corresponds to surface plasmons or localizations along a su-
perconducting nanowire.

If u has a strongly attracting tail and a hard repulsive

core, quasiparticle density is nearly constant on the R� scale
within a nanodroplet.37 In that case, excitations take the form
of dynamic changes in the shape of a droplet. These morpho-
logical excitations could couple to QN rotation. Using
boundary layer techniques as in Refs. 5 and 37, one can
derive equations for the quantized morphological dynamics
of a nanodroplet.

IV. CONCLUSIONS FOR FERMION AND BOSON
SYSTEMS

A main difficulty in QN theory is that the wave function
simultaneously involves variations on two or more distinct
scales. In this study, it was shown that when these length
scales are well separated one may construct the wave func-
tion to account for these distinct dependencies. To do so,
place-holder variables, i.e., “order parameters,” are intro-
duced to keep track of the long-scale behavior.23,24,35,38 If � is
the ratio of the short to the long characteristic length, then

the R� i=�r�i serve this role by capturing the long-scale behav-
iors. Thereby, the wave function takes the form ��r ,R ;��
and r and R are the sets of the positions r�1 , . . . ,r�N and scaled

positions R� 1 , . . . ,R� N respectively. When � is small, i.e., the
scales are well separated, one may construct the dual depen-
dence of � on r and R. Recognizing that R is not a set of
distinct dynamical variables, but rather is a way to keep track
of the multiple �both r and R� dependencies in � on the
configuration of the particles is an important conceptual ad-
vance.

The multiscale approach reveals QN collective and
single-particle excitations. This framework elucidates the
cross-talk between short-scale, highly fluctuating single-
particle-like phenomena and long-scale collective modes as
follows. The multiscale perturbation analysis provides evi-
dence for the notion of a coarse-grained wave equation for
collective degrees of freedom that correspond to excitations
spanning the whole QN. Key elements in the coarse-grained
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wave equation, notably the inverse mass matrix �= and the
coarse-grained N-body interaction U, involve averages over
the short-scale dynamics. As suggested in Sec. III, the
coarse-grained behavior is accounted for via the factor
���r�1 , . . . ,�r�N� that acts like an overall “envelope function”
modulating the short-scale behavior of the factor

�̂�r�1 , . . . ,r�N� that expresses the antisymmetric exchange be-
havior of fermions. As suggested in Sec. III, � can be writ-
ten to good approximation as an N-fold product of single
particle functions ���r�� that correspond to an overall densi-
tylike variable, i.e., 
���r��
2 is a coarse-grained density.

For a metal or semiconducting QN, the multiscale ap-
proach illustrates how collective behaviors in the N-electron
QN emerge as bosonlike excitations in the form of long-scale
electron density oscillations, i.e., through 
�
2. To lowest or-
der in the perturbation hierarchy, there are states wherein the
wave function separates into a short-scale, antisymmetric fer-

mion factor �̂�r� and a long-scale symmetric, bosonlike fac-
tor ��R�. The latter satisfies a coarse-grained wave equation
involving an effective potential created by averaging the
N-electron potential over short-scale variations. To construct
this effective potential, one solves a short-scale problem for

�̂. The perturbation method illustrates the emergence of an
effective mass for the long-scale, QN-wide dynamics of the
electrons, revisiting the notion of a dressed particle with ef-
fective mass. The long-scale dependence of the wave func-
tion captures excitations with effective mass that can greatly
exceed the mass of a single constituent particle strongly sug-
gests that the low-lying eigenstates of the coarse-grained
wave equation correspond to collective modes, and that

when the assumption is made that ��R����R� 1�¯��R� N�,

��R� �
2 emerges as the density profile for these collective,
high effective-mass modes. However, if the long-scale corre-
lations are accounted for in ��R� then it is tempting to ap-

proximate �̂ as a Slater determinant of single-electron func-
tions, one for each of the N lowest single-particle energy
states, comprising the fermion ground state. This picture of

�̂�r���R� composite states suggests that excitations from the
ground state are of several distinct types classified via effec-

tive mass and the associated density 
��R� �
2, as well as the
number of single-particle states above the Fermi level.

For fermion liquids �e.g., helium III� the long-range ex-
citations, emerging as states of the coarse-grained wave
function �, correspond to surface waves, i.e., fluctuations in
droplet shape. As for the electron phenomena noted above,
the spectrum of these excitations is reflected in the range of
effective masses supported by the �= matrix of Secs. II and
III. Since � is symmetric with respect to particle label ex-
change, these excitations are bosonlike in character.

The collective excitations described by the long-scale
equation for conductors or semiconductors are likely related
to surface plasmas and quantum dot fluorescence. In a more
general approach, the phonons of the ion core lattice of the
nanoparticle are expected to support superconductivity ef-
fects.

For boson systems, the requirement of overall symmetry
of the wave function could be met by the lowest order solu-

tion in the perturbation analysis being a product of two fac-

tors, �̂ and �, both of which are either antisymmetric or
symmetric. However, there can be more complex states
which, in analogy to Slater determinants, can be a linear

combination of �̂� terms that is symmetric overall, even

though any one �̂� term is not symmetric. Thus, there could
be low energy solutions to the wave equation of complex
structure as follows.

To illustrate the potential for more complex excited
states in a boson QN, let Aij�r� be antisymmetric with respect
to the exchange of the particle label indices i and j, but
symmetric with respect to all other index permutations, and
similarly for Bij�R�. Then, the following function is overall
symmetric:

�
i�j

Aij�r�Bij�R� .

This state has some antisymmetric character but is not nec-
essarily of high energy, i.e., there is no analog to the Fermi
level. In boson systems, the multiscale approach appears
promising for discovering the excitations of quantum nano-
droplets, i.e., their quantized surface waves and coupled
morphological-rotational dynamics.

For the relatively simple boson system states, wherein

both �̂ and � are symmetric, the results of Sec. II suggest
the existence of a coarse-grained wave equation for � that
can be used to analyze the surface waves and other morpho-
logical dynamics of superfluid nanodroplets. Considering the
peculiar behavior of low temperature Bose condensates, the
application of a multiscale approach to analyze boson nano-
droplets is likely to reveal unexpected behaviors.

For boson nanodroplets, the collective factor corre-
sponds to droplet shape, rotation, and density waves propa-
gating internally or on the surface. However, there may be
more complex lowest order solutions whereby neither factor
is antisymmetric or symmetric, but the product or sum of
product solutions has the correct particle label exchange
symmetry. One expects that the dual antisymmetric solutions

�̂� are of high energy. This is suggested by the argument
that both factors should have the character of a Slater deter-
minant of single-particle-like functions with only single oc-
cupancy per single-particle state allowed. This is in sharp

contrast to the case where both �̂ and � are symmetric, so
that most particles would occupy the single-particle ground
state.
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