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a b s t r a c t

A multiscale mathematical and computational approach is developed that captures the hierarchical
organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms
of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom
description and terminates with order parameters characterizing a whole microbe. This conceptual
framework is used to guide the analysis of the Liouville equation for the probability density of the
positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale
mathematical techniques, we derive equations for the co-evolution of the order parameters and the
probability density of the N-atom state. This approach yields a rigorous way to transfer information
between variables on different space-time scales. It elucidates the interplay between equilibrium and far-
from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-
grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-
energy minimizing structures, many of which are typically supported by the set of macromolecules and
membranes constituting a given microbe. This suite of capabilities provides a natural framework for
arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data,
and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected
features of the methodology are demonstrated using our multiscale bionanosystem simulator Deducti-
veMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the
cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to
human papillomavirus, and iron-binding protein lactoferrin.

� 2011 Elsevier Ltd. All rights reserved.
1. Background

Microbes such as viruses and bacteria are organized hierarchi-
cally. For example, a virus is constituted of atoms assembled into
macromolecules which, in turn, constitute several substructures.
For a nonenveloped virus, the latter are genetic material and the
capsid. For an enveloped system such as dengue virus, there is an
outer protein net, a lipid zone, and an inner RNA-protein complex.
Accompanying this hierarchical organization is a spectrum of time
and length scales. The objective of this article is to present our
strategy for developing a theory that parallels the hierarchical
organization of microbes with a mathematical and computational
framework for efficiently modeling microbial systems.
V, cowpea chlorotic mosaic
man papillomavirus; RMSD,
D, molecular dynamics; QM/
P, order parameters; DMS,
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Modern nanocharacterization experimental methodologies
make the development of microbial simulation approaches timely.
For example, Atomic Force Microscopy (AFM) is employed to
investigate a range of biological processes from unfolding of
a single molecule to nano-indentation of viruses (Brown et al.,
2007; Florin et al., 1994; Roos et al., 2010). A standard AFM can
scan a sample more than 10 thousand times per second, yielding an
ensemble measurement that parallels a statistical mechanical
approach. Thus, to model such experiments computationally,
a framework is needed that addresses structures in a range of sizes
from single macromolecules to viruses and bacteria, without losing
information at any time or length scale.

Nanotechnical methods for characterizing macromolecular
assemblies include AFM (Hinterdorfer and Dufrene, 2006), Ion
Mobility eMass Spectrometry (Bernstein et al., 2009; Ruotolo et al.,
2005; Uetrecht et al., 2010), chemical labeling (Beardsley et al.,
2006), and nanopore measurements (Zhou et al., 2008). While
these techniques provide information on structure, they are coarse-
grained in that they do not resolve all-atom configurations. X-ray
and electron microscopy provide detailed structure but do not
provide information on dynamics (Barthel and Thust, 2008; Gaffney
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and Chapman, 2007). Solid-state NMR techniques do provide an
ensemble of atom-resolved structures but cannot be used to give
overall structure for a macromolecular assembly (Dvinskikh et al.,
2006; McDermott, 2009; Svergun and Koch, 2003; Bauer et al.,
2011). Thus, we suggest that a method which integrates multiple
types of nano-characterization data with a predictive all-atom
simulation approach would greatly advance the understanding of
microbial systems; a preliminary approach of this type has been
presented earlier (Pankavich et al., 2008).

The above and other (D’Alfonso et al., 2010; Florin et al., 1994;
Goldstein et al., 2003; Lyon et al., 1998) experimental techniques
can be performed under variousmicroenvironmental conditions such
as salinity and pH. These variations modulate interactions between
solvent accessible parts of the microbe and host medium atoms,
inducing structural and functional changes of the former. For
example, viral RNA is found to be stable and facilitate encapsulation in
a 2:1 electrolyte due to “tight” electrostatic binding with Mg2þ ions,
but loses tertiary structure in a 1:1 electrolyte (Freddolino et al., 2006;
Singharoy et al., 2010b). An all-atom model is often essential to
correctly probe these interactions. Structural fluctuations and internal
dynamics are a central feature of several biological processes. For
example, in the presence of an energy barrier, the atomic fluctuations
allow self-organization of lipids in membranes (Sung and Kim, 2005).
Fluctuations are also important in expressing the conformational
diversity of macromolecules that allows for large deformations upon
drug binding (Rohs et al., 2005). Similarly, excessive fluctuations in
viral epitopes appear to diminish immune response (Joshi et al., under
review) andmay explain the dependence of immunogenicity on their
fluctuations (Nowak,1996). Thus, an all-atom description is necessary
to account for all sources of fluctuation in simulating aforementioned
processes, and hence has been the basis of traditional molecular
dynamics (MD) approaches (van Gunsteren and Berendsen, 1990).

All-atom MD simulations of macromolecular assemblies
involving more than a million atoms (such as a virus in an explicit
solvation environment) require large computational capabilities
and have been accomplished using more than 1000 processors for
a single time-course. To simulate viruses over microseconds on
such a platform would require engaging this many processors for
months (assuming the usual femto-second MD timestep). This
restricts traditional MD to less than 50 nm structures and hundred
nano-second timescales. Hence, incorporating information about
atomic processes into microbe modeling has been a challenge.
Billion-atom MD simulations have been accomplished (Abraham
et al., 2002; Ahmed et al., 2010; Sanbonmatsu and Tung, 2006,
2007; Schulz et al., 2009; Germann et al., 2005). However, these
simulations neglect Coulomb interactions, bonded forces, or the
rapidly fluctuating proton. All the latter are central to biomolecular
structure and dynamics. Thus, such billion-atom simulations
should not be viewed as the standard for microbial modeling.

Multiscale approaches have been developed to address the above
computational challenges. These methods yield insights into the
dynamics of a system as it simultaneously evolves across multiple
scales in space and time. By the definition adopted here, a multiscale
method simultaneously accounts for processes on a range of scales.
This scale bridging requires development of models for various scales
which are thermodynamically and structurally consistent with each
other (Noid et al., 2008a). For example, the deductive multiscale
methodology (Section 1.1) maintains the effect of all degrees of
freedom while greatly accelerating simulations. The advantages and
shortcomings of this and other methods are compared in Section 1.3.

1.1. Deductive multiscale analysis

Deductive multiscale analysis is a collection of concepts and
mathematical techniques for understanding the dynamics of
a complex system as derived from a primitive model cast at the
finest scale of interest. In essence, it adheres to the basic program of
statistical physics that started, for example, with Gibbs (Gibbs,
1981) and Liouville (McQuarrie, 1976). A goal of our studies is to
retain information on all scales simultaneously and capture the
dynamic cross-talk between processes on the relevant spectrum of
space-time scales. For example, overall viral structure affects
atomistic fluctuations. These fluctuations mediate the stability of
entire structure through the free-energy driving forces, illustrating
an interscale feedback underlying microbial processes.

The main steps in deductive multiscale analysis can be
summarized as follows:

1. The starting point is a primitive model that is cast in terms of
variables describing the systems at the shortest space-time
scale. For the present case, the fine-scale description is cast in
terms of the positions and momenta of all the atoms in the
system. This description is a viable starting point as it contains
much of the physics of biological systems and, through
deductive multiscaling, results in coarser-grained model which
needs minimal recalibration given an interatomic force filed
(e.g., CHARMM (MacKerell et al., 2001) or AMBER (Ponder and
Case, 2003)).

2. Deductive multiscaling then facilitates the identification of
coarse-grained variables (order parameters) that describe the
salient features of a system on longer space-time scales. For
microbial simulations, these order parameters (OPs) capture
overall structural information, e.g., the position, shape, size,
and orientation of major components of the microbe.

3. Deductive multiscaling provides criteria for determining the
completeness of the set of OPs (Section 2.4).

4. Rigorous Smoluchowski/Langevin equations for evolving the
OPs are then derived. These equations are stochastic because
the behavior of matter at the nanoscale is strongly influenced
by the fluctuating states of the atomic configurations. To
address this, deductive multiscaling yields the co-evolving
quasi-equilibrium ensemble for fine scale (atomistic) states
consistent with the instantaneous values of OPs. Thus, the all-
atom description of the system is retained.

In summary, deductive multiscaling is a method for deriving
equations capturing the two-way flow of information between
fine- and coarse-scale variables. With this, it probes the interplay of
far-from-equilibrium and equilibrium processes that underlies
many microbial behaviors. For example, much of the structure of
membranes and DNA or RNA corresponds to a free-energy mini-
mizing state. In contrast, the self-assembly of proteins and genetic
material into a virus, and the diffusion of molecules across
a membrane or within a cell, are far-from-equilibrium processes.
Deductive multiscaling provides a way to obtain the free-energy
gradients that drive the afore-mentioned processes.

1.2. Multiscale analysis

As the OPs evolve slowly in time, they change the conditions
determining the ensemble of all-atom configurations. Since atom-
istic variables change rapidly, the associated probability takes an
equilibrium-like form as suggested by the Gibbs-hypothesized
equivalence of long-time and thermal averages. This probability
then influences the factors in the equations of OP dynamics. The
resulting transfer of information from the OPs to the atomistic
configurations (characterized by the quasi-equilibrium probabili-
ties) and, in turn, back to the OPs, is summarized in Fig. 1. This
provides a natural way to transfer information between descrip-
tions at various scales that are rigorously derived from the



Fig. 1. Interscale feedback, and the manner in which information is transferred across
scales underlying the DMS computational approach. Here, OPs mediate the quasi-
equilibrium probability of atomistic configurations. The latter is used in the
construction of thermal-average forces and diffusion factors which underlie the Lan-
gevin dynamics of the OPs.
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statistical mechanics of a microbial system. This conceptual scheme
has been used to derive a framework for multiscale modeling of
biological systems (Cheluvaraja and Ortoleva, 2010; Singharoy
et al., 2011). Similar schemes are designed and implemented for
investigating electrostatic (Singharoy et al., 2010b) and quantum
(Iyengar and Ortoleva, 2008; Shreif and Ortoleva, 2011) properties
of nanosystems.

Our deductive multiscale approach has been implemented as
DeductiveMultiscaleSimulator (DMS) software. Forces that drive
the Langevin dynamics of slow variables must be computed via an
ensemble method. In DMS these forces are efficiently computed via
an ensemble/Monte Carlo integration method enabled by the
nature of OPs (Cheluvaraja and Ortoleva, 2010; Singharoy et al.,
2011). Atomic forces are obtained from a quasi-equilibrium
ensemble of all-atom structures constrained by the instantaneous
values of OPs. Monte Carlo integration averaging of these forces
over the ensemble is carried out to obtain the thermal average
forces at every Langevin timestep. This approach has the advantage
that no phenomenological relation between forces and OPs is
required.

1.3. Comparison of deductive multiscaling with other methods

A variety of methods, their strengths and limitations in the
context of microbial simulations, and a comparison with deductive
multiscaling are briefly as follows.

1.3.1. Molecular dynamics and coarse-grained models
Traditional MD does provide all-atom structure but typically

gets trapped in often biologically irrelevant free-energy minima
(Chipot and Pohorille, 2007). In “coarse graining” (CG) approaches,
a system is simplified computationally by clustering several
subcomponents into one component; this effectively reduces the
computational complexity by removing both degrees of freedom
and interactions. The fundamental assumption behind such tech-
niques is that, by eliminating unimportant degrees of freedom, one
can obtain results over longer time scales than would otherwise be
achievable. A variety of coarse graining methods currently exists,
ranging from united-atom to elastic network models (Ding et al.,
2008; Marrink et al., 2007). For example, in residue-based CG,
clusters of 10e20 covalently bonded atoms are represented by one
bead; it is a natural and commonly used method for coarse grain-
ing, and yields a speedup of 1e2 orders of magnitude over all-atom
MD (Lo�cpez et al., 2009; Proctor et al., 2010). Shape-based CG uses
a neural network algorithm to assign parts of a macromolecule to
beads, efficiently reproducing the shape of the macromolecular
assemblies with a minimal number of beads (Arkhipov et al., 2008).
Interactions between beads are typically calibrated from all-atom
simulations (Marrink et al., 2007; Nguyen et al., 2009), and more
recently via a variational approach, multiscale coarse-graining
(MSCG), that optimizes agreement of predictions to respect equi-
librium probability distribution (Chu et al., 2007; Das and
Andersen, 2009, 2010; Izvekov and Voth, 2005a,b; Krishna et al.,
2009; Liu et al., 2007; Noid et al., 2008a,b, 2007;Wang et al., 2006).

The similarity of MSCG to deductive multiscaling lies in the
nature of free-energy minimizing forces that drive the CG (or OP)
dynamics (Eqs. (4), (6), and (7) of Section 2.3 and Eqs. (22) and (9) of
Ref. Noid et al., 2008a). However, MSCG requires a huge initial
ensemble of atomistic structures to estimate the probability
distribution at an all-atom level and “self-consistently” calibrate
the CG force fields according to this information. In DMS, the
generation of a huge ensemble of atomic structures is replaced by
the generation of quasi-equilibrium sub-ensembles that respect the
instantaneous OP states. Thus, the forces are calculated on the fly
during OP dynamics, and are not preconstructed from a prior set of
calculations that are often inconsistent with the evolving state of
the system. DMS enables simulation of the time evolution of an
atomistic ensemble as the mapping from OP to all-atom configu-
rations can be probed at any point in the trajectory.

1.3.2. Multiphysics approaches
Phenomenological coarse-grained models are often only appli-

cable close to the reference state and require calibrationwith many
new applications (Kamerlin et al., 2011). Semi-phenomenological
multiscale coupling bridges the nanometer and mesoscopic scales
by embedding a nanostructure into a continuum model; this does
not capture fluctuations near the nanostructure/continuum
boundary (Chang et al., 2005; Zhuang et al., 2010). The central idea
behind these approaches is to use results from amodel operating at
one scale as input to a model operating at another. For example, in
the case of proteins embedded in membranes, a continuum
membrane model was coupled to a more microscopic macromo-
lecular model using heuristic interactions between these two
models which operate on different scales (Chang et al., 2005).
Another way to combine models operating on different scales is to
treat them separately and pass information from one level of
resolution to the next (e.g., QM/MM (Warshel and Levitt, 1976)). An
even more sophisticated multiscale approach allows dynamic
switching between resolution levels as the immediate environment
of a molecule changes (Praprotnik et al., 2009).

In conventional phenomenological approaches, one often reca-
librates chosen functional dependencies of coarse-grained poten-
tials to account for new systems with different geometries or
molecular constituents. Deductive multiscaling does not require
any postulated phenomenological relationships to provide the
dependence of thermal average forces or diffusion factors on the
OPs. Rather, these factors are calculated from all-atom configura-
tions and inter-atomic forces are provided by established force-
fields. This is because, by construction, OPs mediate the configu-
rations needed to compute these factors. With this, the coarse-
graining procedure and ensuing Langevin dynamics of DMS are
applicable to a broad spectrum of microbial systems since the
underlying all-atom interactions are provided by well-established
set of force-field parameters.

1.3.3. Symmetry-constrained models
Symmetry-constrained models take advantage of the inherent

symmetry of structures, such as for icosahedral viruses, to reduce the
number of degrees of freedom and thereby increase computational
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efficiency (Phelps et al., 2000; Speelman et al., 2001; Tama and
Brooks, 2002; van Vlijmen and Karplus, 2005). However, structural
transitions often break this symmetry via nucleation events (Miao
et al., 2010; Miao and Ortoleva, 2010), so that even if the initial and
final structures of the system have the same symmetry, the dynamic
pathway of transition can violate it. Thus, symmetry-constrained
models often cannot be used to simulate microbial structural transi-
tions due to their highly nonlinear, friction-dominated, symmetry-
breaking character (Miao and Ortoleva, 2010).

1.3.4. Chemical kinetic self-assembly models
These models predict the time-course of populations of begin-

ning, intermediate, and final structures (Zlotnick, 2005). They do
not enable prediction of detailed molecular structure and require
extensive experimental data for calibration and to determine the
assembly pathway, restricting their predictive capability.

1.3.5. Langevin dynamics and projection operators
The theory of random processes started with work on Brownian

motion by Einstein (Einstein, 1905), Smoluchowski (Smoluchowski,
1906), and P. Langevin (Langevin, 1908; Lemons and Gythiel, 1997).
These approaches are based on the connection between frictional
forces and atomistic fluctuations, and resulted in the development of
the generalized Langevin equation. Langevin dynamics simulations
have been employed in macromolecular studies (Allen and Tildesley,
1987) and to impose isothermal conditions onMD simulations (Pastor
et al., 1988). Slow dynamics in terms of the coarse-grained variables is
often described by generalized Langevin equations (Kubo, 1966;
Zwanzig, 1973; Tirion, 1996; Bahar and Rader, 2005).

A scheme that incorporates Langevin dynamics of slow variables
is described in Normal Mode Langevin simulations (NML) (Sweet
et al., 2008). NML identifies the slow modes by diagonalizing
a Hessian matrix and overdamps the high frequency modes near
their energy minimum while respecting the subspace of low
frequency normal modes. In our approach, rapidly fluctuating
variables are allowed to explore a representative ensemble of
configurations. Forces driving the evolution of the OPs are con-
structed from the ensemble of atomistic configurations predicted
by our analysis to satisfy a quasi-equilibrium distribution. Hence,
overdamping of rapidly fluctuating modes is avoided.

In contrast to deductive multiscaling, extended Lagrangian
techniques employ fictitious masses to adjust the timescales and
still allow for the adiabatic propagation of the faster (atomistic)
degrees of freedom in response to the slower ones (Iyengar and
Jakowski, 2005). These methods bypass explicit averaging for
calculation of the driving forces either via explicit variable trans-
formation (Zhu et al., 2002) or extended phase-space approaches
(Maragliano and Vanden-Eijnden, 2006). Even though an adiabatic
decoupling between the slow (OP) and fast (atomistic) variables
appears naturally in deductive multiscaling (by the scaling of the
Liouville operator, Section 2), the relative efficiency of an adiabatic
relaxation scheme versus the present OP-constrained sampling
scheme remains to be determined. In particular, the present
scheme requires the development of a rich ensemble of atomistic
configurations at each Langevin timestep, while the adiabatic
scheme requires co-evolution of the slow and many [O(N)] fast
variables. This issue is of critical importance for the efficiency of the
simulation of systems involving 106 or more atoms.

A commonly used approach for treating far-from-equilibrium
systems is based on projection operators (Deutch and Oppenheim,
1987; Shea and Oppenheim, 1996, 1998). It is very general in the
sense that no approximations aremade in arriving at an equation for
the reduced probability of a subset of variables (OPs here) (Zwanzig,
1961, 2001). However, this kinetic equation requires construction of
a memory function, which usually can only be accomplished via
extensive MD simulations or experimental data. This is numerically
expensive for N-atom problems except when the memory functions
have short relaxation times (Darve et al., 2009; Izvekov and Voth,
2006; Singharoy et al., 2011).

In our microbial modeling, the OPs of interest are much slower
than the characteristic rate of atomistic fluctuations, and therefore
the relaxation times are typically short relative to OP dynamics.
Under these conditions, deductive multiscaling leads to the same
set of Langevin equations as those from projection operators.
However, deductive multiscaling is a more direct way to construct
these coarse-grained equations; we do not start with the projection
operators and then resort to perturbation methods for constructing
memory functions. Instead, we make an ansatz on the dependence
of the N-atom probability and analyze the resulting Liouville
equation via multiscale perturbation techniques.

1.3.6. Space-warping and related methods for computing
thermal-average quantities

A space-warping technique was used to introduce OPs for
macromolecular systems (Jaqaman and Ortoleva, 2002). These OPs
facilitate the use of deductive multiscaling to derive Langevin
equations for their dynamics (Cheluvaraja and Ortoleva, 2010;
Jaqaman and Ortoleva, 2002; Miao et al., 2010; Miao and
Ortoleva, 2010; Ortoleva, 2005; Pankavich et al., 2008; Singharoy
et al., 2011). The term space-warping was also used to describe
a method for achieving efficient sampling of configuration space by
lowering barriers (Minary et al., 2008; Zhu et al., 2002). Integration
of these methods within a deductive multiscaling context could
bring additional efficiency to multiscale simulations of microbial
systems but has not yet been carried out.

1.4. Practical advantages of deductive multiscaling

In light of Sections 1.2 and 1.3, deductive multiscaling has the
following practical advantages over other methods:

� the equations for the OPs are force-field based, i.e., all factors
(thermal average forces and diffusivities) in these equations
can be computed from factors in the N-atom model;

� the form of these equations need not be hypothesized; they are
computed at each instant via an ensemble algorithm;

� the forces driving OP dynamics are not based on a phenome-
nological, precalibrated expression; thus, the ensemble of
configurations mediated by the changing OPs is accounted for;

� Accounting for friction at the coarse-grained level allows for
probing the non-inertial dynamics of the microbe; and

� an efficient algorithm for simulating the dynamics of a complex
system on multiple scales is provided that simultaneously
preserves the all-atom description and the overall picture
captured by the OPs.

These features imply that deductive multiscaling captures the
interplay between far-from-equilibrium and equilibrium processes
that underlies microbial behavior.

1.5. Advances in hardware and software engineering

With computational power becoming available at very low cost,
there may be a question as to why a multiscale simulation meth-
odology is still needed. The ever-increasing capability of high-end
computing platforms is enabling unprecedented scales of MD
simulation, thereby enabling the modeling of system-level
behavior of the large scale behavior of complex systems
(Sanbonmatsu and Tung, 2007; Shaw et al., 2010). One of the
driving forces for this development has been the exponentially
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increasing density of integrated circuits. Current petaflop
computers involve thousands of multicore processors. Modern
hardware advances such as GPU and FPGA computing also show
promise (Herbordt et al., 2007; Stone et al., 2007; Ufimtsev and
Martinez, 2008). However, planned exascale supercomputers and
hybrid architectures do pose some technological challenges (e.g.,
CPU-GPU integration, high power consumption, and lack of scal-
ability over heterogeneous platforms) (Dongarra et al., 2011). Even
currently available homogeneous multicore architectures involve
software engineering challenges (Valiant, 2011).

Difficulties in biomolecular simulations arise due to calculations
of non-bonded interactions. Algorithmic improvements to MD
overcome some of these difficulties in a hardware-specific fashion.
These advances have taken advantage of query search algorithms
(Benetis et al., 2006; Kraemer and Seeger, 2009). Two main MD
algorithms (Verlet list and linked cell) were optimized to yield an
efficient identification of near-neighbor atoms for efficient
computation of non-bonded forces (Allen and Tildesley, 1987;
Gonnet, 2007; Mason, 2005; Petrella et al., 2003; Verlet, 1967;
Wang et al., 2007; Welling and Germano, 2011; Yao et al., 2004).
Extra efficiencies arising from reducing the number of minimum
image force calculations have been realized (Heinz and
Hünenberger, 2004; Mason, 2005; Pütz and Kolb, 1998). Addi-
tional efficiency in calculating pairwise forces has been achieved
via domain decomposition implemented in parallel fashion (Pütz
and Kolb, 1998; Shaw, 2005).

Hardware-specific optimizations are used wherein the neigh-
boring particles are reordered so that they reside close to each
other in memory. This optimization achieves cache hits within the
hierarchical memory typical of contemporary computers, and has
enabled highly efficient multi-billion atom simulations (Berendsen,
1996; Kadau et al., 2006; Meloni et al., 2007; Yao et al., 2004).
However, this approach limits the use of a program to a particular
computer or cluster, since it heavily relies on the architecture of the
computing system. These and other hardware-specific approaches,
notably those based on harnessing GPU or cell processor efficiency,
often require different adjustments every time the hardware
changes (Anderson et al., 2008; Liu et al., 2008). While these
improvements have been impressive, billion-atom simulations as
needed for microbes still remain a challenge (Section 4). Thus, for
microbial simulations, it is timely to have a general mathematical
framework that accelerates MD, is based on fundamental laws
of molecular physics to minimize recalibration, and is platform-
independent.

2. Materials and methods

In this section, key aspects of our deductive multiscale approach
are discussed in some detail. The essence our computational algo-
rithm is suggested in Fig. 1 and has been implemented as the DMS
software.

2.1. Order parameters

OPs are coarse-grained variables characterizing the overall
spatial organization of a system. A central element of our multiscale
analysis is the construction of OPs describing the coarse-grained
features of a microbe. An OP-mediated model captures the sepa-
ration in timescales between the coherent (slow) and non-coherent
(fast) degrees of freedom. In effect, OPs filter out the high frequency
atomistic fluctuations from the low frequency coherent modes. This
property of OPs enables them to serve as the basis of a multiscale
approach for simulating microbial dynamics (Cheluvaraja and
Ortoleva, 2010; Ortoleva, 2005; Pankavich et al., 2008; Singharoy
et al., 2010a). A number of types of OPs have been identified
through our work and an extensive set of studies on phase transi-
tions and related phenomena. Examples and the phenomena they
have been used to describe are as follows.

� Scaled coordinates: Collective and single-particle behaviors in
many-particle quantum systems (Fan et al., 2010; Iyengar and
Ortoleva, 2008; Ortoleva, 2005; Pankavich et al., 2009a;
Shreif and Ortoleva, 2011) and scaled center-of-mass coordi-
nates for multi-atom assemblies (Cukier and Deutch, 1969;
Deutch and Oppenheim, 1987; Shea and Oppenheim, 1996,
1997, 1998).

� Curvilinear coordinates:Macromolecular conformational
dynamics (Shreif and Ortoleva, 2008; Tuckerman and Berne,
1991).

� Density-like variable profiles: Release of drug molecules from
a nanocapsule, the dynamics of enveloped viruses (Shreif et al.,
2008, 2009), and liquid crystal phase transitions (Lubensky,
1973; Nemtsov, 1977; Rothman and Zaleski, 1994; Shreif
et al., 2009; Zwanzig, 2001).

� Space-warping parameters: Overall size, shape, and state of
deformation of viruses and other macromolecular assemblies
(Cheluvaraja and Ortoleva, 2010; Jaqaman and Ortoleva, 2002;
Miao et al., 2010; Miao and Ortoleva, 2010; Ortoleva, 2005;
Pankavich et al., 2008; Singharoy et al., 2011).

� Subsystem OPs: The motion and deformation of different parts
of a virus (Shreif et al., 2008; Pankavich et al., 2009b).

� Hierarchical order parameters: The icosahedral or other struc-
tures of viruses (Singharoy et al., submitted for publication).

By definition, OPs are variables chosen to be slowly varying in
time. The origins of the slowness include the following:

� inertia associated with the coherent dynamics of many atoms
evolving simultaneously;

� migration over long distances;
� stochastic forces that tend to cancel;
� species population levels that track the simultaneous dynamics
of many units (as in chemical and self-assembly kinetics), only
a few of which change on the atomic timescale.

In the following, further discussion on structural (space-
warping, subsystem, and hierarchical) OPs is presented, and
deductive multiscaling is used to derive stochastic equations for
their dynamics.
2.2. Structural order parameters for microbes

2.2.1. Space-warping structural order parameters
Consider a microbe described via the positions of its N constit-

uent atoms labeled [ ¼ 1;.;N. Let the [-th atom in the system be
moved from its original (reference) position *r

o
[ via

*r[ ¼
X
k

*
FkUk[ þ*

s[; (1)

where the *
Fk and Uk[hUkð*r[

oÞ are k-th OP and basis function
respectively. For example, the use of k have been taken to be
products of Legendre polynomials in the X, Y, Z Cartesian directions
(Cheluvaraja and Ortoleva, 2010; Miao and Ortoleva, 2009).
Through the OPs and the Eq. (1), the reference position is deformed
into the instantaneous position*

r[. Given a finite truncation of the k
sum in Eq. (1), there is a residual displacement (denoted *

s[) for
each atom.

An explicit expression for *
Fk is obtained by minimizing the

mass-weighted square residual with respect to the *
Fk (Pankavich
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et al., 2008; Shreif and Ortoleva, 2008). This procedure maximizes
the information content in these OPs. One obtains

*
Fk ¼

PN
[¼1 m[Uk[

*
r[

mk
; mk ¼

XN
[¼1

m[U2
k[; (2)

where m[ is the mass of atom [. Inclusion of m[ in Eq. (2) gives *Fk
the character of a generalized center-of-mass. For example, if Uk[ is
independent of [, then *

Fk is proportional to the center-of-mass of
the assembly. Some of the OPs defined in this way constitute a strain
tensor accounting for compression-extension-rotation, while others
describe more complex deformations. The mk serve as effective
masses associatedwith each OP. Themasses primarily decreasewith
increasing complexity of the basis functions. Thus, the OPs with
higher k probe smaller regions in space. In summary, a model based
on this set of OPs probes the structure over a diverse range of spatial
scales via different orders in k. Further details on the construction of
the *

Fk are provided elsewhere (Cheluvaraja and Ortoleva, 2010;
Jaqaman and Ortoleva, 2002; Miao and Ortoleva, 2009).

2.2.2. Subsystem decomposition
In the previous discussion, one set of OPs was introduced for the

whole system. This is adequate for studying changes like uniform
contraction of a virus capsid (Miao and Ortoleva, 2010) or collapse of
viral RNA (Singharoy et al., 2011), wherein the major structural
changes could be described by a small set of global OPs. However,
macromolecular assemblies like viruses and ribosomes are composed
of several subunits organized in a complex structure that canmove in
opposite ways. For example, during escape of RNA from a virus, it
migrates outwards while the capsid might contract. With these
applications in mind, the deductive multiscale scheme developed
above is extended to describemultiple OP types interacting with each
other, which characterize the structure, location, and orientation of
each subsystem. In this extension, a system is divided into subsys-
tems, each of which is described by a given set of OPs
ð*Fks; s ¼ 1;2;.Þ. For example, a virus capsid can often be divided
into pentamers and hexamers of the constituent protomers. In this
case, different sets of OPs are defined for each of these subsystems.
Fewer OPs can be introduced for rigid parts compared to flexible ones.

As system complexity (e.g., the number of subsystems and their
internal structure) increases, one may increase the number of OPs,
i.e., the range of the k sum in Eq. (1). As the number of OPs
increases, smaller and smaller scale features are captured, and their
characteristic timescales decrease.

2.2.3. Hierarchical order parameters
Again, consider a microbe to be an assembly of interacting

subsystems, each of which has internal structure. This hierarchical
structure of a microbe is reflected in the broader spectrum of length
and timescales involved, adding additional complexity to the logical
flow of Fig. 1. This is illustrated here via a three-level formulation. At
the finest level, the system is described by the positions of the N
constituent atoms. At an intermediate level, each subsystem is
describedvia subsystem-centeredOPs similar to thoseof Section2.2.2.
Then, a global set of variables is constructed from the subsystem-
centered OPs to capture overall organization of the entire system.
Using an approach similar to that of Eq. (1), a set of hierarchical OPsJ
that are expressed in terms of the subsystem OPs *Fks is introduced.
For illustrative purposes here, from the set of subsystemOPswe focus
on theposition*Rs of the centerofmassof each subsystem, s ¼ 1;2;.

*
JK ¼

P
s
MsUKs

*Rs
P
s
MsU2

Ks

; (3)
where UKs is the analogue of Uk[ in Eq. (1). Eq. (3) expresses overall
structural characteristics of the assembly (*JK ) as a function of the
position of individual subsystems (*Rs). Thus,

*
r[ explicitly defines

*Rs, which, in turn, yield *
JK , reflecting the structural hierarchy of

a microbe.
2.3. Stochastic equations for order parameter dynamics

The statistical description of a microbial system is provided by
the probability density r of the N atomic positions and momenta G.
However, this formulation masks the underlying hierarchical
organization of a microbe. To address this, in our approach, r is
hypothesized to depend on G both directly, and via a set of OPs,
indirectly. In light of the hierarchical organization of a microbe, one
way to achieve this is to include the OPs for all subsystems
s ¼ 1;2;/ in this hypothesized dependence of r. With this ansatz,
a multiscale analysis of the Liouville equation yields sets of coupled
Langevin equations for theOPs (Pankavich et al., 2008, 2009b; Shreif
et al., 2009). For the subsystem OPs of Section 2.2.2, one obtains

d*Fks
dt

¼
X
k0s0

**Dksk0s0
*f k0s0 þ*

xks; (4)

where the diffusivity factors
**Dksk0s0 are related to the correlation

functions of OP momenta *
Pks via

**Dksk0s0 ¼ 1
mksmk0s0

Z0

�N

dt
�*
Pk0s0 ðtÞ*Pks

�
; (5)

where *
Pks is the value of the OP momentum for a given N-atom

configuration, *Pk0s0 ðtÞ is momentum advanced in time through
Newtonian mechanics, and the h/i implies thermal average over
atomic configurations. The thermal-average force f

!
ks acting on

subsystem s is given by

*
f ks ¼ � vF

v
*
Fks

(6)

for OP-constrained Helmholtz free-energy F, where

F ¼ �1
b
lnQðF; bÞ; (7)

QðF; bÞ is the partition function constructed from configurations
consistent with the set of *Fks (denoted F collectively), and b times
the Boltzmann constant and absolute temperature is one. Eq. (4)
has been implemented as the DMS simulator for the case of
a single subsystem (Cheluvaraja and Ortoleva, 2010) and more
recently for a set of interacting subsystems (Cheluvaraja and
Ortoleva, 2010; Pankavich et al., 2009b). The logic of Fig. 1 serves
as the schematic workflow of DMS.

In the above formalism, the thermal average forces *f ks are
constructed at each Langevin timestep via MonteCarlo integration
and the use of interatomic force fields (e.g., CHARMM)
(Vanommeslaeghe et al., 2009). This does not require any
assumption on the form of the dependence of the thermal average
forces on the OPs; this dependence is automatically incorporated
because the ensembles used to carry out the thermal averaging are
constructed for the values of the OPs at the given Langevin time-
step. This formalism accounts for the full impact of fluctuations*xks
as the random forces in the Langevin equations are constructed to
be consistent with the diffusion factors of Eq. (4). Finally, equations
analogous to Eq. (4) are obtained for simple (Cheluvaraja and
Ortoleva, 2010) and hierarchical (Singharoy et al., submitted for
publication) OPs.
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Inherent in our deductive multiscale approach is the capability
to reconstruct atomistically resolved states given the evolving
coarse-grained picture. Any coarse-grained theory carries an
inherent uncertainty in the fine-scale state (Ayton et al., 2007;
Ortoleva, 2005). Our approach addresses this by providing the
conditional probability density for the atomistic configurations
given the instantaneous values of the OPs. In this sense, our
approach is equivalent to an ensemble of MD simulations
(Singharoy et al., 2011). Details on ensemble generation are
provided elsewhere (Cheluvaraja and Ortoleva, 2010).

2.4. Controls on accuracy

Accuracy of our multiscale simulations is controlled as follows.

2.4.1. Comparison with MD
Trajectories obtained via Langevin-quasi equilibrium ensemble

co-evolution by DMS are compared with conventional all-atom MD
to estimate/control errors. If performed with full electrostatics and
solvated structures, MD captures physio-chemical processes
without artifacts. It can be used to model experiments if simulations
are carried out for sufficiently long time (Freddolino et al., 2006).
A comparison of distributions of backbone dihedral angles and
system energies serves as a quantitative estimate of DMS simulation
errors relative to MD. Root-mean-square deviation (RMSD) calcu-
lations similarly provide error estimates. Thus, comparisons are
made at the level of OP time courses and all-atom configurations by
calculating RMSDs and dihedral angle distributions.

2.4.2. Comparison with experimental data
Experimental Data on the stability of various structures provide

a sensitive error measure when compared with DMS simulations.

2.4.3. Computed relaxation times of correlation functions
underlying diffusion factors and identification of missing OPs

OP velocity relaxation times are monitored to ensure that they
are smaller than the time-scale associated with OP variation. This
provides a self-consistency check for our deductive multiscaling
approach. Neglect of essential OPs results in unstable simulation
trajectories with attendant unphysical structures and energies and
large diffusion factors. Missing OPs are identified bymonitoring the
extent to which atomistic motion deviates from that generated by
the OPs, i.e., by tracking the growth of residuals *s[ for [ ¼ 1;.;N
(Section 2.2.1).

2.4.4. Re-referencing for new OP definitions
The reference structure (*r[

o for [ ¼ 1;.;N) used to define OPs
in Eq. (1) is updated at regular intervals to minimize errors. This
ensures that OPs remain a valid coarse-grained description as the
system evolves.

2.4.5. Emergent OPs
Internal consistency of DMS calculations is determined by

calculating the effect of a larger set of OPs on results. As the
simulation proceeds and the structure undergoes major trans-
formations, new OPs are identified and integrated into the
simulation.

2.5. Free-energy basin discovery and data-guided simulations

Our deductive multiscale approach was extended to facilitate
the discovery of low free-energy states of macromolecular assem-
blies. This was achieved bymodifying the free-energy of the system
as follows. A state-counting factor D� was introduced into our
canonical partition function Q (Pankavich et al., 2008), which
mediates against the states that are within any of the known free-
energy basins. It uses a set of molecular descriptors ðhÞ such as total
mass, charge, and eigenvalues of the moment of inertia and elec-
trical quadrapole moment tensors. This provides rotation-
independent factors to discriminate between the known and
instantaneous structures. With this, the thermal average forces
responsible for OP dynamics are modified to incorporate terms that
drive the system away from known low-energy configurations. The
result is a partition function (and associated free-energy) given by

QðFÞ ¼
Z

dG*Dþ�F� F*
�
D��h� h*

�
exp

�
�bH*

�
; (8)

where H is the total energy of the system and * indicates evaluation
at G*, the state over which integration is taken. The factor Dþ is
included in the calculation to only include configurations G*

consistent with the given values of OPs F. This framework enables
a sequential elimination of known stable structures and thus guides
the search for new ones. The above free-energy basin discovery
method can also be used to guide a simulation to states consistent
with nanocharacterization data (e.g., cross-section, AFM, chemical
labeling). This is achieved via modification of Dþ with experimental
data (Pankavich et al., 2008).

3. Results and discussion

In this section, DMS simulations are presented to demonstrate
various facets of our approach. Our deductive multiscale approach
is shown to transfer structural information between the OPs
(coarse-grained description) and the atomistic configurations
(characterized by quasi-equilibrium probability densities), and vice
versa. Accounting for interscale feedback is necessary for modeling
the structure and dynamics of microbial systems. Bionanosystems
provide ideal examples for testing our methodology. With this,
microbial behavior is understood here in terms of the slow
dynamics of OPs coevolved with the quasi-equilibrium probability
density of rapidly fluctuating atomic configurations. The systems
chosen for DMS demonstration are the cowpea chlorotic mosaic
virus (CCMV) capsid, a T¼ 1 human papillomavirus (HPV) e like
particle, and the RNA of satellite tobacco mosaic virus (STMV).

3.1. CCMV capsid structural transition

The CCMV capsid consists of 180 identical protomers organized
as 12 pentamers and 20 hexamers arranged in a T¼ 3 icosahedron,
having 432,120 atoms in total. Both in vacuum and an aqueous host
medium, this structure shrinks, in agreement with DMS simula-
tions. DMS trajectory based on 27 structural OPs shows the gradual
reduction in radius over time (Fig. 2(a)). About 10% decrease in
radius is observed over the first 10 ns. Langevin timesteps of 80 ps
were used. These steps are several orders of magnitude larger than
those required for conventional MD. Since the characteristic time
scale of OP evolution is much longer than that for atomic fluctua-
tions, the Langevin timesteps can be this large. OPs are seen to filter
out rapid atomistic fluctuations, reflecting the capability of
microbes to achieve the coherence fundamental to biological
functionality. Behavior of the OPs can be directly correlated to some
overall structural parameters. For example, evolution of the CCMV
radius over 10 ns is reflected in the decrease in the magnitudes of
the three OPs that track compression/extension in the X, Y, and Z
directions (Fig. 2(b)). At initial stage of shrinkage, these three OPs
decrease in a similar way indicating that overall symmetry of the
system is conserved. The capsomers undergo cooperative motions
through strongly coupled long-range interactions during shrinkage
(Miao and Ortoleva, 2010). However, at a later stage shrinking



Fig. 2. Structural transitions in CCMV (PDB ID: 1CWP) simulated via DMS. (a) Initial and final structures with radius of gyration time course. (b) Evolution of three OPs capturing
compression/extension in the three Cartesian directions. (c,d) Similar evolutions for STMV RNA (PDB ID: 1A34) with initial and final structures. (e,f) The evolution of radius of
gyration and the OPs for the HPV VLP (PDB ID: 1DZL) similar to (a,b). Insets in (e) show initial and final VLP structures.
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proceeds via a symmetry-breaking process that involves large-scale
translation and rotation of pentamers and hexamers in the capsid
(Miao et al., 2010; Miao and Ortoleva, 2010). As a result, the
structural transition starts locally and then propagates across the
capsid, i.e., it proceeds via intermediate states that are not con-
strained to the T¼ 3 icosahedral symmetry of the initial and final
states. This example indicates that symmetry-constrained models
may be inappropriate to study the pathways and mechanisms of
viral structural transition, while DMS captures this symmetry
breaking pathway.

3.2. STMV RNA structural transition

The 949 nucleotide RNA of STMV has been studied extensively
both experimentally and theoretically (Freddolino et al., 2006;
Schneemann, 2006). The shape of this RNA is confined by the
STMV capsid, in which it achieves an equilibrium structure. The
RNA changes its conformation depending on conditions in the
microenvironment. Dynamics of capsid-free STMV RNA in 0.3 M
NaCl solution was simulated using DMS. Immediately after the
simulation starts, the RNA evolves towards a new equilibrium state,
distinct from the capsid-confined one. It first expands, then shrinks,
and ultimately fluctuates around the new equilibrium structure
(Fig. 2(c)). The tertiary structure of the RNA becomes highly dis-
rupted during 25 ns of evolution, after which the initial symmetry
was completely lost (Fig. 2(c)). This is in agreement with experi-
mental results on the free viral RNA (Schneemann, 2006). The
gradual shrinkage of RNA observed in the simulations is explained
on the basis of ion shielding. The cloud of Naþ counter-ions mini-
mizes the repulsion between similarly charged regions in the RNA
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(Singharoy et al., 2011). This electrostatic shielding stabilizes the
RNA in a collapsed state. In contrast, a simulation of the RNA bound
to residues 2e27 from the N-terminal region of capsid proteins
exhibits stable STMV core particle conformations with a size
distribution ofw50�A (Day et al., 2001). Both the overall changes in
shape and size of RNA, as well as the symmetry-breaking nature of
its anisotropic expansion-shrinkage, are successfully tracked by the
variation in the OP values in all three stages (Fig. 2(c,d)). During the
initial transient stage the Langevin timestep of 40 ps was used.
After 3 ns, the RNAwas resolvated in a bigger box to accommodate
the expansion. After an initial transient, Langevin evolution was
executed using a timestep of 100 ps, reflecting the longer charac-
teristic time for this phase. In this slower evolution regime an
11-fold efficiency relative to conventional MD was achieved.
However, since a DMS simulation involves ensemble computations,
its performance should be comparedwithmanyMD runs.While for
each single traditional MD run the OP time-course is essentially the
same as that predicted by DMS (Cheluvaraja and Ortoleva, 2010),
the detailed atomistic configuration varies among members of the
ensemble. In addition, a single MD runmay not be representative of
an ensemble of possible time-courses which, in contrast, is auto-
matically generated using our deductive multiscale approach as
implemented in DMS. For these reasons, DMS results display an
additional speedup over traditional MD. In the given case this factor
is equal to 168, the size of the sample used in the Monte Carlo
integration to compute the thermal-average forces at each Lange-
vin step.

3.3. HPV virus-like particles stability and fluctuations

3.3.1. Epitope behavior and immunogenicity
Epitopes are the outwardly projecting surface features of a viral

capsid that play a critical role in invoking the immune response.
This feature is recently utilized in the development of epitope-
dressed vaccines constructed from virus-like particles (VLPs)
(Jennings and Bachmann, 2009). VLPs are devoid of genetic mate-
rial (RNA or DNA), but outwardly resemble the structure of the
intact virus. Considering the high cost of developing vaccines,
a computer-aided approach to vaccine discovery is of great interest.
Since vaccine efficacy is tied to immunogenicity of VLPs, and
immunogenicity may in turn be correlated with epitope behavior,
study of epitopes is an important issue in developing VLP based
vaccines. Epitopes may exhibit structural variationwhen binding to
antibodies; such studies require simulations of whole VLPs while
retaining small-scale details (at times to the atomic-level) in
structural and dynamical variations (so as to study binding, struc-
tural transitions due to changing conditions). We demonstrate here
the capability of DMS to capture such details in epitope behavior
while efficiently simulating supra-million atom VLP structures
(amounting to more than a million atoms). For this purpose we
undertook a study of HPV VLPs, the active ingredient in vaccines
developed for the prevention of cervical cancer (e.g., Gardasil�)
(Koutsky et al., 2002).

HPV VLPs are developed from the L1 major capsid protein
(Brown and Garland, 2008). As more than 40 HPV types that cause
genital tract disease have been identified, there is a need to expand
the capabilities of current vaccines to target a broader spectrum of
HPV types (Kreider et al., 1990; Smith et al., 2007; zur Hausen,
2009). When invoking immune response by HPV VLPs, type-
specific antibodies are generated that are capable of neutralizing
specific HPV types (Kreider et al., 1990). The specificity arises from
the diversity in conformations of epitopes that bind to the anti-
bodies. Five important epitope regions in HPV VLPs have been
identified: BC, DE, EF, FG, and HI (Carter et al., 2006; Roden et al.,
1997; Roth et al., 2006; Ryding et al., 2007), with FG shown to
play a key role in antibody binding. A pentameric substructure of an
HPV VLP shows immunogenic responses (Thönes et al., 2008)
(however, less than that of a complete VLP); this has initiated
interest in generating smaller size cost-effective vaccines having
similar immunogenicity to that of a complete VLP.

A T¼ 1 HPV16 VLP contains 12 pentamers of the L1 major capsid
protein totaling w400,000 atoms when unsolvated. The solvated
system of this system consists of more than 2 million atoms. We
simulated it and its pentameric substructures with MD and DMS to
investigate structural stability and epitope behavior. The goal is to
study structural and dynamical differences in epitope behavior for
systems that show different immunogenicities. In particular, we
studied a full T¼ 1 HPV16 VLP, one of its isolated pentameric
substructures, and a pentameric substructure with helix h4
removed from each L1 protein. Experimentally, the latter structure
shows less immunogenicity than the full pentamer (Schadlich et al.,
2009) (Section 3.3.2).

Here we focus the discussion on dihedral distribution for the
epitopes in various structures, and in particular for the FG loop. The
dihedral distribution for FG from MD and DMS of the h4 truncated
pentamer of the HPV16 VLP shows excellent overlap (Fig. 3(a)). This
indicates that DMS samples regions in the conformation space that
are similar to those from conventional MD, thus validating the
deductive multiscaling approach. The analysis provides a bench-
mark on DMS simulation accuracy as mentioned in Section 2.4.1.
Fig. 3(b) shows a comparison between dihedral distribution for FG
from the simulation of an isolated pentamer and that for the pen-
tamer embedded in a complete HPV16 VLP. The dihedral angles of
FG varied over a smaller region for the VLP relative to the pentamer.
Reduced spread of dihedral distribution in the former reflects an
overall reduced flexibility of a pentamer in a tightly-packed
assembly relative to in an isolated one. Furthermore, FG explores
different regions of configuration space in a truncated pentamer
than in an intact one (Fig. 3(c)). Observed differences in dihedral
distributions suggest a correlation between epitope conformations
and VLP immunogenicity (Nowak, 1996), i.e., structures with larger
epitope fluctuations (higher flexibility) are observed to produce
lower immunogenic response. Further tests of the fluctuation-
immunogenicity correlation hypothesis are in progress.

The above DMS simulation of the complete VLP was carried out
for 100 ns using 27 OPs. The pentameric structures are simulated
for 10 ns to benchmark with MD. These studies demonstrate the
ability of DMS to efficiently capture the details on structural vari-
ations. Such subtle differences are difficult to capture through
coarse-grained/bead models.

3.3.2. Disassembly of truncated VLP structures
DMS was used to simulate the collapse of an HPV type 16 VLP to

investigate thermal stability. Pentamers in the VLP are joined by
“attacking arms” that stabilize the assembly via strong hydrophobic
interactions (Bishop et al., 2007a,b). The C-terminal of the L1
protein consists of four helical regions h2, h3, h4, and h5 that are
responsible for intra- and inter-pentameric stabilization. While h2,
h3, and h5 are responsible for L1 protein folding and pentameric
stability, h4 is indispensable for construction of the T¼ 1 scaffold as
it binds two separate pentamers. Helices h2, h3, and h4 were
truncated from the L1 protein and the resulting structure was
simulated. A 100 ns simulation of a 2 million atom system
(including water and ions) was performed using DMS with the 27
OPs. A symmetry breaking collapse of the VLP was observed, in
agreement with experimental data on the inability of these pen-
tamers to self-assemble into VLP (Bishop et al., 2007a). A Langevin
timestep of 125 ps was used. While the majority of the pentamers
moved inwards from their initial position, others diffused
outwards, resulting in a collapse and disassembly (Fig. 2(e)). Inward



Fig. 3. Behaviors of the FG loop in HPV VLP and substructures. (a) Comparison of MD (black) and DMS (red) generated dihedral distributions for FG in pentamer structure with helix
h4 removed for 10 ns trajectories. Excellent agreement is seen, indicating the ability of DMS to capture all-atomMD features. (b) Similarly for FG in an isolated pentamer (black) and
pentamer extracted from a full T¼ 1 VLP simulation (red). The variance for a free pentamer is larger, showing that epitopes are more flexible in this structure than within a larger,
tighter VLP framework. Full VLP simulation was carried out for 100 ns. The first 10 ns of this trajectory is used for comparison with that of the isolated pentamer. (c) Similarly for FG
in an isolated pentamer (black) versus in a pentamer with helix h4 removed (red). The truncated pentamer shows larger flexibility, thereby affecting the epitope behavior. Both
simulations were carried out for 10 ns using DMS.
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motion of the pentamers is facilitated by strong hydrophobic
interactions between loops of neighboring pentamers. This
demonstrates the role of hydrophobic interactions in generating an
ensemble of intermediate structures along the assembly pathway.
Phenomenological modeling studies of the assembly pathways of
other viruses led to related conclusions (Hagan and Chandler,
2006). As with other examples, symmetry breaking in the
temporal dynamics of the VLP is successfully captured by the OPs
(Fig. 2(f)) (Miao et al., 2010; Miao and Ortoleva, 2010). Furthermore,
helix truncations increase structural flexibility (leading to disas-
sembly), enhancing disassembly and the spread in epitope dihedral
distributions (not shown).

These examples represent a class of complex biological problems
that can be studied with DMS due to its basis in underlying all-atom
model and deductive multiscale analysis. All the stated results are
consistent with those from experiments or other theoretical methods.
No experimental data was used to calibrate the system (except for
that already embedded in the CHARMM force field (Patel and Brooks,
2004)). To achieve the all-atom level of details over 10e100 ns time
periods, the simulations were run on fewer than 128 processors.
Traditional MD simulations would require far greater computational
resources to achieve the above results. Our multiscale approach
models system behavior via a set of OPs and coevolving quasi-
equilibrium all-atom configuration ensembles; therefore, a broad
spectrumof space-time scales is probed efficiently.With this, both the
overall and the internal dynamics of a microbe are captured.

3.4. Information transfer between scales

Here we demonstrate the transfer of structural information
from the all-atom to the coarse-grained description to numerically
validate the logical flow of deductive multiscaling (Fig. 1) that
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underlies the above results. The direction and mechanism of
information transfer accounted for in DMS is suggested in Fig. 1
(circles indicate the sources and targets of information transfer).
The atomistic configurations constitute the ensemble used to
calculate the thermal-average forces; conversely, instantaneous
values of the OPs fix the probability density that weights the
atomistic configurations in the ensemble. Sections 2.2 and 2.3
describe methods of constructing the OP-constrained quasi-equi-
librium ensembles of atomistic configurations and associated
thermal-average forces and diffusivities which drive Langevin
dynamics of OPs. Here information transfer between microscopic
motions and the coarse-grained dynamics is studied numerically.
There was heretofore no such study of the OP to atomistic scale
transfer.

For this purpose we have investigated the OP-constrained
ensembles of N-atom configurations for the STMV RNA (Section
3.2). Two ensembles were generated at different stages of RNA
evolution (its expansion and collapse), and the corresponding
probability distributions of atomic forces are plotted in Fig. 4(aeb).
For each of the 100 bins constituting these two histograms,
a probability of the atomic force projected on the line connecting
the center of mass with each atom is shown for each of the sampled
structures. While the atomistic ensembles do not show appreciable
differences directly (even though the underlying structures are
dramatically different, data not shown), distributions of OP forces
constructed from the two ensembles (Fig. 4(c)) show a distinct shift
in character as the underlying population of atomic structures
changes. A peak in the distribution of OP forces in the initial
structure (4 ns) shifts from a positive value to a negative at a later
time (15 ns). Thus, coherency in microbial systems occurs at OP
level as large atomistic fluctuations are filtered out in the process of
constructing the forces driving OP dynamics. It is through the
filtering enabled by the OPs that information is self-consistently
transferred from the atomic to the larger-scale structural dynamics.

Next, the applicability of Langevin dynamics for evolving our
structural OPs is validated. Data used for this analysis was obtained
from NAMD (Phillips et al., 2005) generated trajectories of STMV
RNA starting from structures obtained at 4 ns and 15 ns, as above.
Eight structures are chosen at an interval of 50 ps from each
trajectory. The OPs corresponding to simple compression/extension
along the Z direction and corresponding thermal average forces
were constructed at each of these times. Since off-diagonal terms in
the diffusionmatrix for the present problem are found to be smaller
than the diagonal ones, a linear correlation between D

*
Fk=Dt and*f k implies that the Langevin dynamics is satisfied. Fig. 4(d)e(e)

validates this point. Therefore, trajectories from all-atom MD
simulations demonstrate coherence in OP behavior due to the
filtering of noise in the atomic forces manifest in the thermal
average forces, and provide a validation of the Langevin dynamics,
Eq. (4). Similar results hold for all lower-order OPs.

The present results demonstrate the capability of the present
OPs to transfer information between all-atom and coarse-grained
descriptions. Furthermore, these OPs are shown to evolve via
Langevin dynamics, validating the logical workflow of Fig. 1.

3.5. Hierarchical order parameters

The higher order OPs (corresponding to higher k values) probe
smaller regions in space (Miao and Ortoleva, 2009). Since the
nonhierarchical system-wide structural OPs of Section 2.2.1 are
expressed in terms of the all-atom configuration, OPs capturing
deformations on a shorter spatial scale express much more atomic
fluctuations than those addressing overall system behavior.
Therefore, otherwise coherence behavior of the higher order OPs
may be masked by high frequency fluctuations. Thus, the Langevin
timestep needed to simulate their dynamics decreases, affecting
multiscale simulation efficiency.

The hierarchical OP construction formalism introduced in
Section 2.2.3 enables a three-level description of the microbial
system that captures its structural hierarchy. By construction, these
OPs provide a “double filter” of fluctuations while the nonhierar-
chical system-wide ones involve a single filter. The choice of
subsystem centers of mass *Rs (s ¼ 1;2;.) filters some atomistic-
scale fluctuations. Then the residual fluctuation in *

Rs is re-filtered
over the entire systemvia UKs to yield coherent*JK dynamics. Thus,
slow dynamics for higher order OPs is realized (Fig. 5). In this way,
hierarchical OPs allow longer Langevin timesteps and capture more
structural details than can be achieved using the simple overall-
system (Section 2.2.1) and subsystem OPs (Section 2.2.2).

3.6. Controls on accuracy

To assess the accuracy of the multiscale OP dynamics, compar-
isons are carried out with conventional MD simulations for 10 ns
trajectories of capsid-free STMV RNA in 0.3 M NaCl solution.
Fig. 6(a) shows the progress of the RMSD from the initial structure
as a function of time; agreement of the RMSD between MD and
multiscale simulation is excellent. Fig. 6(b) shows the alignment of
STMV RNA structures generated from the MD and DMS simulations
at the end of 10 ns. Further, OP time courses from the final 5 ns of
conventionalMD andDMS are shown (Fig. 6(c)). These results again
validate the DMS approach, confirming that multiscale simulation
generates configurations consistent with the same value of the OPs
consistent with MD. Fig. 6(d) shows that the structural transition in
RNA is energy driven, since the potential energy gradually
decreases. Energies from the MD and DMS generated trajectories
show good agreement in trend as well as quantitatively. The
observed difference is within limits of the uncertainty in anMD run
indicated by an ensemble MD starting from the same initial
structure with different initial velocities (not shown).

A built-in self-consistency check in DMS is related to the
relaxation times of correlation functions underlying diffusion
factors. For the bionanosystems studied here, this correlation
decays on a time scale much shorter than that of OP evolution (i.e.,
the OPs are constant over the time of autocorrelation decay). The
decay period is followed by a fluctuating phase that reflects
insufficient statistics for constructing long-time correlation func-
tion behavior. To illustrate this, the ensemble averaged auto-
correlation function for a typical OP is plotted (Fig. 6(e)). The
correlation analysis validates the completeness of the set of OPs as
there is no long-time tail behavior in the correlation functions; the
latter would have indicated the presence of slow variables that
couple to the set of OPs used (Singharoy et al., 2011).

Another self-consistency check is related to refreshing the
reference structure. Our simulations begin with the energy-
minimized and thermally equilibrated X-ray crystallographic or
other all-atom structure as the reference structure. As the system
evolves in time, the resulting deformationmay increase some of the
residuals*s[ of Eq. (1). This may reflect the need for a new reference
structure. The reference structure transition point is chosen when
the maximum residual for a structure in the constant OP ensemble
becomes comparable with its RMSD from the initial reference
structure, i.e., when some local change in a structure reaches the
order of an overall deformation (Singharoy et al., 2011). Increase in
the residuals may indicate the presence of an improbable fluctua-
tion in the MD generated part of the finite ensemble used for
a practical computation. For these cases, a simple re-referencing is
found to account for the resulting motions. However, increase in
residuals may indicate the presence of coherent motions that are
not accounted for by the set of OPs initially chosen. In this case,



Fig. 4. Histograms of atomic forces (projected along the ray from the center of mass) for the STMV RNA at (a) 4 ns and (b) 15 ns. (c) Histogram of thermal average forces driving
overall extension/compression in the three Cartesian directions. Unlike for the atomic forces, the histograms of the OP forces show shift in the distribution from positive (green) to
intermediate (10 ns, yellow), and finally to negative (red) values as the structure first expands and then contracts. (d, e) Linear correlation between the rate of change in the OPs and
thermal average forces (obtained from ensembles at 4 ns and 15 ns, respectively) validating the DMS approach.
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Fig. 5. (a) Time evolution of non-hierarchical higher order OPs (F). (b,c) Similar evolution for the hierarchical OPs (J) demonstrating the increased coherence of the latter relative to
the former.
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long-time tails in OP velocity autocorrelations are expected. The
remedy for this difficulty is to increase the number of OPs consid-
ered. Additional OPs *

Fk;new are constructed from the growing
residuals via

*
Fk;new ¼

PN
[¼1 m[Uk[

*
s[

mk
: (9)

For the RNA simulation, no long-time tails in the velocity autocor-
relation, or a significant population of high residual structures
signifying absence of additional slow modes, were observed.

Comparison with experimental observations is also used to
validate DMS. A control experiment is performed to compare the
deformation in free STMV RNA versus under protein encapsulation.
In agreement with experiments (Day et al., 2001), this complex is
predicted to be stable with an average radius of gyration w50�A
(Fig. 6(f)).

All the above measures ensure that DMS simulations have
minimum errors or artifacts at any step, validating the DMS
approach.
3.7. Discovering free-energy basins

The free-energy basin discovery method (Section 2.5) was
implemented in DMS and demonstrated for the iron binding
protein lactoferrin that supports multiple free-energy minimizing
structures. The closed state of this protein was chosen to be
the initial configuration. The D� factor was constructed using the
set of eigenvalues of the moment of inertia tensor as molecular
descriptors h (Eq. (8)). These three descriptors discriminate among
the basins for this molecule. With this, in 30 DMS Langevin time-
steps the system was guided away from the initial state to one in
the basin containing the structure with two of the three protein
lobes open. A plot of the progress of the total potential energy
(proteineprotein and proteinewater) shows that the system
traverses an energy barrier separating the two basins (Fig. 7(a)).
Eigenvalues of the moment of inertia tensor have distinct ranges of
value before and after barrier crossing (Fig. 7(b)). This demonstrates
how our formalism allows for the step-by-step discovery of basins
in the free-energy landscape. In ongoing studies, D� is further
modified to incorporate nanocharacterization data such as collision
cross-sections and AFM. This guides basin exploration to states that
are consistent with experimental data.

3.8. Performance

In this section we compare the performance of DMS and other
approaches. All-atom simulations (MD and quantum calculations)
are computationally demanding in terms of compute load,
communication speed, and memory load. Simulations are reported
that successfully model multi-million to multi-billion atom systems
(Abraham et al., 2002; Ahmed et al., 2010; Sanbonmatsu and Tung,
2006, 2007; Schulz et al., 2009; Germann et al., 2005). However,
these studies require very sophisticated supercomputing platforms
(such as CRAY or National facility supercomputers), thousands of
processors, and very low latency interconnect (such as InfiniBand)
(Liu et al., 2003). Thus, these applications are not achievable using
readily available platforms. Moreover, for reported billion-atom



Fig. 6. Time evolution of the STMV RNA system. (a) RMSD from the initial structure for conventional MD (blue) and DMS (red) simulations. (b) Alignment of MD (blue) and DMS
(red) generated pentamer structures of nucleic acid residues 1 to 150 after 10 ns of simulation. Time evolution of the (c) OPs 010Y (MD [blue]; DMS [orange]), 100� (MD [mauve];
DMS [red]) and 001Z (MD [deep-blue]; DMS [green]) showing the OP-equivalence of DMS and conventional MD. Details on the OP nomenclature are provided elsewhere (Singharoy
et al., 2011). (d) RNA potential energy via MD (red) and DMS (blue). (e) A Boltzmann average OP velocity autocorrelation function timecourse showing the absence of a long-time
tail, and hence the lack of coupling to other slow variables not included in the set of Ops adopted. (f) Time evolution of the stable RNA core showing radius of gyration distribution of
w50�A, in good agreement with experiments (Day et al., 2001).
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simulations (Germannet al., 2005), electrostatics, bonded forces, and
the rapidlyfluctuating proton (all ofwhich are essential formicrobial
modeling) were not included; thus, while interesting, they do not
serve as a benchmark for microbial simulation. More generally, the
forces, types of atoms, and various approximations/shortcuts
(implicit/explicit solvent) adopted may significantly modify the CPU
burden. In the case of forces, the simulationsmayaccount for Particle
Mesh Ewald and truncated Coulomb, or may neglect bonded forces.
If the high-frequency fluctuations of protons are neglected by
excludinghydrogen, then theMD timestep can be greater (Andersen,
1983; Forester and Smith, 1998; Hess et al., 1997; Miyamoto and
Kollman, 1992). Our simulations of RNA (total 500,000 atoms) have
been carried on for 50 ns, and HPV16 VLP (total 2 million atoms) for
100 ns, while including all the standard biomolecular parameters
such as Particle Mesh Ewald electrostatics.
Our goal is to not to develop an entire simulation package suited
for only a particular application, but present a multiscale frame-
work that is general enough towork with a spectrum of established
simulation packages such as NAMD (Phillips et al., 2005) or GRO-
MACS (Hess, 2008) so that it can be used for multitude of appli-
cations. Compared to the computational performances mentioned
in the above literature, DMS achieves a great efficiency because it is
capable of simulating these systems with more modest computing
resources (typically 128 cores with Myrinet Interconnect) for
examples described in Section 3. The scalability of DMS for a given
sizemicrobial system can be similar to that of theMD package (here
NAMD (Phillips et al., 2005)) used for generating all-atom ensem-
bles. Thus, simulating systems with millions or more atoms with
DMS is plausible if it is achievable, but withmuch less efficiency, via
NAMD under available compute resources.



Fig. 7. Time course of (a) thermal-average protein potential energy and (b) smallest of
the moment of inertia eigenvalues for lactoferrin as it changes during barrier crossing
from an original free-energy basin to a new one (Section 2.5). Every Langevin timestep
was equivalent to 50 ps.
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Simulations carried out in this study were without any of the
commonly usedMD shortcuts. For ensemble generation, a timestep of
1 fs was used, while using SHAKE/RATTLE (Andersen, 1983; Forester
and Smith, 1998; Hess et al., 1997; Miyamoto and Kollman, 1992)
could have allowed for 2 fs timesteps, increasing performance two-
fold. A factor of acceleration (commonly about 6) is achieved using
a GPU-Infiniband platform. Another factor of acceleration can also be
attained via more advanced Langevin timestepping algorithms. Since
all these accelerating factors are multiplicative, the future for large
system, long time simulation under DMS is promising.

4. Conclusions

Microbial systems are organized hierarchically, starting with
atoms, endingwith supramillion atom assemblies andmicron-scale
structures. This biological organization is mirrored in our multi-
scale mathematical framework to yield insights into the coupling of
processes across scales in space and time that is the hallmark of
microbial behavior. These behaviors include structural transitions
and assembly/disassembly. Our results show that the hierarchical
organization of a microbe implies a separation between the time-
scales of atomic collisions/vibrations versus that of overall struc-
tural dynamics. Microbial behaviors, as reflected in our multiscale
formalism, arise through coupling of equilibrium and nonequilib-
rium processes.

A key to the analysis of microbial phenomena from a first-
principles perspective is shown to be the identification of OPs
characterizing the longer scales at which microbes are organized.
As with themicrobe itself, themathematical structure of a theory of
microbial behavior should be hierarchical in nature, notably in the
form of very coarse-grained variables constructed from less coarse-
grained ones, and similarly down to the primitive N-atom
description. This parallel conceptualization leads to deeper insights
into the transfer of information between the various scales of
behavior, and suggests a simulation algorithm incorporating it.

When this conceptual framework is implemented as a simulator,
computational efficiencies are achieved. This multiscale computa-
tional algorithm yields the co-evolution of the OPs with an
ensemble of all-atom configurations. In essence, our methodology
provides an integrated coarse- andfine-graining approach. Since the
OPs provide incomplete information (i.e., relative to the 6N atomic
positions andmomenta), theory of multiscale microbial dynamics is
fundamentally probabilistic in character. Thus, our theory provides
both the evolution of the OPs and the co-evolving quasi-equilibrium
probability distribution of the all-atom configuration.

Our multiscale approach was implemented as the DMS soft-
ware. This software is used to demonstrate our multiscale frame-
work for microbial simulation. Results not only capture key
mechanistic details of structural transition at the nanometer and
atomic scale, but also reveal the robustness of our algorithm.
Insights obtained from these simulations include (1) the discovery
of nucleation and front propagation pathways for viral structural
transition, (2) counter-ion induced collapse and stabilization of the
free and protein bound states in STMV RNA, (3) variations in
epitope behavior from different structures of the HPV VLP, and (4)
importance of hydrophobic interactions in preserving the assembly
of the HPV vaccine nanoparticle.

A speed-up of w11 fold is obtained for the nonhierarchical OPs
of Section 2 over conventional MD simulations (Singharoy et al.,
2011). However, a direct comparison with conventional MD is not
appropriate. In this study, a single DMS simulation corresponds to
an ensemble of 168 conventional MD runs, thus yielding a speed-up
of w1500 relative to a single conventional MD. This efficiency
results from the OP-mediated coarse-graining of all-atom dynamics
that provides Langevin timesteps of 50e100 ps, and a quasi-
equilibrium probability of atomistic configurations coevolves with
the OPs. Such timesteps enable simulation of longer timescale
microbial phenomena. The hierarchical OP formulation enhances
the coherence of structural OPs and allows for a more detailed OP
description of the microbial systems without significant reduction
of Langevin timesteps. Finally, DMS was extended to enable the
automated discovery of multiple free-energy basins using infor-
mation from known basins and/or data from nanocharacterization
experiments. This idea is demonstrated for exploring the closed
and open conformations of lactoferrin. In addition, several
measures are discussed to ensure the validity of our multiscale
approach and its implementation as DMS.

The algorithm implied by our multiscale approach provides
a self-consistent framework for transferring information between
scales in space and time, as evidenced by several microbial simu-
lations. We believe the DMS scheme can be further optimized and
generalized to address more complex microbes such as enveloped
viruses, bacteria, and eukaryotic cells. This will yield a calibration-
free multiscale theory of microbial behavior.
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