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a b s t r a c t

Smoluchowski and Fokker–Planck equations for the stochastic dynamics of order
parameters have been derived previously. The question of the validity of the truncated
perturbation series and the initial data forwhich these equations exist remains unexplored.
To address these questions, we take a simple example, a nanoparticle in a host medium. A
perturbation parameter ε, the ratio of themass of a typical atom to that of the nanoparticle,
is introduced and the Liouville equation is solved toO

(
ε2
)
. Via a general kinematic equation

for the reduced probabilityW of the location of the center-of-mass of the nanoparticle, the
O
(
ε2
)
solution of the Liouville equation yields an equation forW to O

(
ε3
)
. An augmented

Smoluchowski equation forW is obtained from theO
(
ε2
)
analysis of the Liouville equation

for a particular class of initial data. However, for a less restricted assumption, analysis of
the Liouville equation to higher order is required to obtain closure.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Smoluchowski and Fokker–Planck equations for the stochastic dynamics of slow variables have been derived from the
Liouville equation via several multiscale approaches [1–13]. These studies introduce a perturbation parameter ε such as a
characteristic mass, length, or time ratio and then derive the aforementioned stochastic equations via an expansion in ε.
In general, the stochastic equations emerge in the O

(
ε2
)
analysis of the Liouville equation used to construct the N-atom

probability density [1–11].
In the course of re-examining this work, several questions emerge. The Fokker–Planck and Smoluchowski equations

yield the evolution of the reduced probability density W for a set of slow variables (order parameters). These variables
evolve on timescales much longer than that of individual atomic vibrations and collisions. Examples of these slow variables
include the center-of-mass (CM) and overall structure of a nanoparticle. The equations forW of the aforementioned types
are closed inW and only involve evolution on long timescales. It was shown [12,13] on general grounds from the Liouville
equation that W is conserved (i.e. obeys a conservation equation), and to O

(
ε2
)
is closed given restrictions on the initial

data for the N-atom probability density to first order. In addition, the resultant O
(
ε2
)
equation was derived from the O (ε)

analysis of the Liouville equation and the general conservation law for W . Questions arise regarding (1) whether there is
more general initial data for which the resulting stochastic equation is closed inW , (2) whether it would still be closed if the
analysis is carried out to higher order and what are the associated necessary conditions on the initial data, and (3) whether
a perturbation scheme in ε would breakdown in higher order.
The specific aimof this study is to conduct amultiscale analysis of the Liouville equation as represented earlier [12,13] and

continue the analysis up to O
(
ε3
)
truncation of the equation forW . We also present a more general set of solutions/choices

of the initial data required to close the resulting stochastic equation forW for both the O
(
ε2
)
and O

(
ε3
)
truncations.
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2. Formulation

Our demonstration system is a single nanoparticle in a host medium. Key variables used are as follows. The CM of the
nanoparticle, EΦ , is defined as

EΦ =

N∑
i=1

mi
M
EriΘi, (2.1)

where mi is the mass of atom i, N is the total number of atoms in the system (nanoparticle plus host medium), Eri is the
position of atom i, M =

∑N
i=1miΘi is the total mass of the nanoparticle, and Θi is 1 when i is in the nanoparticle and 0

otherwise. The total momentum EΠ of the nanoparticle is given by

EΠ =

N∑
i=1

EpiΘi, (2.2)

where Epi is the momentum of atom i. Here, EΠ is not assumed to be slowly varying and is thus not considered an order
parameter (see Refs. [12,13] for other cases and further discussion). Define ε via

ε =
m
M
� 1, (2.3)

wherem is the mass of a typical atom in the nanoparticle.
The state of the N-atom system is denoted Γ =

{
Er1, Ep1, . . . ErN , EpN

}
. The probability density ρ (Γ , t) at time t satisfies

the Liouville equation:

∂ρ

∂t
= −

N∑
i=1

(
Epi
mi
·
∂ρ

∂Epi
+ EFi ·

∂ρ

∂Epi

)
≡ Lρ, (2.4)

where EFi is the force on atom i andL is the Liouville operator.
The reduced probability densityW is defined via

W (Eϕ, t) =
∫
dΓ ∗δ

(
Eϕ − EΦ

(
Γ ∗
))
ρ
(
Γ ∗, t

)
, (2.5)

where Eϕ is a value of the CM of interest.
Using Eqs. (2.4) and (2.5), and proceeding as in Pankavich et al. [12,13], one obtains the conservation equation

∂W
∂t
= −ε

∂

∂ EΦ
·

(∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ
EΠ∗

m

)
, (2.6)

where the superscript * on EΦ and EΠ indicates EΦ (Γ ∗) and EΠ (Γ ∗). Following arguments presented earlier [8–13], the N-
atomprobability density is expressed as a function of bothΓ and EΦ . In otherwords,ρ

(
Γ , EΦ, t

)
depends on the set of atomic

positions and momenta, both directly and indirectly through EΦ . With this and the chain rule, one finds

∂ρ

∂t
= (L0 + εL1) ρ (2.7)

L0 = −
N∑
i=1

(
Epi
mi
·
∂

∂Eri
+ EFi ·

∂

∂Epi

)
(2.8)

L1 = −
EΠ

m
·
∂

∂ EΦ
. (2.9)

Note that derivatives with respect to Γ in L0 are at constant EΦ , while those with respect to EΦ in L1 are at constant Γ .
The next step in the multiscale analysis is to construct a perturbative solution of the Liouville equation (2.4) such that

ρ =

∞∑
n=0

εnρn
. (2.10)

A set of scaled times, tn = εnt (n = 0, 1, . . .), is introduced to capture the various ways in which ρ depends on time;
i.e. ρ

(
Γ , EΦ, t0, t

)
, where t = {t1, t2, . . .} represents the set of long-time variables. With this, using the chain rule, and

proceeding as earlier [12,13], one finds

Λ0ρ0 = 0 (2.11)
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and for n > 0,

Λ0ρn = −

n∑
i=1

Λiρn−i (2.12)

whereΛn = ∂
∂tn
−Ln andLn = 0 for n > 1.

While Pankavich et al. [13] explore a variety of ensembles, we choose here the case of a closed, isothermal system. This
leads to the following solution for the lowest order probability distribution:

ρ0 =
e−βHW0

(
EΦ, t

)
Q

≡ ρ̂W0 (2.13)

where Q
(
β, EΦ

)
=
∫
dΓ ∗δ

(
EΦ − EΦ∗

)
e−βH

∗

, H (Γ ) =
∑N
i=1

p2i
2mi
+ V (Γr), Γr =

{
Er1, Er2, . . . ErN

}
, andW0 is the lowest order

reduced probability density
(
W =

∑
∞

n=0 ε
nWn

)
.

To O(ε), Eq. (2.12) admits the solution

ρ1 = eL0t0A1 −
∫ t0

0
dt ′0e

L0(t0−t ′0)Λ1ρ0 (2.14)

where An
(
Γ , EΦ, t

)
is the nth order initial condition (n = 1, 2, . . .).

Inserting (2.9) and (2.13) in (2.14), using the Gibbs hypothesis, and removing the secular behavior in ρ1, one finds

∂W0
∂t1
= 0. (2.15)

Thus,

ρ1 = A1 + ρ̂
(
βEf thW0 −

∂W0
∂ EΦ

)
·

∫ 0

−t0
dse−L0s

EΠ

m
, (2.16)

where s = t ′0 − t0. As Q = e
−βF for free energy F , one finds

Ef th = −∂F/∂ EΦ. (2.17)

To obtain Eq. (2.16), the assumption that the first order initial data resides in the nullspace of L0 (i.e. L0A1 = 0) was
used. In what follows, we extend this assumption to include all orders, i.e. for n > 0

L0An = 0, (2.18)

and explore the implications for an augmented Smoluchowski equation. To stop the analysis at this point would yield the
Smoluchowski equation as earlier [12,13]. In the next section, we continue the analysis to higher orders and explore the
implication of the theory, especially on the choice of the initial statistical state of the system.

3. Initial data, closure, and the augmented Smoluchowski equation

On physical grounds, we expect that not all initial data should lead to the Smoluchowski equation. In this section, we
investigate the types of initial data that are consistent with the Smoluchowski equation and explore the implications of
multiscale analysis for generalized equations when the perturbation series solution of the Liouville equation is carried out
to O(ε2). The result is a generalized equation for the reduced probability valid to O(ε3). Pankavich et al. [12] showed that up
to O(ε2) the resultant stochastic equation (of the Smoluchowski or Fokker–Planck type) is closed if A1 = 0. This implies the
first order correction to the reduced probability densityW1 is zero, since it is related to A1 via

W1 =
∫
dΓ ∗δ

(
EΦ − EΦ∗

)
A1
(
Γ ∗, EΦ∗, t

)
. (3.1)

In what follows, we consider a more general choice for A1 that is consistent with (3.1), i.e.

A1 = ρ̂W1. (3.2)

To O(ε2), one finds

Λ0ρ2 = − (Λ1ρ1 +Λ2ρ0) . (3.3)

This admits the solution

ρ2 = A2 −
∫ 0

−t0
dse−L0s

{
∂ρ0

∂t2
+
∂ρ1

∂t1
+
EΠ

m
·
∂ρ1

∂ EΦ

}
, (3.4)

recalling that A2 is taken to be in the nullspace ofL0.
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Inserting (2.13) and (2.16) in (3.4), one obtains

ρ2 = A2 −
∫ 0

−t0
dse−L0s

{
ρ̂
∂W0
∂t2
+
∂A1
∂t1
+ ρ̂

[(
βEf th −

∂

∂ EΦ

)
∂W0
∂t1

]
·

(∫ 0

−(s+t0)
ds′e−L0s′

EΠ

m

)

+
EΠ

m
·
∂A1
∂ EΦ
+
EΠ

m
·
∂

∂ EΦ

[
ρ̂

(
βEf thW0 −

∂W0
∂ EΦ

)
·

(∫ 0

−(s+t0)
ds′e−L0s′

EΠ

m

)]}
. (3.5)

Using (2.15) and (3.2), and rearranging terms, (3.5) becomes

ρ2 = A2 − t0ρ̂
(
∂W0
∂t2
+
∂W1
∂t1

)
− ρ̂

(
∂W1
∂ EΦ
− βEf thW1

)
·

(∫ 0

−t0
dse−L0s

EΠ

m

)

+
ρ̂

m2

(
∂

∂ EΦ
− βEf th

)(
∂

∂ EΦ
− βEf th

)
W0

(∫ 0

−t0
dse−L0s EΠ

∫ 0

−(s+t0)
ds′e−L0s′ EΠ

)
+
ρ̂

m2

(
∂W0
∂ EΦ
− βEf thW0

)
·

{∫ 0

−t0
dse−L0s EΠ ·

∂

∂ EΦ

(∫ 0

−(s+t0)
ds′e−L0s′ EΠ

)}
. (3.6)

Multiplying both sides of (3.6), evaluated at Γ ∗, by∆ (where∆ = δ
(
EΦ − EΦ∗

)
) and integrating over Γ ∗, one obtains∫

dΓ ∗∆ρ2 =
∫
dΓ ∗∆A2 − t0

∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ̂

(
∂W0
∂t2
+
∂W1
∂t1

)
−
1
m

∫
dΓ ∗∆ρ̂

(
∂W1
∂ EΦ
− βEf thW1

)
·

(∫ 0

−t0
dse−L0s EΠ∗

)
+
1
m2

∫
dΓ ∗∆ρ̂

(
∂

∂ EΦ
− βEf th

)(
∂

∂ EΦ
− βEf th

)
W0

(∫ 0

−t0
dse−L0s EΠ∗

∫ 0

−(s+t0)
ds′e−L0s′ EΠ∗

)
+
1
m2

∫
dΓ ∗∆ρ̂

(
∂W0
∂ EΦ
− βEf thW0

)
·

{∫ 0

−t0
dse−L0s EΠ

∗
·
∂

∂ EΦ

(∫ 0

−(s+t0)
ds′e−L0s′ EΠ∗

)}
. (3.7)

We remove secular behavior in ρ2, i.e. we impose the condition that ρ2 must be bounded as t0 →∞. This implies

lim
t0→∞

1
t0

∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ2 = 0. (3.8)

With this, using (3.8), and applying 1t0 limt0→∞ to both sides of (3.7) yields(
∂W0
∂t2
+
∂W1
∂t1

)
=
γ
(2)
αα′

m2

(
∂

∂Φα
− βf thα

)(
∂

∂Φα′
− βf thα′

)
W0 +

λ
(2)
αα′

m2

(
∂

∂Φα′
− βf thα′

)
W0, (3.9)

where the summation over repeated indices is implicit, following the Einstein convention, and

γ
(2)
αα′
=

〈
Πα

∫ 0

−t
dse−L0sΠα′

〉
(3.10)

λ
(2)
αα′
=

〈
Πα

∫ 0

−t
ds

∂

∂Φα

(
e−L0sΠα′

)〉
, (3.11)

where

〈Y 〉 =
∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ̂Y (3.12)

for any dynamical variable Y (Γ ). Also, recall that the statistical mechanical postulate ‘‘the longtime and ensemble averages
for equilibrium systems are equal’’ implies

〈Y 〉 ≡
∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ̂Y
(
Γ ∗
)
= Y th = lim

t→∞

1
t

∫ 0

−t
dse−L0sY . (3.13)
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With this, (3.6) becomes

ρ2 = A2 − ρ̂t0

[
γ
(2)
αα′

m2

(
∂

∂Φα
− βf thα

)(
∂

∂Φα′
− βf thα′

)
W0 +

λ
(2)
αα′

m2

(
∂

∂Φα′
− βf thα′

)
W0

]

− ρ̂

(
∂W1
∂Φα
− βf thα W1

)∫ 0

−t0
dse−L0s

Πα

m

+
ρ̂

m2

(∫ 0

−t0
dse−L0sΠα

∫ 0

−(s+t0)
ds′e−L0s′Πα′

)(
∂

∂Φα
− βf thα

)(
∂

∂Φα′
− βf thα′

)
W0

+
ρ̂

m2

{∫ 0

−t0
dse−L0sΠα′

∂

∂Φα′

(∫ 0

−(s+t0)
ds′e−L0s′Πα

)}(
∂W0
∂Φα
− βf thα W0

)
. (3.14)

Using (3.13) and the definition ofW in (2.5), (3.7) becomes

W2 ≡
∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ2 =

∫
dΓ ∗δ

(
EΦ − EΦ∗

)
A2. (3.15)

Similar to the argument yielding (3.2), we choose the initial data for ρ2 as

A2 = ρ̂W2 (3.16)

and investigate the consequences for closure. This means that as long as the first and second order initial conditions can be
written as a function of Γ and EΦ in the separable form such that the atomic variables Γ satisfy the ensemble generated by
the conditional probability ρ̂, the first and second order corrections for the reduced probability density can be found from
(3.2) and (3.16). One can envision that this might be generalized to higher orders; however, this requires further analysis.
Inserting (2.13), (2.16) and (3.14) in the RHS of (2.6), and using (3.2) and (3.16), one gets∫

dΓ ∗∆
Π∗α1

m
ρ =

∫
dΓ ∗∆

Π∗α1

m

(
ρ0 + ερ1 + ε

2ρ2
)

=

∫
dΓ ∗∆ρ̂

Π∗α1

m
W0 + ε

∫
dΓ ∗∆ρ̂

Π∗α1

m
W1

+ ε

∫
dΓ ∗∆ρ̂

Π∗α1

m

(∫ 0

−t0
dse−L0s

Π∗α2

m

)(
βf thα2W0 −

∂W0
∂Φα2

)
+ ε2

∫
dΓ ∗∆ρ̂

Π∗α1

m
W2

−ε2
∫
dΓ ∗∆ρ̂

Π∗α1

m

(
∂W0
∂t2
+
∂W1
∂t1

)
−ε2

∫
dΓ ∗∆ρ̂

Π∗α1

m

(∫ 0

−t0
dse−L0s

Π∗α2

m

)(
∂W1
∂Φα2

− βf thα2W1

)
+ ε2

∫
dΓ ∗∆ρ̂

Π∗α1

m

[∫ 0

−t0
dse−L0s

Π∗α2

m

(∫ 0

−(s+t0)
ds′e−L0s′

Π∗α3

m

)]
×

(
∂

∂Φα2
− βf thα2

)(
∂

∂Φα3
− βf thα3

)
W0

+ ε2
∫
dΓ ∗∆ρ̂

Π∗α1

m

{∫ 0

−t0
dse−L0s

Π∗α2

m

[∫ 0

−(s+t0)
ds′

∂

∂Φα2

(
e−L0s′

Π∗α3

m

)]}
×

(
∂W0
∂Φα3

− βf thα3W0

)
. (3.17)

Define the coefficients γ (3) and λ(3) as

γ (3)α1α2α3
=

〈
Πα1

∫ 0

−t
dse−L0sΠα2

∫ 0

−(s+t)
ds′e−L0s′Πα3

〉
(3.18)

λ(3)α1α2α3 =

〈
Πα1

∫ 0

−t
dse−L0sΠα2

∫ 0

−(s+t)
ds′

∂

∂Φα2

(
e−L0s′Πα3

)〉
. (3.19)
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With this, and noting that
〈
EΠ∗
〉
= 0, (3.17) becomes∫

dΓ ∗∆
Π∗α1

m
ρ = +ε

γ (2)α1α2

m2

(
βf thα2 −

∂

∂Φα2

)
W0 + ε2

γ (2)α1α2

m2

(
βf thα2 −

∂

∂Φα2

)
W1

+ ε2
γ (3)α1α2α3

m3

(
∂

∂Φα2
− βf thα2

)(
∂

∂Φα3
− βf thα3

)
W0 + ε2

λ(3)α1α2α3

m3

(
∂

∂Φα3
− βf thα3

)
W0. (3.20)

Inserting (3.20) in (2.6) yields

∂W
∂t
= ε2

∂

∂Φα1

{
γ (2)α1α2

m2

(
∂

∂Φα2
− βf thα2

)
(W0 + εW1)

}

− ε3
∂

∂Φα1

{
γ (3)α1α2α3

m3

(
∂

∂Φα2
− βf thα2

)(
∂

∂Φα3
− βf thα3

)
W0

}

− ε3
∂

∂Φα1

{
λ(3)α1α2α3

m3

(
∂

∂Φα3
− βf thα3

)
W0

}
. (3.21)

For the above equation to be closed, the first and second order reduced probability densitiesW1 andW2 need to be zero.
However, note that to O(ε2)

∂W
∂t
= ε2

∂

∂Φα1

{
γ (2)α1α2

m2

(
∂

∂Φα2
− βf thα2

)
(W0 + εW1)

}
, (3.22)

which is closed regardless of the value ofW1, i.e. replacingW0 + εW1 byW .
Inwhat follows,we continue the analysis of the Liouville equation up toO(ε3) andO(ε4), the aimbeing to discover hidden

terms that are required in the O(ε3) stochastic equation to yield closure inW in a manner similar to the way theW1 term
was brought from the O(ε2) analysis of the Liouville equation to bring closure to the O(ε2) equation ofW .
To O(ε3), one gets

Λ0ρ3 = − (Λ1ρ2 +Λ2ρ1 +Λ3ρ0) . (3.23)

Therefore

ρ3 = A3 −
∫ 0

−t0
dse−L0s

{
∂ρ0

∂t3
+
∂ρ1

∂t2
+
∂ρ2

∂t1
+
EΠ

m
·
∂ρ2

∂ EΦ

}
(3.24)

where A3 is taken to be in the nullspace ofL0, as stated in (2.18).
Inserting (2.13), (2.16) and (3.14) in (3.24), one gets

ρ3 = A3 − ρ̂
∫ 0

−t0
dse−L0s

{
∂W0
∂t3
+
∂W1
∂t2
+
∂W2
∂t1
−

(∫ 0

−(s+t0)
ds′e−L0s′

Πα

m

)(
∂

∂Φα
− βf thα

)
×

[
γ (2)α1α2

m2

(
∂

∂Φα
− βf thα

)(
∂

∂Φα′
− βf thα′

)
+
λ(2)α1α2

m2

(
∂

∂Φα′
− βf thα′

)]
W0

+
Πα1

m

(
∂

∂Φα1
− βf thα1

)
W2 −

Πα1

m

(
∂

∂Φα1
− βf thα1

)∫ 0

−(s+t0)
ds′e−L0s′ρ∗α2α3

}
, (3.25)

where

ρ∗αα′ =
γ (2)α1α2

m2

(
∂

∂Φα
− βf thα

)(
∂

∂Φα′
− βf thα′

)
W0 +

λ(2)α1α2

m2

(
∂

∂Φα′
− βf thα′

)
W0 +

Πα

m

(
∂W1
∂Φα
− βf thα W1

)
+
1
m2

(
Πα

∫ 0

−(s+s′+t0)
ds′′e−L0s′′Πα′

)(
∂

∂Φα
− βf thα

)(
∂

∂Φα′
− βf thα′

)
W0

×
1
m2

[
Πα′

∂

∂Φα′

(∫ 0

−(s+s′+t0)
ds′′e−L0s′′Πα

)](
∂W0
∂Φα
− βf thα W0

)
. (3.26)

∫
dΓ ∗∆

Π∗α1
m ρ is now equal to the right hand side of (3.20) plus ε3

∫
dΓ ∗∆

Π∗α1
m ρ3. However, as our objective is to construct

a rate equation forW to O(ε3), we are only interested in the ε and ε2 terms appearing in the second integrand. As can be
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seen from (2.6), these will contribute to the O(ε2) and O(ε3) parts of the final stochastic equation, while the ε3 terms will
contribute to the O(ε4) part. Thus, all theW0 terms will have O(ε3) contribution to (3.20) while theW1 andW2 terms will
have O(ε2) and O(ε) contributions to (3.20). To further clarify this last statement, take for example a general equation for
W , ∂W/∂t = εJW ; this translates into ∂W/∂t = ε2J

(
W0 + εW1 + ε2W2

)
to O(ε2). With this, we can see that theW1 and

W2 terms needed to close theW conservation equation to O(ε2) are ε3W1 and ε4W2 and thus can only be found from the
O(ε3) and O(ε4) analysis of the Liouville equation.
With this, neglecting terms higher than O(ε2) yields

ε3
∫
dΓ ∗∆

Π∗α1

m
ρ3 = −ε

γ (2)α1α2

m2

(
∂

∂Φα2
− βf thα2

) (
ε2W2

)
+ ε2

γ (3)α1α2α3

m3

(
∂

∂Φα2
− βf thα2

)(
∂

∂Φα3
− βf thα3

)
(εW1)

+ ε2
λ(3)α1α2α3

m3

(
∂

∂Φα3
− βf thα3

)
(εW1) (3.27)

noting thatW3 ≡
∫
dΓ ∗δ

(
EΦ − EΦ∗

)
ρ3 =

∫
dΓ ∗δ

(
EΦ − EΦ∗

)
A3 which is shown in a similar manner as done for (3.15).

To O(ε4), one gets

Λ0ρ4 = − (Λ1ρ3 +Λ2ρ2 +Λ3ρ1 +Λ4ρ0) . (3.28)

As the contribution of ρ4 to
∫
dΓ ∗∆

Π∗α1
m ρ is of O(ε4)

(
asρ = ρ0 + ερ1 + ε2ρ2 + ε3ρ3 + ε4ρ4

)
, only theW2 and higher

order correction terms will have O(ε2) or lower order contributions to (3.20). Thus, neglecting theW0 andW1 terms in ρ4,
(3.28) admits the solution

ρ4 = A4 − ρ̂
∂W3
∂t1
+ ρ̂

(
∂

∂Φα
− βf thα

)
W3 +

Πα1

m
∂

∂Φα1

{
ρ̂

∫ 0

−t0
dse−L0s

Πα2

m

(
∂

∂Φα2
− βf thα2

)
W2

}
. (3.29)

With this and neglecting all terms higher than O(ε2),

ε4
∫
dΓ ∗∆

Π∗α1

m
ρ4 = ε

2 γ
(3)
α1α2α3

m3

(
∂

∂Φα2
− βf thα2

)(
∂

∂Φα3
− βf thα3

) (
ε2W2

)
+ ε2

λ(3)α1α2α3

m3

(
∂

∂Φα3
− βf thα3

) (
ε2W2

)
.

(3.30)

Inserting the RHS of (3.20), (3.27) and (3.30) in (2.6), yields to O(ε3)

∂W
∂t
= ε2

∂

∂Φα1

{
γ (2)α1α2

m2

(
∂

∂Φα2
− βf thα2

)
W

}
− ε3

∂

∂Φα1

{
γ (3)α1α2α3

m3

(
∂

∂Φα2
− βf thα2

)(
∂

∂Φα3
− βf thα3

)
W

}

− ε3
∂

∂Φα1

{
λ(3)α1α2α3

m3

(
∂

∂Φα3
− βf thα3

)
W

}
. (3.31)

We term (3.31) the augmented Smoluchowski equation.

4. Conclusions

Wehave shown that one can obtain an augmentation of the Smoluchowski equation. As expected, such a closed equation
only exists for initial data on ρ that is quasi-equilibrium in character (i.e.L0An = 0). Unless initial conditions are set to zero,
closure of the stochastic equation inW is found only when the perturbative solution of the Liouville equation is examined
to O(ε4). The higher order terms are used to imply the specific form of the augmented Fokker–Planck equation and to obtain
expressions for the parameters in them that can be computed via molecular dynamics.
The form of the augmented Smoluchowski equation (3.31) satisfies certain general criteria. First, conservation ofW was

built in due to the use of the generalized conservation equation (2.6). Second, Eq. (3.31) contains the equilibrium solution. In
particular, ifQ is expressed in termsof the free energy F , i.e.Q = e−βF , then f thα = −∂F/∂Φα . Hence, the equilibriumsolution
W ∝ e−βF satisfies (3.31) for ∂W/∂t = 0. Third, as (3.31) yields the reduced dynamics to O(ε3), it can be used for systems
wherein ε is larger than appropriate for the Smoluchowski equation, i.e. the separation of time scales is not large enough (for
example, a small nanoparticle or short protein). Furthermore, the approach could account for systems where intermediate
scales (for which ε would be larger) are important. Examples include proteins with side branches and the various stages of
viral structural transitions or infection. In the case of enveloped viruses such as HIV, the fusion stage of infection involves the
overall behavior of both membranes and the interaction of the glycoproteins attached to the virus surface with the target
cell protein receptors. Glycoproteins anchor the virus to the target cell and trigger subsequent conformational changes that
allow the final fusion. These proteins are smaller than the overall size of the virus but are bigger than the atomic scale which
also need to be taken into consideration. However, allowing various levels of coarse-graining is achieved at the expense of
needing the additional friction coefficients γ (3) and λ(3). As for γ (2), these need to be calculated via correlation functions.
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The above results warrant further examination. (1) What other kinds of equations arise for different initial data?
(2) If the initial state of the system is quasi-equilibrium in character, will subsequent evolution leave the system in a quasi-
equilibrium state for all time? (3) Otherwise, if the initial conditions are not in the null space ofL0, does that imply that to
higher orderW will depend on t0? (4) What is the most general set of initial data that can be used to make the stochastic
equation closed inW or willW be coupled to other variables through additional equations? (5) As direct simulation of the
augmented Smoluchowski equation is not practical, what is the Langevin-like equation that, via a Monte Carlo approach, is
equivalent to the augmented Smoluchowski equation?
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