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ABSTRACT 

 The design of nanocapsules for targeted delivery of 
therapeutics presents many, often seemingly contradictory, 
constraints. Considering the variation in the nature of the 
payload and surrounding medium, software for predicting 
the rate of drug release for given nanocapsule structure 
under specific conditions in the microenvironment would 
be a valuable asset. An algorithm for such software using a 
novel all-atom, multiscale technique is presented. The 
method takes into consideration the atomistic effects; a 
necessary condition to obtain a realistic model. Other 
advantages of this method include the ability to (1) develop 
a model that doesn’t require recalibration with each new 
application and (2) predict the supra-nanometer scale 
behavior such as timed payload release. Multiscale 
techniques are used to derive equations for the stochastic 
dynamics of therapeutic delivery. Application to liposomal 
doxorubin release is presented. 

Keywords: nanomedicine; nanocapsule; therapeutic 
delivery; computer-aided nanocapsule design 

 

1 INTRODUCTION 

The delivery of drugs, siRNA, or genes via a 
functionalized nanocapsule (e.g. viral capsides and 
liposomes) is of great interest. Requirements for therapeutic 
delivery nanocapsules include (1) the ability to deliver 
payload at the target site while minimizing release at non-
target tissues in order to reduce toxicity and increase 
efficacy, (2) the ability to control release of the payload 
over a long period of time with constant concentration, and 
(3) have a sufficient circulation time. 

Considering the variation in the nature of the payload 
and the thermal and chemical environments that 
nanocapsules must address, it would be a great advantage to 
have a general physico-chemical simulator that can be used 
in computer-aided nanocapsule therapeutic delivery. For 
example, the prediction of the rate of drug release for given 
nanocapsule structure and conditions in the 

microenvironment based on a parameter-free model of 
supra-molecular structures that would optimize payload 
targeting would be a valuable asset. Some theoretical work 
has been presented previously [1-6] which provided some 
insights to certain aspects of the problem. These models are 
either empirical or mechanistic. Empirical models [3-4] 
only take into consideration the overall order of the payload 
release rate law, while mechanistic ones [5-6] take into 
account the specific processes involved such as diffusion, 
swelling, and erosion. However, these models are 
macroscopic and, therefore, do not take into consideration 
atomistic effects and, furthermore, require recalibration 
with each new application. 

Release of payloads is a phenomenon that occurs over 
long and wide timescales; while release takes seconds to 
hours, atomic collisions/vibrations take place on the 1210−  
second scale. Molecular dynamics codes, while powerful at 
the small scale, are impractical when it comes to dealing 
with nanometer scale problems spanning a timescale of a 
millisecond and more. An all-atom multiscale approach has 
been developed recently for simulating the migration and 
structural transitions of nanoparticles and other nanoscale 
phenomena [7-10]. This formulation allows for the use of 
an interatomic force field, making the approach universal, 
avoiding recalibration with each new application. In this 
work, this multiscale approach is applied to the nanocapsule 
delivery problem. The presented computational method 
preserves key atomic-scale behaviors needed to make 
predictions of interactions of functionalized nanocapsules 
with the cell surface receptors, drug, siRNA, gene, or other 
payload. 

 In this study, we introduce novel technical advances 
that capture key aspects of the nanoscale structures needed 
for therapeutic delivery analysis. In section 2, a variety of 
order parameters (characterizing nanoscale features of the 
capsule and its surroundings) are introduced to enable a 
multiscale analysis of a complex system. The final result is 
a Fokker-Planck (FP) equation governing the rate of 
stochastic payload release and structural changes and 
migration accompanying it. In section 3, key parameters 
which minimize the need for calibration are identified and 



predicted drug release scenarios are presented. Conclusions 
are drawn in section 4. 

 

2 DERIVING THE STOCHASTIC 
MODEL 

 The specific aim of this study is to provide a starting 
point for a computer-aided nanocapsule design strategy. 
Consider a system consisting of the nanocapsule, payload, 
and host medium. We introduce four order parameters and 
their conjugate momenta which we prove to be slowly 
varying via Newton’s equations. These order parameters are 
the center of mass position of the nanocapsule, R , that of 
the drug, dR , a measure of the capsule dilatation, Φ , and 
the dispersal (i.e. spatial extent of the cloud of payload 
molecules), Λ : 
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where im  and ir  are the mass and position of the thi  atom; 
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the nanocapsule and payload; 1iΘ =  when i  is in the 
nanocapsule and zero otherwise, and similarly with d

iΘ  for 

the payload; is  is the position of atom i  relative to R ; X  
is a length-preserving rotation matrix that depends on a set 
of three Euler angles specifying nanocapsule orientation; 

0 0 0
î i is s s=  where 0

is  is the length of 0
is  and the 

superscript 0 indicates a reference nanocapsule structure; 
d
is  is the position of atom i  relative to dR , and d

is  is its 
length. Newton’s equations imply dR dt R= −L , 

d ddR dt R= −L , d dtΦ Φ= −L , and d dtΛ Λ= −L , 
where L  is the Liouville operator 

1

N
i

i
i i ii

p
F

m r p
• •

=

⎡ ⎤∂ ∂
= − +⎢ ⎥∂ ∂⎣ ⎦
∑L  (5) 

With this, and introducing a smallness parameter ε , such 
that 2 * *

d dm m m mε = =  ( m  is the typical mass of a 

capsule atom, and * *
d dm mm m≡  is on the order of the 

mass of a typical payload atom), we get 

dR dt P mε=  (6) 

d d ddR dt P mε=  (7) 

d dt mΦ ε Π=  (8) 

d dd dt mΛ ε Π=  (9) 

where P , dP , Π , dΠ  are the conjugate momenta of R , 

dR , Φ , and Λ , and are defined as 
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where iπ  and d
iπ  are the relative velocities of the capsule 

and payload atoms. The conjugate momenta are also found 
to be slowly varying. Applying Newton’s equation, we get 
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where f  and df  are the net force on the nanocapsule and 
that on the payload, g  is the “dilatation force”, and h  is 
the “dispersal force”. 

 We suggest that this set of order parameters constitutes 
a minimal description capturing many nanocapsule delivery 
phenomena. With this, we follow the multiscale approach 
of Refs [7-11] to derive an FP equation of stochastic 
dynamics for the order parameters. Starting from the 
Liouville equation describing the evolution of the N-atom 
probability density, we arrive at an FP equation describing 
the evolution of the reduced probability density, W 
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thf , thg , th
df , thh  are the thermal average of the forces, 

which is also equivalent to the long-time average though 
Gibbs hypothesis, and 
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The γ  factors account for the cross frictional effects, 
expressions for which are to be presented in a following 
paper [12]. 

 

3 SIMULATING PAYLAOD RELEASE 

 The FP equation (14) is equivalent to a set of Langevin 
equations wherein the forces and the friction coefficients 
can be calculated using MD code. Here, we try to illustrate 
our method by adopting a simplified model wherein the 
capsule is at the target site and ready for release. With this, 
only two Langevin equations remain: 
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where ( )A t  is a random force. 

The dispersal is related to the concentration profile, ( )C r , 
by 
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where r  is the distance from the center of mass of the 
nanocapsule, α  is a constant, and 0C  is the payload 
concentration at the center of mass of the nanocapsule. In 
the above equation, payload release is assumed to be 
spherically symmetric, and the concentration to be a 

maximum at the center of mass. thh  is minus the derivative 
of the potential energy, U , with respect to the dispersal. 
The latter is related to the concentration profile by the 
phenomenological expression 
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where cR  and oR  are the inner and outer radius of the 
nanocapsule, respectively. 

 

Table 1 Values used for the simulation 

atoms 0R (nm) cR (nm)  *m  (g) *
dm  (g) 

56 7 10. ×
 

100 92 177 208 10. −×
 

189 01 10. −×
 

 

 In what follows, we show release profiles for different 
values of friction coefficient (Fig. 1). Values for the radii, 
masses, and number of atoms (Table 1) are chosen to be 
consistent with experimental observations on a typical 
liposome loaded with doxorubicin [13]. 

 

 

Fig. 1 Release profile simulated using equations (15) and 
(16) for parameter values as in Table 1 

 

 The *g  value indicated in the graphs is a calibrated 
coefficient that is related to the maximum friction value in 
the inner shell of the nanocapsule, maxγ , via * u RT

max g eγ = . 
Thus, changes in maxγ  can be induced either through 
changes in the barrier height or friction coefficients, both of 
which can be modified via temperature changes or 
interaction with the cell membrane. From Fig. 1, we see 



that as the barrier height or friction inside the shell 
increases, the rate of release of drug from the nanocapsule 
decreases. This is consistent with the fact that increasing the 
length and/or saturation of the fatty acyl chains comprising 
a liposome leads to slower release rates. Increasing maxγ  
also leads to longer residence time in the nanocapsule, as 
shown from the simulation results summarized in Fig. 2. 

 As can be seen in Figs. 1 and 2, the nature of 
payload/nanocapsule/medium dictates how long a 
nanocapsule’s membrane can sequester the paylaod. Before 
the nanocapsule reaches the target site, the barrier height 
should be larger than the fluctuating forces. Once at the 
target site, release can be enhanced by lowering the barrier 
height and friction, or increasing the amplitude of 
fluctuations. This can be done by either applying an 
external field such as heat, light, or ultrasound, or by 
changes in the medium, i.e. the trigger is intrinsic to the 
system. 

 

 

Fig. 2 Residence time in the nanocapsule simulated with 
different *g  values 

 

4 CONCLUSIONS 

 An all-atom, multiscale approach for modeling 
nanocapsule therapeutic delivery systems has been 
presented. This method allows for the use of an interatomic 
force field, thereby avoiding the need for recalibration with 
each new application. Order parameters were introduced to 
characterize special features of these systems. These order 
parameters are the center of mass of the payload and 
nanocapsule, the state of the capsule (a measure of 
dilatation), and the dispersal (extent of release of the 
payload). We believe that these order parameters constitute 

the minimal set needed to describe such systems. 
Additional order parameters can readily be introduced to 
account for the presence of a cell surface and other 
nanoobjects; include other system-specific effects such as 
externally applied heat, magnetic forces, and ligand 
properties; or provide a more detailed description of the 
nanocapsule (i.e. shape, orientation, or distribution of 
small-scale structure across the nanocapsule). A reduced 
equation for the stochastic dynamics of these parameters 
was derived. To illustrate the approach, the time-course of 
liposomal doxorubicin delivery was simulated for a 
simplified case wherein the fully loaded capsule starts at the 
target zone and ready for release. In ongoing work, we are 
developing modules for estimating friction coefficients and 
thermal average forces based on statistical mechanical 
formulas and a universal interatomic force field; the goal 
being to avoid recalibration with each new application. 
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