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Born-Oppenheimer theory is based on the separation in timescales between the nuclear
and electron dynamics implied by the electron-to-nuclear mass ratio. This makes it natu-
rally fit into a multiscale analysis. It is shown that a fully dynamical Born-Oppenheimer
theory follows from a multiscale ansatz on the wave function and a Taylor expansion in
the mass ratio. Allowing for a larger spatial scale of electron motion yields an under-
standing of boson, fermion, and more complex excitations that involve quasi-particles
with an effective mass not equal to that of the electron. The theory involves a unified
asymptotic expansion in a mass and length scale ratio, and preserves all many-body
effects via accounting for the full strength of the interparticle forces. A novel mean-field
theory emerges based on the fact that long-scale migration allows each electron to inter-
act with many others on the space-time scale relevant to the coarse-grained equation.
Implications for computational methods and applications to quantum nanosystems such
as quantum dots, nanowires, superconducting nanoparticles, and liquid He droplets are
discussed.

Keywords: Multiscale analysis; Born-Oppenheimer theory; quantum nanosystems;
quasi-particles.

1. Introduction

The inertia of the nuclei relative to the low mass of the electrons imparts a multiscale
character to many quantum systems of current interest in condensed matter and
nanoscience. This timescale separation between nuclear and electron motions is the
basis of the classic Born-Oppenheimer approximation. The question arises as to
whether a deductive multiscale analysis of the coupled electronic-nuclear dynamics
problem can lead to new insight into these systems, above-and-beyond that provided
by the classic Born-Oppenheimer approximation and its extensions.1–4

In this paper, we address coupled electronic-nuclear phenomena via a deduc-
tive multiscale approach. The starting point is the time-dependent Schrödinger
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equation. A multiscale ansatz on the dependencies of the wavefunction on the con-
figuration of the electron and nuclear subsystems is then made. This is followed by
a perturbation analysis in various dimensionless ratios to arrive at a coarse-grained
wave equation for long-scale electron dynamics coupled to slow short-scale nuclear
motions. Similar deductive mulsticale approaches have been successful in the theory
of bionanosystems evolving via Newtonian all-atom dynamics5–10 and, to a more
limited extent, to quantum nanosystems.11–14

Deumens and Örhn15 discussed a variety of approximations to the electron
nuclear problem wherein the nuclei are treated either classically or quantum
mechanically. Their END approach is developed for various approximations to the
electronic wave function based on the use of orbitals centered either on the average
nuclear positions or on an independent center. These END treatments do not fold
the multiple time and space scale character of the wave function directly into the
analysis. Also, the approximations they propose do not arise out of an asymptotic
expansion starting from the full Hamiltonian. Rather, they arise out of a conjecture
based on various approximations familiar in quantum chemistry for some molecular
problems. In contrast, in the present theory, we integrate notions of multiple time
scale analysis, balancing of spatial, temporal, and interaction strength scaling, and
tie them together with a unified asymptotic expansion.

Cukier and Deutch16 developed a multiple time scale perturbation theory to
obtain the equation of motion for the spin-density matrix. This method, originat-
ing with Krylov and Bogoliubov17 in nonlinear mechanics, has the advantage of
removing secular behavior, a problem from which other time-dependent perturba-
tion techniques suffer. Other applications in quantum mechanics include the work
of Montgomery and Ruijgrok18 on particles with spin subjected to time-dependent
magnetic fields and that of Brooks and Scarfone19 on radiative decay processes.

A novel element of the present study is that we pursue a class of phenomena
wherein the long-scale electron dynamics is on a timescale comparable to slow,
short scale nuclear motion. As with the work of Cukier and Deutch,16 we make
the ansatz that the function of interest (here the wave function and later the
density matrix) depends on time in multiple ways. The latter is introduced in
terms of a sequence of time variables tn = εnt where the smallness parameter ε
arises as a measure of the strength of various interaction terms in the Hamilto-
nian. However, in the present treatment, we start with the Schrödinger equation,
rather than the Liouville equation, and we balance the interaction terms in the
Hamiltonian with new ones arising from the multiple spatial and mass scales for
the electronic and nuclear configuration. In particular, we investigate a united limit
wherein the electron-nuclear mass ratio and the average nearest-neighbor electron
distance to the characteristic length of electron motion are tied to the unifying
smallness parameter ε. This enables a powerful unified perturbation scheme in ε.
The implication of the analysis is that nuclear motion can be coupled over long dis-
tances via low-lying, long spatial scale disturbances of electron density. In this way,
a coarse-grained wave equation (CGWE) for coupled nuclear-electronic dynamics
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is obtained. The coarse-grained wave function we obtain depends on long spatial
scale electronic configuration variables and short-scale nuclear ones, an interest-
ing feature whereby two subsystems are coupled directly on distinct scales in one
CGWE. In addition, we demonstrate the equivalence of the long-time and ground
state expectation values which plays a key role in removing secular terms to arrive
at the CGWE. A scaling ansatz on the wave function is introduced (Sec. 2) and
a multiscale perturbation scheme is developed (Sec. 3). The CGWE is analyzed
via a novel coarse-grained mean-field (CGMF) approximation that is distinct from
the Hartree-Fock approximation (Sec. 4). Conclusions, implications for computa-
tional algorithms, and potential applications to quantum nanosystems are discussed
(Sec. 5).

2. Scaling the Electron Problem

A many-particle system may involve disturbances on a variety of length scales. To
address this, a formalism can be developed wherein the wave function is taken to
depend on a variety of configuration variables. Let Γ = {⇀

r1, . . . ,
⇀
rN} specify the

N -particle configuration and ε be the ratio of the smallest characteristic length to
that of the next highest one. Then, the sequence of configuration variables Γ(n) (for
n = 0, 1, . . .) can be introduced such that

Γ(n) = εnΓ. (2.1)

With this, the ansatz is made such that

Υ(Γ, t) = Ψ(Γ(0),Γ(1), . . . ; t0, t; ε) (2.2)

for tn = εnt and t = {t1, t2, . . .}. Putting the ansatz of Eq. (2.1) into the wave
equation and using the chain rule, one obtains

i�

∞∑
n=0

εn ∂Ψ
∂tn

= (H0 + εH1 + · · ·)Ψ . (2.3)

We divide the N -particle potential such that

V =
∞∑

n=0

ε2nVn(Γ(0), . . . ,Γ(n)) , (2.4)

and show that this framework yields a self-consistent approach as follows. Note that
Vn only depends on the shorter scales (i.e. Γ(0), . . . ,Γ(n)) and not the longer ones
(i.e. Γ(n+1),Γ(n+2), . . .) where ∇, is the 3Ne-dimensional gradient with respect to
Γ(j). With this,

Hn =




−�
2

m

(n−2)/2∑
j=0

∇j · ∇n−j −
�

2

2m
∇2

n/2 + Vn/2 for n even,

−�
2

m

(n−1)/2∑
j=0

∇j · ∇n−j for n odd,

(2.5)
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3. Multiscale Born-Oppenheimer Approach

The small mass of the electron relative to that of the nuclei introduces a separation
in the spatial scales over which the wave function varies. The objective of the present
development is to reconstruct these dependencies. Let r = {⇀

r1 · · · ⇀
rNe} be the set

of 3Ne electron positions and R = {⇀

R1 · · ·
⇀

RN n} be that of the Nn nuclear (or
ion core) positions. Let ε2 be the ratio of the mass of an electron m to that of a
typical nucleus M (for simplicity of presentation, we will, henceforth, assume all
nuclei have the same mass M). Since the electrons are much lighter than the nuclei,
it implies that they have a greater range of motion than the latter. To capture
this longer-scale dependence of the wave function Υ(r,R, t) on r, we introduce the
scaled electron configuration σ = εr.

With this, the wave function has the multiscale dependence

Υ(r,R, t) = Ψ(r, σ(r), R; t0(t), t(t); ε), (3.1)

where t = {t1, t2, . . .} for scaled time tn = εnt (n = 0, 1, . . .). The above ansatz
captures the dynamic coupling of short electron and nuclear motion (via r and R)
with longer scale dynamics expressed via the σ dependence. As the wave function
has multiple dependences on the electron configuration, it also must have corre-
sponding dependencies on time, hence the introduction of the set of scaled times
{t0, t}. This framework is similar to that used for other quantum11–14 and classi-
cal5–10 many-particle problems. The overall objective is to solve the wave equation
as an asymptotic expansion in ε and arrive at a coarse-grained wave equation for
the longer electron (σ) and shorter nuclear (R) behavior of the system.

Placing the ansatz of Eq. (3.1) in the wave equation for the coupled electron-
nuclear system and using the chain rule, one obtains

i�
∞∑

n=0

εn ∂Ψ
∂tn

=
(
H0 + εH1 + ε2H2

)
Ψ, (3.2)

H0 = − �
2

2m
∇2

r + V0(r,R), (3.3)

H1 = −�
2

m
∇r · ∇σ, (3.4)

H2 = − �
2

2m
∇2

σ − �
2

2m
∇2

R + V1(r, σ,R), (3.5)

where ∇ r,∇σ, and ∇R are the r, σ, and R gradients respectively.
This framework makes ε the dependencies of Ψ on configuration, time, and ε

explicit. The latter facilitates the solution of the problem in the perturbed form
Ψ =

∑∞
n=0 ε

nΨn. With this, the coefficient functions are determined by replac-
ing Ψ in Eq. (3.2) as a perturbation expansion and comparing terms order by
order.
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To O(ε0), the unfolded wave equation (Eq. (3.2)) takes the form

i�
∂Ψ0

∂t0
= H0Ψ0 . (3.6)

We focus on the family of solutions generated by the ground state Ψ̂ of H0. We
adopt the convention that Ψ̂ has energy zero (i.e. H0Ψ̂ = 0). With this, Eq. (3.6)
admits a solution in the form

Ψ0 = Ψ̂(r,R)W (σ,R, t), (3.7)

where the factor W is found to satisfy a coarse-grained wave equation when the
treatment is carried out to O(ε2) as follows.

To O(ε), we obtain

i�

(
∂Ψ1

∂t0
+
∂Ψ0

∂t1

)
= H0Ψ1 +H1Ψ0 . (3.8)

Inserting Eqs. (3.3) and (3.7), Eq. (3.8) admits the solution

Ψ1 = −t0|0〉∂W
∂t1

− i

�

∫ 0

−t0

dt
′
0S(−t′0)H1(W |0〉), (3.9)

where S(t0) denotes the evolution operator exp(−i(H0 − i0+)t0/�), the bra-ket
notation |0〉 is used to represent Ψ̂, and the initial value of Ψ1 is taken to be zero.
The positive infinitesimal 0+ is introduced to ensure the evolution operator vanishes
when t0 → ∞.

As earlier,13,14 we introduce a theorem analogous to the Gibbs hypothesis from
classical statistical mechanics. Here, this theorem states that the long-time average
and expectation value are equal:

lim
t0→∞

1
t0

∫ 0

−t0
dt

′
0S(−t′0)Ω|0〉 = |0〉〈0|Ω|0〉, (3.10)

〈0|Ω|0〉 ≡
∫
d3NerΨ̂∗ΩΨ̂, (3.11)

for any time-independent operator Ω.
Examination of Eq. (3.9) shows that for Ψ1 to be well-behaved, the t0 divergent

terms must be counterbalanced as t0 → ∞ or if there are no such counterbalancing
terms, then W must be independent of t1. Multiplying both sides by 1/t0 and
letting t0 → ∞, we obtain

|0〉∂W
∂t1

=
i�

m
|0〉

Ne∑
q=1

〈0| ∂

∂
⇀
r q

|0〉 · ∂W
∂

⇀
σq

. (3.12)

Since H0|0〉 = 0 and thus so is 〈0|H0, the uniqueness of Ψ̂ for the non-
degenerate case implies Ψ̂ can be taken as real without loss of generality. With
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this, 〈0|∂/∂⇀
r q|0〉 = 1

2

∫
dr∂Ψ̂2/∂

⇀
r q. Since Ψ̂ vanishes at the boundaries, we find

that 〈0|∂/∂⇀
r q|0〉 = 0. With this, we obtain

∂W

∂t1
= 0 , (3.13)

and Ψ1 takes the form

Ψ1 = − i

�

∫ 0

−t0

dt
′
0S(−t′0)H1(W |0〉). (3.14)

To O(ε2), the wave equation (Eq. (3.2)) implies

i�

(
∂Ψ2

∂t0
+
∂Ψ1

∂t1
+
∂Ψ0

∂t2

)
= H0Ψ2 +H1Ψ1 +H2Ψ0 . (3.15)

This admits the solution

Ψ2 = −
∫ 0

−t0

dt
′
0S(−t′0)

{
∂Ψ0

∂t2
+
∂Ψ1

∂t1
+
i

�
H1Ψ1 +

i

�
H2Ψ0

}
, (3.16)

where the value of Ψ2 at t0 = 0 is taken to be zero. Inserting Eqs. (3.3)–(3.5), (3.7),
and (3.14) in Eq. (3.16) and examining the long time behavior, we find that the
condition guaranteeing Ψ2 is well-behaved as t0 → ∞ yields

i�
∂W

∂t2
= HCGW, (3.17)

HCG = V CG(σ,R) − �
2

2m
∇2

R +
Ne∑

q,q′=1

3∑
α,α′=1

µqαq′α′
∂2

∂σqα∂σq′α′
, (3.18)

V CG = 〈0|V1|0〉 − �
2

2m
〈0|∇2

R|0〉, (3.19)

µqαq′α′ = − �
2

2m
δqq′δαα′ +

i�

m2

∫ 0

−∞
dt0χqαq′α′(t0), (3.20)

χqαq′α′(t0) = 〈0|pqαS(−t0)pq′α′ |0〉, (3.21)

where ⇀
pq is the momentum of electron q (i.e. ⇀

pq = −i�∂/∂⇀
r q).

By using the completeness of the eigenfunctions |n〉 of H0 and the fact that
〈0|pqα|0〉 = 0 for the nondegenerate case, one can show14 that if |n〉 is fermionic and
independent of the long electron motion (i.e. of σ), then the matrix µ is independent
of the particle label and Eq. (3.20) is reduced to

µαα′ = − �
2

2m
δαα′ + χ̃αα′ , (3.22)

χ̃αα′ = − �
2

m2

∑
n�=0

〈0|pα|n〉〈n|pα′ |0〉
ςn

, (3.23)

where pα is the α component of the momentum of any single electron,H0|n〉 = ςn|n〉,
ςn > 0 for n > 0, and ς0 = 0.
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4. Coarse-grained Mean-field Theory of Plasmon-Nuclear
Motion Interactions

The formulation of the previous section describes the interaction of slow nuclear
motion with long wavelength electron density excitations. Through such an interac-
tion, nuclei moving in one region of the system can cause disturbances in the elec-
tron density which would perturb distant nuclei. To investigate this phenomenon,
and other implications of the above formalism, consider a coarse-grained mean field
(CGMF) approximation as follows.

As suggested earlier,14 on the long space-time scales for which the CGWE of
Sec. 3 operates, each electron interacts with many others. In this case, one expects
that, to good approximation, the electrons experience mean-field dynamics. With
this, we explore solutions to the CGWE (Eq. (3.17)) that are stationary and of the
variational form

W (σ,R) = Φ(R)Z(σ), (4.1)

Z(σ) =
Ne∏
�=1

ψ(⇀
σ�). (4.2)

Equations for Φ and ψ can be obtained by minimizing the variational energy ECG

defined by

ECG =
〈W |HCG|W 〉

〈W |W 〉 , (4.3)

where the inner products involve integration over all σ, R space. With the above
mean-field form for W , the equations implied by δECG/δΦ = 0 and δECG/δψ = 0
become {

F [R;ψ] − �
2

2m
∇2

R

}
Φ(R) = ECGΦ(R), (4.4)


Q[⇀σ; Φ] +

3∑
α,α′=1

βαα′
∂2

∂σα∂σα′


ψ(⇀

σ) = ẼCGψ(⇀
σ), (4.5)

where

F [R;ψ] =
∫
d3NeσZ(σ)V CG(σ,R)Z(σ)

+Ne

3∑
α,α′=1

µαα′(R)
∫
d3σψ(⇀

σ)
∂2ψ(⇀

σ)
∂σα∂σα′

+Ne(Ne − 1)
3∑

α,α′=1

µαα′(R)
∫
d3σd3σ′ψ(⇀

σ)ψ(⇀
σ
′
)
∂ψ(⇀

σ)
∂σα

∂ψ(⇀
σ
′
)

∂σ′
α′

, (4.6)

Q[⇀σ; Φ] =
∫
d3NnRd3σ(1) · · · d3σ(Ne−1)Φ2(R)ψ2(⇀

σ
(1)

) · · ·ψ2(⇀
σ

(Ne−1)
)V CG(σ,R),

(4.7)
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βαα′ [Φ] =
∫
d3NnRΦ2(R)µαα′(R), (4.8)

ẼCG = ECG +
�

2

2m

∫
d3NnRΦ(R)∇2

RΦ(R)

− (Ne − 1)
3∑

α,α′=1

βαα′

∫
d3σψ(⇀

σ)
∂2ψ(⇀

σ)
∂σα∂σα′

− (Ne − 1)(Ne − 2)
3∑

α,α′=1

βαα′

∫
d3σd3σ′ψ(⇀

σ)ψ(⇀
σ
′
)
∂ψ(⇀

σ)
∂σα

∂ψ(⇀
σ
′
)

∂σ′
α′

. (4.9)

This nonlinear eigenvalue problem (Eqs. (4.4) and (4.5)) yields Φ, ψ, and ECG. The
quantum dynamics of the nuclei described via Φ interacts with the electron density
field as described by ψ to yield the coupled nuclear-plasmon disturbances.

From our earlier study, there can be more complex solutions.14 In the above, we
have assumed Ψ̂ is antisymmetric with respect to electron exchange and is a ground
state of H0. However, overall antisymmetry can also be realized via solutions of the
form

Ψ0 = ΞΨ̂W , (4.10)

where Ξ antisymmetrizes functions of the Ne electron degrees of freedom. Since a
ground state Ψ̂ that is not antisymmetric has lower energy than an antisymmetric
one, the total energy, i.e. due to ECG plus the energy associated with Ψ̂, can be
lower than the similar quantity for antisymmetric Ψ̂. This would imply a type of
structural quantum phase transition that follows when the nuclei interact with, and
via, the long-range electron dynamics.

5. Conclusions and Prospective

The deductive multiscale analysis of Secs. 2 and 3 yields a new perspective on cou-
pled nuclear-electronic dynamics. It corresponds to the quantum dynamics of slow
nuclear motions with long-scale electronic excitations as manifest in the coarse-
grained wave function W and accompanying wave equation. When the base state
Ψ̂ of the lowest order electronic problem (at frozen nuclei) is antisymmetric, W
must be symmetric with respect to electron exchange, suggesting that the long-
range electron motion is bosonic in character, and thus corresponds, for example,
to plasmon excitations. As W is a coarse-grained wave function describing long-
scale electronic dynamics (i.e. σ versus r), on the space-time scale of W dynamics
each electron interacts with many others, and with many nuclei. Thus, the elec-
tronic dependence of W should have mean-field character (Sec. 4). This implies the
approximation wherein plasmon wave functions ψ interact with the nuclear wave
function Φ, a picture leading to the coupled equations for Φ and ψ (Sec. 4). This
stationary state picture can be generalized to a time-dependent one using least-
action principle methods.20 In this dynamical framework, one could explore the
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semi-classical limit of nuclear motion to arrive at a novel picture of nuclear motion
coupled to quantized plasmon dynamics. The coarse-grained mean-field and clas-
sical nuclear approximations suggested above hold promise for efficient simulation
of quantum nanosystems like graphene, quantum dots, molecular wires, and super-
conducting nanoparticles. One approach is suggested by the CGMF method of
Sec. 4. In our coarse-grained wave equations, the electron dynamics is mediated by
effective masses and coarse-grained interactions. Earlier results13,14 show that the
coarse-grained wave equation for W is just one of several limit laws that arise for
different systems, i.e. pseudo-relativistic13 versus dressed Schrödinger14 types (the
latter having been investigated here).

Systems that have not been considered here are ones wherein the nuclei exhibit
long-time behavior too. Such behavior can be accounted for by introducing scaled
nucleus configuration Σ = εR. In this formulation, the ansatz of Eq. (3.1) is rewrit-
ten as

Υ(r,R, t) = Ψ(r, σ(r), R,Σ(R); t0(t), t(t); ε) (5.1)

while the solution to the O(ε0) wave equation takes the form

Ψ0 = Ψ̂(r,R)W (σ,R,Σ, t) . (5.2)

While the electron-electron potential Vee is split as in Eq. (2.4), the electron-nucleus
potential Ven takes the form

Ven =
Nn∑
�=1

Ne∑
q=1




exp
(
−k|⇀rq −

⇀

R�|2
)

|⇀rq −
⇀

R�|
+ ε

1 − exp
(
−k|⇀rq −

⇀

R�|2
)

|⇀σq −
⇀

Σ�|


. (5.3)

The long-range nuclear coordinates (
⇀

Σ�) can be considered frozen in many problems
(e.g. solids, nanoparticles, graphene, or shorter timescale phenomena). However, for
a system like 3He or 4He, the Σ motions must be accounted for and the theory must
be carried out to O(ε4).
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