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Involatile nanodroplets: An asymptotic analysis
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(Received 30 December 2005; accepted 19 April 2006; published online 16 June 2006)

The structure of nanometer-scale droplets of weakly volatile liquids arises through the interplay of
strong intermolecular attraction, and core intermolecular repulsion, interfacial forces, and the large,
negative chemical potential of the low density vapor with which it is in equilibrium. Using a van der
Waals equation of state and a mesoscopic multiphase model, the structure of such nanodroplets is
determined via an asymptotic analysis in terms of the ambient to critical temperature ratio. The
structure of a spherical droplet is obtained as the solution of a simple “shooting” problem. The
intradroplet pressure profile and a minimal droplet size are determined. The high pressure in the core
of the droplet gives evidence for the preferred melting there for systems like water with a negative
volume of melting. Our methodology can be generalized to multiphase droplets, as well as to
composite structures wherein viruses or other nanoparticles are embedded. © 2006 American

Institute of Physics. [DOI: 10.1063/1.2204037]

I. INTRODUCTION

Nanometer-scale droplets are of interest in a variety of
health sciences, engineering, and environmental and geologi-
cal contexts. These include aerosols, atmospheric and
groundwater contaminants, ink jets, and migrating petroleum
in the subsurface on a geological time scale. Solid nanopar-
ticles of interest that reside in these droplets include dust (as
sites of nucleation) and viruses (as they are transmitted in an
airborne fashion).

The challenge addressed here is that in many of these
contexts the droplets are extremely involatile or weakly
soluble in the surrounding medium. Thus the manner in
which equilibrium is established is at first glance difficult to
understand. For example, a large atomic nucleus is often
viewed as an equilibrated quantum droplet although the no-
tion of a “vapor” with which it is in equilibrium is elusive,
and similarly for oils of extremely low vapor pressure. In this
study a method for solving this weakly soluble/involatile
nanodroplet problem is solved via an asymptotic analysis of
a mesoscopic two phase fluid model.

If the substance comprising a droplet is extremely in-
volatile (i.e., has a very low equilibrium vapor pressure) then
an apparent paradox arises. In this low vapor pressure limit,
the asymptotic form of the chemical potential of the vapor
has a logarithmic divergence due to the entropy (R7 Inc)
term as concentration ¢ in the medium outside the droplet
becomes vanishingly small. As the chemical potential of the
fluid is constant across the system at equilibrium, the (In ¢)
divergence at points far from the droplet must be balanced by
one or more terms in the chemical potential of the liquid
state. This is manifest in the present mesoscopic theory as
the invariance of the functional derivative of the Helmholtz
free energy with respect to ¢ at each spatial point.

A central dimensionless parameter € gives unity to the
analysis of involatile liquids. Consider the van der Waals
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equation of state p=RTc/(1-bc)—ac® for molecular con-
centration c. One finds that e=RTb/a is low for involatile
liquids as seen in Table I wherein RTb/a reduced to
8T/27T, has been used. T, values were obtained from
Knovel." Atomic nuclei are suggested to have a critical tem-
perature of about 8 MeV; nuclear experiments are found to
yield significant particle emission of about 5 MeV.*™ This
suggests that £ =~0.185 for nuclei under interesting condi-
tions.

Nanodroplets of low vapor pressure are now modeled
via mesoscopic equations that are analyzed using an
asymptotic method for computing their structure. Asymptotic
solution methods have been used in a variety of contexts.” '
Here we show that the result is an estimation of minimal
droplet size and an elevated core pressure that could imply
inhomogeneous droplet freezing.

Il. FORMULATION

Consider a droplet in a single component van der Waals
fluid. At equilibrium between droplet and vapor, the chemi-
cal potential (i.e., the functional derivative of the Helmholtz
free energy) is constant across the system. Adopting a simple
mesoscopic model, one obtains the equilibrium condition

RT
>+ —2ac-AV*¢=RTlnc,,

RTIn(
1-bc

1-bc
(2.1)

where a and b are van der Waals constants, A is a phenom-
enological interface parameter, and c,, is the concentration
far from the droplet, in the vapor with which the droplet is at
equilibrium. In adopting this model we have assumed that
the interface parameter A is constant; as shall be clarified
further, for the involatile fluid there is an inner core zone
over which ¢ changes smoothly, and a thin interface zone
across which ¢ changes very rapidly. In our treatment the
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TABLE 1. Using critical temperature (7,) values from Knovel' & was com-
puted via £=87/27T. at a temperature of 298.15 K.

Substance T. (K) & (at 298.18 K)
Helium 5.20 17.0
Hydrogen 33.18 2.66
Nitrogen 126.19 0.70
Oxygen 158.58 0.557
Hexamethyldisiloxane 518.70 0.17
Ocatmethylcyclotetrasiloxane 585.70 0.151
Decamethylcyclopentasiloxane 617.40 0.143
Water 647.00 0.137
Diphenylamine 931.15 0.0949
Sulfur 1313.00 0.0673
Selenium 1766.00 0.05
Carbon 7020.50 0.0126

focus is on the inner zone so that the constancy of A is
justified.

If the liquid is very involatile, then the van der Waals
parameter a is large (i.e., the a term lowers free energy as ¢
increases). To investigate this behavior we introduce a scal-
ing parameter (¢ << 1) and, in particular, e=RTh/a. Note that
large values of a drive ¢ toward the limiting value ™! so that
it is convenient to write c=b"'(1-g7y) for position-
dependent deviatoric concentration . In what follows, an
analysis is developed wherein a— o0, the droplet is small,
and c,—0 as e —0, all coordinates via a unifying limiting
process.

The physical picture to be developed is suggested in
Figs. 1(a) and 1(b). The largeness of a forces ¢ to be near b~
in the droplet. Outside the droplet, ¢ has the very small value
¢«. There is a thin interface centered about the surface of the
droplet. Integrating (2.1) across this interface, assuming a
spherical droplet [for which V?>— #/dr’+(2/r)d/dr], and
using the fact that ¢ is small outside the droplet, one obtains

—+—==0; (2.2)

r=ry—0"%
or r 0

for droplet radius r( and positive infinitesimal 0" to indicate

evaluation just inside the droplet. This provides a boundary

condition for (2.1). To complete the € —0 computation, the
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profile of ¢ within the droplet is determined in the small &
limit as follows.

For small & and with A=A/RT, (2.1) implies

2 R
— —=+eAV¥y+ -+ =Inc,, (2.3)

gy ¢
where the - -+ terms vanish as € — 0. Consider small droplets
and take r=er’ for scaled spatial variable r’, r being posi-
tion relative to the droplet center; this ensures that both the
c/dr* and the (2/r)dc/dr term play a role in the £ —0
limit, a factor seen to be of interest for involatile nanodrop-
lets as shown below. For these small droplets, the Laplacian
term is comparable to the other divergent terms. With this,
one arrives at the asymptotic equation

1 A2
—=2+AV'?y=¢lnc,.
Y

(2.4)

Introducing an auxiliary variable A such that c,=c"
exp(=A/e) for reference concentration ¢” (independent of &),
a self-consistent asymptotic equation for vy is obtained:
1 .
—+AV'?2y=2-A. (2.5)
Y
Equation (2.5) suggest that A<<2 so that y>0 as required
physically.
Introducing a characteristic length r and value y such
that

AV =P, 32-4)=1 (2.6)
and letting y=%y" and ' =77’ yields

1

—+ V7Y =1. (2.7)

Y

This equation is to be solved inside the droplet. The bound-
ary conditions on 7y’ for the spherical droplet follows from
(2.2) and the present scaling; for a droplet of radius rj, define
B such that 7> B=1 and r"=rj¢& With this the intradroplet
problem for the spherical case takes the form

1 (&Y %iﬂ)
¢'+ﬂ<d§2+§d§

In this notation, the boundary condition (2.2) implies

=1, 0sé<. (2.8)

. FIG. 1. (a) Schematic profile of den-
sity ¢ within a spherical droplet of ra-
. dius ry. Note the quasidiscontinuity at
ro and that ¢ is vanishingly small be-
yond ry. (b) Behavior of the ¢ profile
as 3 (inversely proportional to droplet
radius squared) changes. For small S,
c is essentially b™! except for a narrow
layer near the quasidiscontinuity when
the dimensionless radius & is 1.
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d ’
Yy we=1-0. (2.9)
dé

Boundedness of ¢ at the droplet center {=0 implies that
dy'/dé=0 there. This, with (2.8) and (2.9), completes the
formulation of the asymptotic analysis for spherical droplets.

lll. DROPLET STRUCTURE

Results of the asymptotic analysis show that a low vapor
pressure liquid forms a nanodroplet that is an essentially uni-
form sphere of density just below b~! for the van der Waals
fluid. In the vicinity of the droplet surface, there is a narrow
layer across which density drops essentially to zero or, more
precisely, becomes exponentially small.

The asymptotic spherical nanodroplet equations may be
solved via a shooting method. One guesses y'(1) and notes
that from (2.9) dy'/dé¢ at =1 is 2. With this, one integrates
(2.8) numerically from é=1 to £€=0 and checks if dy'/d¢
=0 there. One keeps changing ¥'(1) using bisection until this
integration yields dy'/d&=0 at £=0 to desired accuracy. For
small B, ¥'=1 except for a thin layer just below the droplet
surface at £=1, as suggested in the ¢ profile of Fig. 1(a).

For large B (i.e., small droplets), there is no solution to
(2.8) that satisfies the boundary conditions. This implies that
no droplets exist below a critical size. However, extremely
small droplets require a reexamination of the full equations.
In particular, the quasidiscontinuity in ¢ across the droplet
surface could have a width which is on the order of magni-
tude of the droplet size itself, invalidating the physical pic-
ture on which our asymptotic analysis is based. An atomistic
description is more appropriate for the smallest droplets, i.e.,
not the continuum approach presented here. For such clusters
the gradient term and the continuum approach cease to be
relevant. All-atom molecular dynamics computations can be
readily applied to such clusters.

A relation between c,, and equilibrium droplet size is
implied by the above model. The total number of moles n in
the droplet is given by

ro
47Tf rdrc=n.
0

(3.1)

This, and using c=b"'(1-g7y), implies a relationship be-
tween droplet size, mass, and interfacial and attraction versus
hard core repulsion effects.

It has been assumed in deriving the boundary condition
on c at the droplet surface that the interface was very narrow.
This is likely to be the case for small & fluids where the
intermolecular attraction is strong. Thus we expect the inter-
face is only a few molecular diameters in width. In that case
the gradient expression for the free energy should be re-
placed by an integral expression of the form [d*rd’r’ ¢(r
—r1’)c(r)c(r’) for interaction kernel ¢. Thus while resolving
the extremely narrow interface of interest and the density
variations within the droplet, the gradient approximation suf-
fices.
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FIG. 2. Effect of nanodroplet radius r on the pressure profile along the
dimensionless radius & calculated using (4.3) and the van der Waals con-
stants a and b for water.

IV. DROPLET PRESSURE

The profile of pressure yields further insight into nano-
droplet structure. To address this we made the ansatz that the
pressure generalizes from its classical thermodynamic rela-
tion to the free energy density f and chemical potential u,
ie.,

p=cu—f. (4.1)
Within the pressure model f=f"+3A[Vc> and p=pu
—AV?c so that

p=pT—cAVi+ %A|§c|2. (4.2)

While the first two terms on the right-hand side are O(g™') as
£—0, the last is O(¢°) so it will be dropped henceforth.
Using the changes of variables from Sec. II and (2.8) to
eliminate the Laplacian term, we find

_RT[(2-4) 1 (;/’—1)]
p&=— v IANTEY ik

0=s¢&<1.

(4.3)

For physically relevant solutions p(£)=0 for 0<£<1 (see
Fig. 2). For stress continuity with the outside medium, the
lowest order pressure at the droplet surface must vanish.
Hence

p(é=1)=0,

which, upon finding y’(1), yields a condition on A.
Consider now an approximate solution y'=I'(¢,\) for
variational parameter \. We define the error E(\) via

! AT 24T\ |2
— 2 _ - =7
Eo\)_f0 §d§[1 F+BF<d§2 +§d§>] . (4.5)

We take the best choice of \ to be that which minimizes E.

A simple trial solution that satisfies the boundary condi-
tions at zero (dy'/dé=0) and at é=1 (dy'/dé=2) is I'=\
+&. With this we find

(4.4)
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4+25B8
NB) =—F—. 4.6
B =10 -ep (4.6)

Using this solution with the pressure boundary condition
p(é=1)=0 yields a unique physically relevant solution (i.e.,
for which p>0):

A=3-y(1),

With this solution p monotonically decreases from a maxi-
mum value at {=0 to zero at the droplet surface é=1. The
number of moles in the droplet is given by

(4.7)

3 1
n=f%@j.éda1—sw, (4.8)
0

and hence the mass deviation An=n—41r;/3b becomes

47Tr(3)87( 3)

An=- -
3b

+ 5 (4.9)

Thus |An| increases with r.

V. CONCLUSIONS

The asymptotic approach to nanodroplets of weakly
volatile fluids yields insights into how their equilibrium is
attained, i.e., as a balance between strong intramolecular at-
traction, hard core repulsion, and interfacial forces. The re-
sult of the analysis is a novel nonlinear differential equation
that can be solved via a shooting method and which implies
a minimal size below which droplets can exist, as well as a
unique spherical equilibrium droplet size for a given vapor
pressure. As droplet structure for involatile fluids is driven
by the large value of the van der Waals parameter a, the
existence of a critical droplet size appears to be a manifesta-
tion of cooperativity—i.e., the binding energy of a given
molecule increases with the density of its neighbors. Signifi-
cant variation in pressure between the surface and the core of
a nanodroplet can lead to inhomogeneous melting—i.e., core
melting first with temperature increase with water. A measure
of the mass deviation can be used to estimate the phenom-
enological surface parameter A. The asymptotic analysis pre-
sented can be generalized to multicomponent fluids and the
nonspherical droplet geometries they may support when two
intradroplet, compositional-distinct phases exist.
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APPENDIX: PRESSURE COMPUTATIONS

The pressure as analyzed in Sec. IV is obtained as fol-
lows. Keeping only leading terms one obtains

cl RT a
L (A1)
eby b
Since a=RTb/ e,
RT( 1
pl=—oI—-=-1]. (A2)
eb \y
But y=%v" so that
. RT[ 1
pi=—\—,-1) (A3)
eb \ yy'
Let Ap=p—p°.. Neglecting the higher order |V |* term,
A
Ap=—AVie= %Vz'y, (A4)

Further changes of variables introduced in Sec. II yield
AYB(d*Y 2dy'
p= _2_2 2 + = .
ebr\ d& £ d§

With (2.8) to eliminate the derivative terms, one obtains

(A5)

RT(2-A) 1
Ap = T 1- 7 . (A6)
Using A=RTA, y=(2-A)"" and P=A/(2-A)* we obtain
— 2. U
Ap=7zT(2 A)B(d;;Jrgﬂ). (A7)
eb d& £ d¢

Combining this with (A2) we find
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