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Abstract 

The objective of this study is to demonstrate how fault dynamics may naturally be placed in the context of incremental stress 
theory, rock textural evolution modeling and standard conservation laws. Casting the fault dynamics problem in this framework 
naturally introduces rock memory for failure, fluid pressure effects and the autonomous nature of fault evolution. Poroelasticity, 
nonlinear viscosity and gouge are combined in an incremental stress rheology approach to examine the effect of changes in 
particle size distribution on fluid pressure in fault zones. 
© 2003 Elsevier Science B.V. All rights reserved. 
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1. In troduct ion  

The complex nature o f  rock deformation is a result 
of many processes that are active in geologic environ- 
ments. The list o f  processes includes poroelasticity, 
nonlinear viscosity, gouge, pressure solution and frac- 
turing. Although some o f  these processes, such as 
poroelasticity, have been extensively studied sepa- 
rately, there is a very limited amount o f  work on the 
behavior o f  rocks when many o f  these processes 
simultaneously contribute to the evolution o f  stress 
and deformation. To gain insight into the nonlinear 
dynamics o f  stress and deformation and their evolution, 
a better understanding o f  the interaction o f  these 
deformation processes is necessary. For example, in 
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the classical theory ofporoelasticity, deviatoric stresses 
do not affect pore volume. Therefore, an approach 
considering classical poroelasticity alone can not 
explain fluid pressure changes as a result o f  changes 
in the deviatoric stress. 

As geologic evidence is gathered on the involve- 
ment o f  fluids in faults, a growing number o f  research- 
ers have started to study the effect o f  fluid pressure on 
fault mechanics. Rice (1992) and Byerlee (1990) 
suggested that relative weakness o f  some faults could 
be due to high intra-fault fluid pressure. Rice (1992) 
proposed that overpressuring could be maintained by 
the flow o f  deep fluids into the ductile roots o f  a fault 
zone. On the other hand, Byerlee's (1990) model 
explains high overpressure by conjecturing efficiently 
sealed compartments. Despite the growing interest in 
this research area, only a few quantitative models, 
limited to just a few processes, have been developed. 

In an attempt at modeling fluid flow in partially 
sealed fault zones, Sleep and Blanpied (1994) as- 
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sumed purely viscous rock behavior. The shear and 
bulk viscosities were assumed to be functions of the 
pore and fracture volume fractions which were taken 
to evolve via two empirical ordinary differential 
equations. The pressure equation was based on the 
conservation of fluid phase and included both increase 
in pressure because of compaction and decrease in 
pressure due to escape of fluid. In the case of a single 
fault system, Sleep and Blanpied (1994) showed that 
the increased fluid pressure allows frictional failure in 
earthquakes at shear tractions far below those required 
when fluid pressure is hydrostatic. However, in their 
numerical treatment, an predetermined shear traction 
drop was imposed (a fraction of its value) and the 
displacement, pore volume and fluid pressure were 
reset. In other words, in the case of a single fault 
system, an oscillation was imposed, not simulated. 
Segall and Rice (1995) modified the rate- and state- 
dependent friction model to include fluid pressure and 
porosity (based on porosity changes observed in 
gouge experiments with overcompacted rocks). Their 
final set of equations includes an ordinary differential 
equation for velocity dependent porosity based on 
experimental observations. In gouge experiments 
(for overcompacted rocks), if the normal stress is kept 
constant, an increase in porosity is observed. The 
increase in pore volume results in a decrease in fluid 
pressure and an increase in normal stress which, in 
turn, tends to stabilize faulting. 

Although grain size distributions of natural fault 
gouge have been studied extensively (Morrow and 
Byerlee, 1989; Marone and Scholz, 1989; Ozkan and 
Ortoleva, 2000), to our best knowledge, quantitative 
modeling of gouge and its effect on fluid pressure in 
shear zones is not extensively studied. Recently, 
Ozkan and Ortoleva (2000) studied the evolution of 
grain size distribution with a Markov model and 
confirmed their model with experimental data of 
Morrow and Byeflee (1989). 

In this short paper, we present a mathematical 
model that allows one to couple poroelasticity, viscos- 
ity and gouge to fluid flow in a self-consistent manner. 

2. Model development 

We suggest that rigorous models of rock behavior 
should be of the Markov type--i.e., the rate of change 

of rock state should only depend on the instantaneous 
rock state and not on prior history. Stress and strain 
are related, through rock theology, to rock texture O 
(a set of variables including grain size, shape, packing 
and mineralogy). Pressure solution and grain breakage 
imply that the rate of change of O depends on stress, 
denoted by ~. If O satisfies 

dO 
- ( 1 )  

dt 

then, in principle, O(t)  is a functional of a, i.e. 
depends on a(t ' )  for all t '< t, i.e. on the stress history: 
O = O[cr]. As rheology depends on O, we see that 
O[cr] reflects the entire prior stress history and not just 
the instantaneous value of stress. Clearly, however, 
this " m e m o r y "  in a theory wherein O is not 
coevolved with a is an artifact of the incompleteness 
of a rock deformation model that attempts to avoid 
coevolving O with stress. While there are many 
stress-strain histories that could lead to the instanta- 
neous state of a rock, only the latter is key to 
predicting its failure and other behavior. 

To predict faulting and other rock failure phenom- 
ena, we introduce a model that accounts for rock 
competency. Let "rock competency" measure the 
fraction of grain surface that is attached to other 
grains. Thus, F is in the range 0 < F <  1. Large /" 
implies competency, while in a low F rock, there are 
few intact grain-grain contacts. Thus, rheologic quan- 
tities such as rock strength or viscosity are strongly 
dependent on F. Schematically, our model is as 
follows. The equation of motion of F is taken in the 

form 

DF 
- R(F, F) (2) 

Dt 

where F is a failure function that depends on macro- 
scopic stress, fluid pressure, rock texture, mineralogy 
and temperature. In three dimensions, the failure 
function can be assumed to take the form proposed 
by Drucker and Prager: F=aJ1 +,112/2 - b, where J1 is 
the first invariant of the effective stress tensor and J2 
is the second invariant of the deviatoric effective 
stress tensor. The coefficients a and b can be 
expressed in terms of angle of internal friction and 
cohesion determined from conventional triaxial com- 
pression experiments. If the dynamics of F is rela- 
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tively fast, its evolution is closely related to the 
shape of the curve R = 0. The F dynamics is, in a 
sense, a cooperative phenomenon, i.e., a decrease in 
competence fosters more rapid F decline. This is 
captured by the qualitative picture of Fig. 1, where a 
schematic evolution path in the F,F plane is shown 
(see Tuncay et al., 2001 for a detailed discussion of  
failure/healing dynamics). 

The integration of deformation mechanisms can 
most effectively be done using an incremental stress 
approach. In this theory, the rate of strain is written as 
a sum of terms, each accounting for a particular 
process ( j=  1, 2 . . . .  Na) for a system with Nd 
deformation processes (Tuncay et al., 2000a): 

Nd 

- ~ = Z ~  j (3) 
j = l  

Some of the most important deformation mecha- 
nisms are poroelasticity, nonlinear viscosity, gouge, 
fracturing and pressure solution (Tuncay et al., 
2000a,b; Tuncay and Ortoleva, 2001). 

The rate of strain due to poroelasticity is given by 

~elasticity ~--_ C - 1  ( O )  D 
= =_ ~-~ (a__ + a(O)pI) (4) 

for fourth-rank matrix of poroelastic coefficients C 

and effective stress coefficient ~; D/Dt represents a 

0 .8 .  

c 
• 0 .6  

O 

~ 0.4 
n- 

0.2 

0 

-35 F h Fy 
Failure Function 

Fig. 1. Schematic competence (F) and failure fimction (F) plane 
illuslxating the cooperative aspects of rock failure. When F is near 
unity, the rock is competent, but when F.  exceeds Fyiela, it is 
compromised. However, for F <  Fh, competence is regained through 
chemical healing processes. Ira point is on the right &the S-shaped 
curve, rock competency decreases; otherwise, it increases. 
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material time derivative measuring the rate of change 
of a tensor in time with respect to a local reference 
frame fixed to a translating, rotating material volume 
element. The bulk and shear moduli of the drained 
porous medium, and the effective stress coefficient of 
the medium, can be computed in terms of the rock 
texture and mineral elastic properties using Berry- 
man's (1980, 1986) approach. 

The inelastic mechanical contribution to the rate of 
strain is cast in the present approach as a nonlinear 
viscosity law in the form 

~visco~ _- ~-l  (~ + ~p~r) (5) 

The fourth-rank viscosity tensor r/ depends on 

stress, fluid pressure and texture. The second term in 
the effective stress involves a coefficient ~ that is 
usually taken in the literature to be unity. Viscosities 
are strong functions of rock competency and grain 
size (Tuncay et al., 2000a). 

Ozkan and Ortoleva (2000) presented a model to 
calculate the grain size distribution and average grain 
size evolution as a function of induced shear strain. A 
Markov model was used to evolve the particle size 
distribution. A breaking probability was introduced 
that accounts for the observed grinding limit and the 
development of a bimodal distribution that depends on 
the degree of shearing and the normal effective stress. 
The model was calibrated with particle size distribu- 
tion measurements on Ottowa sand (Morrow and 
Byerlee, 1989). To illustrate the gouge dynamics 
modeling, consider a monomineralic system. Let ~(n, 
t) be the number per rock volume of grains with n unit 
cells of the crystalline solid. Thus, ~(n, t) is the particle 
size distribution. If_~ is the column vector of ~ values 
(_~ = 4(1, t), 4(2, t ) , . . .  4(1023, t ) . . . ) ,  then ~ satisfies 

o 4  
D--~ = M ~ (6) 

where M is the transition probability for the assumed 
Markov process. The M matrix depends on stress, 
fluid pressure and temperature and, in addition, on 
the composition of the pore fluid due to diagenesis. 
Thus, grains are broken due to gouge but grow/ 
dissolve due to fluid rock reactions. The model is 
based on the binary breaking of individual grains 



194 Abstract 

into fragments of arbitrary size. The breakup prob- 
ability incorporates the observed effects of shear 
strain, confining stress and fluid pressure. We refer 
to Ozkan and Ortoleva (2000) for the details of the 
mathematical model. The feedback between gouge 
formation and deformation is completed by the rate 
of strain due to gouge. In general, the rate of strain 
due to gouge formation is a function of pressure, 
stress tensor, texture, and history of shear strain. For 
loosely lithified sediments, it can be assumed that 
there exists a relationship between porosity and 
sorting based on the experimental results of Beard 
and Weyl (1973). Then the rate of strain due to 
gouge formation is obtained as 

1 D e  Ds ,~gouge __ (7) 
= 1 -  ¢ Ds Dt 

where ¢ and s are the porosity and sorting param- 
eter, respectively. 

The force balance equation completes the set of 
equations for stress and deformation 

3r~_l O(7iff 
OXi, +ft" = 0 (8) 

for body force f which, for gravity, is given by 

balance of solid phase under the assumption of 
incompressible solid grains 

De 
Dt 

= (1 - ¢ ) ~ - u  

: (1 --  (~)/F(~ elasticity -~" ,~viscosity ~_ ~:gouge) (12) 

which shows the dependence of porosity evolution on 
the individual rate of strain terms. 

3. C o n c l u s i o n  

Fault mechanics modeling must be carried out in 
three spatial dimensions and via a model that incor- 
porates a full suite of crustal reaction, transport, and 
mechanical processes. We believe that the present 
mathematical model, as applied to competency, fluid 
flow, diagenesis and deformation in each macro- 
volume element of a finite element approach, will 
allow for first principles fault simulation. As such a 
model accounts for the full range of rock states 
(intact to failed), a three-dimensional finite element 
approach will allow for the prediction of fault 
morphology (thickness, overall shape, branching) as 
well as reactivation of healed sections of a previ- 
ously active zone. 

f = g p m ~ i 3  • (9) 

The mass balance equation of fluid phase is given 
by 

0 ¢ p f  
0 ~  + V .  (_vfCpf) = 0 (10)  

Using a linear state equation in the form of  
p f = p f ( 1  +fl(P-Po)) with compressibility /~, Darcy 
law relative to moving solids and mass balance 
equation of solid phase, the fluid flow equation is 
obtained as 

Dn kpf 
¢ ~ f ~ - ~ :  = v . (V_p + p f g z )  - p ly_  .._ IJE 

- -  # f  

(11) 

where k is the permeability that depends on the grain 
size distribution and porosity. Once the solid velocity 
field is obtained, porosity is solved from the mass 
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