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ABSTRACT: Macromolecular assemblies often display a hierarchical organization of macromolecules or their subassemblies. To
model this, we have formulated a space warping method that enables capturing overall macromolecular structure and dynamics
via a set of coarse-grained order parameters (OPs). This article is the first of two describing the construction and computational
implementation of an additional class of OPs that has built into them the hierarchical architecture of macromolecular assemblies.
To accomplish this, first, the system is divided into subsystems, each of which is described via a representative set of OPs. Then, a
global set of variables is constructed from these subsystem-centered OPs to capture overall system organization. Dynamical
properties of the resulting OPs are compared to those of our previous nonhierarchical ones, and implied conceptual and
computational advantages are discussed for a 100 ns, 2 million atom solvated human Papillomavirus-like particle simulation. In
the second article, the hierarchical OPs are shown to enable a multiscale analysis that starts with the N-atom Liouville equation
and yields rigorous Langevin equations of stochastic OP dynamics. The latter is demonstrated via a force-field-based simulation
algorithm that probes key structural transition pathways, simultaneously accounting for all-atom details and overall structure.

I. INTRODUCTION
Macromolecular assemblies exhibit a complex hierarchy of
structural organization.1,2 For example, viruses display a
hierarchical organization of atoms forming protomers, pentam-
ers, or hexamers that ultimately assemble into capsids via
different types of bonded and nonbonded interactions. Such
architecture provides several advantages to biomolecular
structures. For example, the existence of hierarchical organ-
ization in macromolecular assemblies optimizes the efficiency
with which they are assembled and surface area available for
interaction with the environment, while simultaneously
minimizing the amount of building materials, energy expended,
and metabolic cost.3 Hierarchical organization also leads to
novel forms of control: the higher level structure constrains the
motion and, hence, position or reactivity of the smaller
subcomponents.3 Thus, hierarchy results in the multiple space
and time scale character of macromolecular structure and
associated pathways of assembly. An all-atom model, capturing
the cross-talk among various scales in space and time is often
necessary to completely elucidate the structure and function of
these assemblies.4−6 However, direct computational implemen-
tation of such models is limited by the system size, as reflected
in hardware requirements.
Interestingly, the very hierarchical nature of macromolecular

assemblies can be mapped onto computational algorithms for
designing reduced dimensionality frameworks. For example,
collective motions of multiple groups of atoms facilitate the
hierarchical organization of assemblies as they promote orderly
binding of intermediates consisting of several monomers.7 The
number of modes capturing such motion is much less than the
total atomic degrees of freedom. This implies that macro-
molecular models based only on coherent modes involve
tracking a much smaller number of dynamical variables relative

to those based on all-atom description. Thus, the computa-
tional cost of implementing these reduced dimensional models
is moderate. This idea has resulted in the development of
coarse-grained models for macromolecules and their assem-
blies. An incomplete list would include bead,8,9 shape-based,10

rigid region decomposition,11 symmetry constrained,12 and
curvilinear coordinate13 models, as well as Principal Compo-
nent Analysis (PCA) and Normal Mode Analysis (NMA)
guided approaches.14−17 These models have been successful in
investigating structural transitions in a very rich set of
biomolecules including alanine polypeptides,18 ligand binding
proteins,19 transmembrane proteins,20,21 RNA segments,22,23

and virus capsids of different symmetries.10,24 However, they
suffer from one or more of the following difficulties: (1)
Characteristic variables are not slowly varying in time. (2)
Nonlinear motions like macromolecular twist are not readily
accounted for. (3) Internal dynamics, and hence inelasticity of
collisions, is neglected. (4) Symmetry breaking processes
cannot be accounted for. (5) Forces involved must be
calibrated for most new applications. (6) Generating
intermediate all-atom trajectories for “on-the-fly” dimension-
ality reduction becomes very expensive for large systems.
Significant effort has been devoted in furthering the accuracy

and sensitivity of the coarse-grained models. Notable progress
would include techniques like Multiscale Coarse Graining
where the atomic and coarse-grained representations are
coupled via boundary conditions,20 variational coarse-graining
where coarse-grained sites on centers of masses of various
subgroups of Cα atoms are identified via PCA or NMA,25 and
Reconstruction Algorithm for Coarse-Grained Structures where
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low-energy all-atom protein structures can be constructed from
configurations with only Cα atoms.26 Structural fluctuations and
internal dynamics are the central features of several biological
processes. For example, in the presence of energy barriers, the
fluctuations are utilized to allow for the self-organization of
lipids in membranes.27 Fluctuations are also important in
expressing the conformational diversity of macromolecules that
allows for large deformations upon drug binding. One of the
suggested ways to incorporate internal dynamics in coarse-
grained models is via superposition of low frequency
quasiharmonic modes. This idea has been demonstrated on
the dynamics of a dimeric enzyme orotidine 5-monophosphate
decarboxylase.28 However, this model, as well as several others
(reviewed in ref 18), does not provide all-atom details.
In a series of studies, we have discovered novel multiscale

techniques that probe the cross-talk among multiple scales in
space and time and preserve the key all-atom details of the
macromolecular assemblies.4−6,29−34 This is achieved via the
introduction of a set of space warping order parameters (OPs)
that describe coherent, overall structural changes, while our
mathematical reformulation of the underlying molecular
physics simultaneously captures high frequency atomic
fluctuations.30,33,35,36 In effect, our OPs filter out high
frequency atomistic fluctuations to track low frequency
coherent modes that enable coarse-grained description of the
system.30,32 These slow variables capture polyalanine folding
from a linear to a globular state,35 Ostwalds ripening in
nanocomposites,29,35 nucleation and front propagation path-
ways in a virus capsid structural transition,31 counterion
induced collapse in viral RNA, and stability of RNA−protein
complexes.32 The OPs are generalized center of mass variables
that include a strain tensor accounting for visco-elastic
deformations and hence probe complex motions like macro-
molecular twist or bend.32,35 They serve as the basis of a
multiscale analysis that starts with the N-atom Liouville
equation and yields rigorous Smoluchowski/Langevin equa-
tions4,29 and the Fokker−Planck equation34 of stochastic OP
dynamics. The Langevin equations have been numerically
implemented via a force-field-based algorithm in our SimNano-
World software.32,33 However, as mentioned earlier,32,35

interpretation of all motions associated with these OPs is
nontrivial. This is in part due to the very definition of our OPs,
and more generally due to the many-to-one mapping between
all-atom and reduced representations involved with any coarse-
graining technique.20 Henceforth, these OPs are referred to as
the nonhierarchical ones.
Here, we define a new set of OPs that takes more explicit

account of the hierarchical nature of assembly architecture.
First, the system is divided into subsystems, each of which is
described via a representative set of OPs. Then, a global set of
variables is constructed from these subsystem-centered OPs to
capture overall organization of the composite system. The
structural subsystems (e.g., protomers, pentamers, or hexamers
within a virus capsid) are considered as separate beads with
associated subsystem-centered OPs probing their position,
orientation, and internal structure. Overall bead deformations
like extension, compression, rotation, and translation, as well as
resulting interbead motions that probe temporal dynamics of
the assembly are captured via the global set of OPs. In addition,
high frequency fluctuations within each subsystem and across
the assembly are captured via a quasi-equilibrium ensemble of
all-atom configurations. Thus, assembly structure and dynamics
is understood in terms of atomistic fluctuations, intrasubsystem

and global OPs, and the interplay between them. Consequently,
the hierarchical OP approach ensures that higher level structure
mediates subsystem and atomistic dynamics. The reverse
transfer of information (from shorter to longer scales) is
shown in the second part of this presentation37 to emerge from
the effect of short-scale processes on factors in the dynamical
equations for the global variables. In this way, the present
hierarchical framework is a natural way to understand biological
phenomena involving hierarchical organization. In the rest of
this article and the following one, the terms “subsystem” and
“bead” are used interchangeably.
In the following, we construct the hierarchical OPs and show

that they satisfy key criteria for being the basis of a multiscale
methodology and simulation approach (section II). We
numerically demonstrate the properties of hierarchical OPs
by comparing them to those of our nonhierarchical ones using
all-atom configurations derived from Molecular Dynamics
(MD) and SimNanoWorld simulations of T = 1 L1 Human
Papilloma Virus 16 (HPV16) Virus-Like Particle (VLP)
disassembly/collapse (section III), and discuss conceptual and
computational advantages of the hierarchical approach (section
IV). Conclusions are drawn in section V. In the second
article,37 we formulate a multiscale methodology that captures
assembly dynamics through the coupled evolution of
hierarchical OPs and all-atom ensembles. Applicability of
Langevin equations to hierarchical OP dynamics is tested.
Advantages of implementing these OPs within a practical
simulation framework are demonstrated in the context of
computational efficiency and tracking emergence of new
collective modes. Finally, relative accuracy and efficiencies of
the OP enabled multiscale and MD simulations are evaluated.

II. CONSTRUCTION OF HIERARCHICAL ORDER
PARAMETERS

A central element of our multiscale analysis is the construction
of OPs that describe the coarse-grained features of a
macromolecular assembly. The method for constructing these
OPs is built on techniques presented in earlier studies.30,31,35 A
description of the latter and detailed extensions that constitute
the current work are provided below.

A. Nonhierarchical Order Parameters. Consider a
macromolecular assembly described via the positions of its N
constituent atoms ⇀r i labeled i = 1, ..., N. In our approach, ⇀r i is

related to a reference position ⇀r i
0. Deformation of space taking

⇀r i
0 to ⇀r i is continuous and is used to introduce OP Φ⇀−k via the

transformation

∑⇀ = Φ⇀

−
− −r Ui

k
k ki

(1)

where Φ⇀−k is termed the kth nonhierarchical OP. As the Φ⇀−k
changes, space is deformed, and so are the macromolecules
embedded in it. The factor Uki is defined in terms of a basis

function Uk(⇀r i
0), i.e., Uki  Uk(⇀r i

0) for reference position⇀r i
0

of atom i. Index k labeling the Φ⇀ is a set of three integers

{k1k2k3} such that Uki  Uk1k2k3(
⇀r i

0) is a product of Legendre
polynomials of orders k1, k2, and k3 for the X, Y, and Z

components of ⇀r i
0, respectively, i.e., Uk1k2k3(

⇀r i
0) = Uk1(Xi

0)
Uk2(Yi

0)Uk3(Zi
0).33 The curly bracket {} is used to denote a set

of variables. Since we seek a dimensionality reduction, the
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number of Φ⇀−k is much less than the number N of atoms. Thus,
we take a finite truncation of the k sum in eq 1; this necessitates
the introduction of a residual (denoted σ⇀i) to correct the

coherent deformation generated by the Φ⇀−k . With this,

∑⇀ = Φ⇀ + σ⇀

−
− −r Ui

k
k ki i

(2)

To maximize information content of the OPs, the magnitude of
σ⇀i is minimized by the choice of basis functions and the
number of terms in the k sum. Conversely, imposing a
permissible size threshold for the residuals allows one to
determine the number of terms to include in the k sum.
Enhancing the information content in Φ⇀−k is achieved by

minimizing the sum of mass-weighted square residuals (m1σ1
2 +

...mNσN
2) with respect to the Φ⇀−k, where mi is the mass of atom

i. This implies

∑ ∑ ∑Φ⇀ = ⇀ =

−′
−−′ −′

=
− −−′

=
− −′B m U r B m U U,

k
k k k

i

N

i ki i k k
i

N

i ki k i
1 1

(3)

For convenience, we reorganize the factors Uki to be mass-
weighted orthogonal. In that case, the B matrix in eq 3 is
diagonal; i.e., Bkk′ is 0 for k ≠ k′. With this,

∑
μ

μΦ⇀ =
∑ ⇀

̃
̃ =−

= −

−
−

=
−

m U r
m U;k

i
N

i ki i

k
k

i

N

i ki
1

1

2

(4)

Here, μ̃k serves as an effective mass associated with Φ⇀−k , giving
the latter a generalized center of mass character. In particular,
Φ⇀−k for k = {000} is the center of mass (CM), and those for k =
{100, 010, 001} constitute a strain tensor describing overall
deformations like extension−compression−rotation.32
Stochastic evolution of the nonhierarchical OPs is captured

via Langevin-type equations.4−6 These OPs are uniquely
defined for a set of atomic positions (eq 4). However, the
converse is not true; i.e., there exist multiple all-atom
configurations consistent with a given set of Φ⇀−k . Thus, the
OP construction scheme constitutes a many-to-one mapping
from the all-atom to the coarse-grained description. As a
consequence, the OP description and associated Langevin
equations retain overall structural information, losing all-atom
details. To restore all-atom resolution, an equilibrium ensemble
approach is introduced that allows generation of atomic
configurations consistent with the overall state of the system
provided by a set of OPs, Φ  {Φ⇀−k}. These multiscale ideas,
implemented in our Φ-based SimNanoWorld simulation
software, are summarized in section SI1 of Supporting
Information.
B. Subsystem-Centered Order Parameters. In the

previous subsection, one set of OPs is introduced for the
whole system. However, macromolecular assemblies like viruses
and ribosomes are composed of several subunits organized in a
structure that can spontaneously change symmetry (e.g., during
ribosomal assembly or capsid maturation). This organization is
naturally captured in terms of OPs that characterize the
deformations of individual subsystems labeled S = 1, ..., Nsys.
Thus, in this framework, a system is divided into Nsys

subsystems, each one of which is described by different sets

of subsystem-centered OPs denoted Φ⇀−k
S
. In analogy to eqs 1

and 2, Φ⇀−k
S
is introduced for subsystem S via

∑ φ⇀ = ⇀ + σ⇀

−
− −

r Uj
S

k
k
S

kj
S j

S

(5)

where σ⇀ j
S
denotes the residual displacement of atom j in

subsystem S resulting from a finite truncation of the k sum.
Using the same series of transformations as for the non-
hierarchical OPs (but restricted to individual subsystems) yields

∑φ
μ

μ⇀ =
∑ ⇀

̃
̃ =

−
= −

−
−

=
−

m U r
m U; ( )k

S j
n

j
S

kj
S j

S

k
S k

S

j

n

j
S

kj
S1

1

2

S S

(6)

where nS is the total number of atoms in the subsystem S. mj
s

and ⇀r j
S are the mass and position of the jth atom in S. Ukj 

Uk(⇀r j
S ,0), where ⇀r j

S ,0 is the reference position of atom j.

Details of derivations yielding eq 6 are provided in section SI2
of the Supporting Information.

C. Hierarchical Order Parameters. As system complexity
(e.g., the number of subsystems and their internal structure)
increases, one may increase the number of OPs, i.e., the range
of the k sum in eq 2 or 5, to capture smaller spatial features that
tend to evolve on shorter time scales.35 With this, the
characteristic rate of change of nonhierarchical or subsystem-
centered OPs increases. However, a separation in time scale
between the coherent (slow) and noncoherent (fast) degrees of
freedom is necessary for probing the multiscale behavior of
macromolecular assemblies.4 To address this, hierarchical OPs

Ψ⇀Κ− are introduced, which maintain the necessary separation of
characteristic time scales between the slow and fast degrees of
freedom and simultaneously capture the overall assembly
deformations as well as those internal to the subsystem
architecture.

The Ψ⇀Κ− ’s are constructed using a three-level description of
the assembly. First, the N-atom assembly is divided into Nsys

subsystems, the Sth of which contains nS atoms. The
configuration within subsystem S is provided by the set of

the nS positions denoted rS  {⇀r j
S}; j = 1, ..., nS. The set of

positions of all atoms in the system is denoted r  {rS}; S = 1,
..., Nsys. At an intermediate level, each subsystem is described via
a finite set of the subsystem-centered OPs φS  {φ⇀

−k
S}. At the

highest level, a global set of variables, Ψ  {Ψ⇀−K}, is
constructed from these subsystem-centered OPs to capture
the overall organization of the system.
In analogy with eq 2, the hierarchical OPs Ψ⇀−K are introduced

as

∑φ φ⇀ = Ψ⇀ + ⇀
−

−
− −− −

Uk
S

K
K K k

S
k
S

(7)

where UKk
S depends on the subsystem-centered OPs φ⇀

−k
S
in a

manner similar to which the Uki depend on the all-atom

configuration ⇀r i
0 (eq 1), i.e., UK(φ⇀

−k
S)  UK1K2K3

(φ⇀
−k
S) =

UK1
(φkX

S )UK2
(φkY

S )UK3
(φkZ

S ). Here, φkα
S is αth Cartesian
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component of φ⇀
−k
S. However, unlike our nonhierarchical

formulation, here UKk
S depends on φS and not a fixed reference

configuration of subsystem-centered OPs φ0,S.

Since μ̃k
S serves as an effective mass for φ⇀

−k
S (eq 6),

minimization of mass-weighted square residual ∑S,kμ̃k
S (σ⇀−k

S
)2

with respect to φ⇀
−k
S yields

∑ ∑

∑

μ φ

μ

Ψ⇀ = ̃ ⇀

= ̃
− ′

−− ′ − ′
−

− −− −

−− ′
−

− −− − ′−

B U

B U U

;
K

KK K
S k

k
S

K k
S

k
S

KK
S k

k
S

K k
S

K k
S

,

, (8)

Again, for convenience, we choose the basis functions UK to
be mass-weighted orthogonal. In that case, the B matrix (eq 8)
is diagonal, i.e., BKK′ is 0 for K ≠ K′. With this,

∑
μ φ

μ
μ μΨ⇀ =

∑ ̃ ⇀

̃
̃ = ̃−

− − −− −

−
−

−
− −−

U
U; ( )K

S k k
S

K k
S

k
S

K
K

S k
k
S

K k
S,

,

2

(9)

The above summation runs through all subsystems, S = 1,
...Nsys, and a selected range of k that minimizes the subsystem-

centered residuals σ⇀ j
S
(eq 5) for each one of these subsystems.

Equation 9 expresses overall structural characteristics of the

assembly (Ψ⇀−K) as a function of position, orientation, and

deformation of individual subsystems (φ⇀
−k
S). Thus, r explicitly

defines φS (eq 6), which in turn yields Ψ (eq 9), thereby
reflecting the structural hierarchy of an assembly.
For simplicity, the UKk

S can be constructed using only the

subsystem CMs, i.e., φ⇀
−
S
0 .

32 Letting ⇀R
S  φ⇀

−
S
0 be the CM of

subsystem S, eq 9 becomes

∑
μ

μΨ⇀ =
∑ ⇀

̃
̃ =−

= −

−
−

=
−

M U R
M U; { }K

S
N S

K
S S

K
K

S

N
S

K
S1

1

2
sys sys

(10)

where MS = μ̃0 is the total mass of subsystem S. As with eq 7,

UK
S  UK(

⇀R
S
) is constructed from the collection of CMs RS

and not a fixed reference configuration of subsystem CMs RS,0.
A detailed numerical procedure for the construction of basis
factors and OPs is provided in section SI3 of the Supporting
Information. Briefly, Legendre polynomials are arranged in one-
dimensional matrices which are then Gram−Schmidt ortho-
gonalized with a mass-weighted metric to obtain the basis
factors U that diagonalize the B matrix (eqs 3 and 8). The
product of the position matrix with these orthogonalized basis-
set polynomial matrices yields the OPs.
Now, we make use of the Liouville equation to elucidate the

rate of OP dynamics. The Liouville operator is defined via L =

−∑i=1
N [(⇀pi /mi)·(∂/∂⇀ri ) + ⇀Fi ·(∂/∂⇀pi )], where

⇀pi and ⇀Fi are

the momentum of and the net force on atom i, respectively.

Given eq 10, one may compute dΨ/dt as −LΨ. With this, the
rate of change of Ψ⇀−K is given by

∑
μ

∂Ψ⇀

∂
=

̃
⇀ + ⇀ ·

∂

∂⇀
−

Ψ⇀ ·
∂

∂⇀

−

−
−

−
−

−
−

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎫
⎬⎪
⎭⎪

t
P U R

U

R
U

U

R

1
2K

K S

S
K
S S K

S

S K
S

K
K
S

S
(11)

where ⇀P
S
= ∑j=1

nS ⇀p j
S is the total momentum of subsystem S.

Details of derivation yielding eq 11 are provided in Appendix A.
The second and third terms in eq 11 arise from the spatial

derivative of UK
S ; such terms are negligible if the UK

S is
constructed using polynomials that vary slowly across the
system. The latter is realized by constructing polynomials using
a fixed reference configuration of CMs. In this case, Ψ
characterizes deformation from a fixed structure, in analogy
with our earlier formulation.30 This implies

∑
μ

∂Ψ⇀

∂
=

̃
⇀−

−
−t

U P
1K

K S
K
S S

(12)

However, effects of the omitted terms in eq 11 on the
applicability of a fixed reference structure in constructing the
basis-set polynomials are discussed in section III.
To reveal the time scale on which Ψ⇀−K evolves, it is

convenient to define a smallness parameter ε = m/M, where m
is a typical atomic mass and M is the mass of the whole

assembly. For any of Ψ⇀−K , letting
⇀v j

S be the velocity of particle j

in subsystem S, the definition of ε and eq 12 yields

μ μ
Ψ⇀

= ε
∑ ∑ ̂ ⇀

= ε
Π⇀− = = −

−

−

−

d

dt

m U vK S
N

j
n

j
S

K
S

j
S

K

K

K

1 1
Ssys

(13)

where μK = μ̃K/M, m̂j
S = mj

S/m and Π⇀−K is the hierarchical OP

momentum. Equation 13 suggests that the hierarchical OPs Ψ⇀−K
change slowly, at a rate of O(ε). This is under the assumption

that the Π⇀−K are linear combinations of individual atomic
momenta, which tend to cancel near equilibrium, thereby
reducing the rate of OP evolution. Furthermore, there is an
ensemble of rapidly fluctuating all-atom configurations
consistent with a given set of Ψ⇀−K . When the OPs vary on
long time scales the Gibbs hypothesis suggests that this
ensemble is equilibrium in character. Thus, the set of atomistic
configurations visited during a period that is long relative to the
characteristic time of interatomic fluctuations yet short relative
to those of the slow Ψ⇀−K evolution can be represented by an

equilibrium ensemble at fixed Ψ⇀−K .
4,29 A numerical procedure

for generation of these ensembles is discussed in Appendix B.
Atomic configurations from this ensemble capture key internal
dynamics within subsystems for which the overall assembly
structure is characterized by Ψ and subsystem level structure is
described by φS.
Note that all functions of the atomistic configuration are not

slowly varying in time. Even the OPs presented here evolve on
a range of time scales related to the spatial scale of motions they
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characterize, e.g., assembly-wide versus single monomer
motion. From among them, there is a subset which evolves
on a time scale much greater than that of individual atomistic
fluctuations. The subset manifests the time scale separation
between slow and fast variables needed to develop a multiscale
simulation algorithm (as discussed in part 2).37 This separation
is made explicit via (a) qualitative arguments used above to
justify eq 13 and (b) numerical demonstration of slow OP
dynamics, as provided below and in the second part. In the next
section, we numerically construct the hierarchical OPs and
analyze their pros and cons with respect to those of our
previous nonhierarchical ones.

III. NUMERICAL VALIDATION
A study is undertaken to assess the viability of the hierarchical
OPs of section II as collective variables that capture the
structure and dynamics of macromolecular assemblies. We
compare properties of the hierarchical OPs to those of the
nonhierarchical ones using all-atom structures from NAMD38

and SimNanoWorld simulations with the CHARMM27 force
field.39,40 Details of conditions used for these simulations are
provided in Table 1. An evaluation of other coarse-grained
variables in this context has been presented previously.32

The T = 1 L1 HPV16 VLP is the demonstration system. This
assembly contains 12 pentamers joined by “attacking arms” that
stabilize it via strong hydrophobic interactions.41,42 Each
pentamer is composed of five L1 protein monomers. The C-
terminal of the L1 protein consists of four helical regions h2,
h3, h4, and h5 that are responsible for intra- and inter-
pentameric stabilization. While h2, h3, and h5 are responsible
for L1 protein folding and pentameric stability, h4 maintains
interpentamer connectivity and, thereby, overall T = 1
structure.41,42 As suggested by experiments,42 we truncated
h2, h3, and h4 from the L1 protein and simulated the
disassembly/collapse of the resulting VLP via SimNanoWorld.
The simulation elucidates all-atom dynamics of this 2 × 106

atom system (including water and ions, 0.25 M NaCl) for 100
ns (Figure 1), revealing mechanisms of the transition pathway.
Since this transition involves the sequential break-up of an
assembly into finer scale components, it provides an ideal

example for demonstrating the viability of Ψ⇀−K as variables that
capture hierarchical organization. Thus, all-atom configurations

from this trajectory are used to reconstruct the evolution of
hierarchical and nonhierarchical OPs. With this, advantages of
the hierarchical OPs over the nonhierarchical ones for
simulating macromolecular assembly dynamics are evaluated.
It has been previously shown that a Φ-mediated SimNano-

World trajectory is equivalent to an ensemble of MD generated
ones, but the former is generated much more efficiently.32

Several simulation controls are implemented in SimNanoWorld
to ensure this consistency.43 Thus, for the numerical
comparison between Ψ and Φ presented below, atomic
structures are chosen from the Φ-mediated trajectory. These
structures are equivalent to those from a 100 ns MD, but
generating them for the million atom system under
consideration is much more efficient via our multiscale
simulation.43 To further validate this point, in the second
article,37 structures from multiscale trajectories of the HPV
VLP are compared to those from all-atom MD ones and
experimental observations.
In the following, we numerically construct hierarchical OPs

(Ψ⇀−K) and compare their properties with those of non-

hierarchical ones (Φ⇀−k).
32,35 Observed differences between

these two classes of OPs are rationalized, and implied
advantages for conceptualizing a hierarchical OP based
simulation algorithm are discussed. The rest of section III

illustrates various facets of Ψ⇀−K evolution.
A. Criteria for Defining Subsystems. A cornerstone in

defining hierarchical OPs is the specification of subsystem
boundaries. The latter explicitly imply characteristics of the
hierarchical OPs. Let each of the 12 pentamers that constitute
the VLP be a subsystem (Figure 1c). Subsystem S (S = 1, ...12)
is described by four subsystem-centered vector OPs φ⇀

−k
S (i.e.,

the CM and three corresponding to overall subsystem
extension−compression−rotation, indices k = {000, 100, 010,
001}). The choice of these φ⇀

−k
S is justified by their dynamical

coherence, as observed earlier,32,33 and in the next subsection.
OP specification using the triplet indices k is discussed in
section II.
The 100 ns Φ-mediated SimNanoWorld simulation provides

an ensemble of atomic configurations at every Langevin time
step. OP evolution trajectories are obtained by computing the
Ψ⇀−K and Φ⇀−k from configurations of this evolving ensemble.

Typical Ψ⇀−K and Φ⇀−k trajectories are plotted in Figure 2a−d. To
track coherence in the variation of OPs, fluctuations (λ) relative
to a running average are computed. Details on λ computations
are provided in Appendix C and ref 32. Even though the

trajectories of lower-order Ψ⇀−K and Φ⇀−k (i.e., for indices K = k =
{000, 100, 010, 001}) are similar, the fluctuations for the

higher-order Ψ⇀−K (i.e., for indices K = k ≠ {000, 100, 010, 001})

are about 2 orders of magnitude less than those of Φ⇀−k (Figure
2e,f). Thus, the higher-order hierarchical OPs are much more
coherent than the nonhierarchical ones. In stark contrast, if the
VLP is divided into 60 L1 protein monomer subsystems
(Figure 1d) where each monomer is described via the same
four φ⇀

−k
S as above (i.e., for the L1 pentamer subsystem), the

resulting higher-order Ψ⇀−K lose coherence and behave more like

the higher-order Φ⇀−k (Figure 2b,d). Therefore, subsystem size
plays a key role in determining the coherence of hierarchical

Table 1. Input Parameters for the NAMD and
SimNanoWorld Simulations

parameter values

Temperature 300 K
Langevin damping 5
Timestep 1 fs
fullElectFrequency 2 fs
nonbondedFreq 1 fs
Box size 330 Å × 330 Å × 330 Å
Force-field parameter par_all27_prot_na.prm
1−4scaling 1.0
Switchdist 10.0 Å
Cutoff 12.0 Å
Pairlistdist 20.0 Å
Stepspercycle 2
Rigid bond Water
OP time step 125 ps
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OPs and hence should be considered when specifying the

boundaries defining subsystems. In summary, the Ψ⇀−K
constructed for the larger subsystems are more coherent than
those from smaller ones. An explanation for this observation
and resulting computational advantages is provided in the next
subsection.

Let ΨKα be the αth Cartesian component of Ψ⇀−K . These OPs
have the following interpretation. ΨKX mediates compression−
extension in the X direction, whose spatial variation across the
system is indicated by the basis function UK

S and similarly for α
= Y and Z.32 With this, Ψ100X, Ψ010Y, and Ψ001Z track overall

compression−extension of the VLP in the three Cartesian
directions. In contrast, overall rotation of the VLP is tracked by
the set of nine Ψ100α, Ψ010α, and Ψ001α constituting a 3 × 3
matrix that is a pure rotation when it has a unit determinant.32

Therefore, OPs track the overall shape, size, and orientation of
the collection of subsystems in the VLP. For example, during
disassembly/collapse, the simple compression−extension OPs
(Ψ100X, Ψ010Y, and Ψ001Z) initially increase and then either
remain constant or decrease (Figure 2a). Consequently, these
variables capture the evolution of the VLP radius of gyration
(Figure 1e). Furthermore, differences in the evolution profiles

Figure 1. Snapshots at (a) 0 ns and (b) 100 ns illustrating symmetry-breaking deformations of the helix-truncated HPV16 VLP starting from an
icosahedral organization of pentamers; arrows indicate inward and outward motions of the pentamer. Structure of subsystems belonging to the VLP:
(c) pentamer and (d) L1 protein monomer. Plots of the (e) radius of gyration versus time and (f) displacement of the pentamer CMs after 100 ns
from their initial positions showing that the truncated VLP is less stable than the nontruncated one. A positive displacement implies pentamer
movement away from the VLP center and vice versa. A majority of the pentamers move inward, yielding VLP collapse.
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of the three OPs indicate different extents of deformation along
the three axes. This is explained as follows.
Closed structures like that of the nontruncated VLP sustain

strong radial, lateral, and tangential stress via the inter-
penetrating helices that compose the attacking arms.44 On
helix truncation, these attacking arms are disrupted, and the
pentamers become free to move. With this, the overall stress on
the system is released, and most of the pentamers diffuse away
from their original location. Consequently, the VLP expands,
and hence the OPs increase for the first 10 ns. However, this
expansion is not uniform and involves simultaneous translation

and rotation of the pentamers. As a result, some pentamers
move outward, while most others interact with their neighbors
via strong interloop hydrophobic interactions and move inward
(Figure 1f; Movie 1, Supporting Information). Thus, the VLP
gradually shrinks, indicating collapse. At the level of OPs, Ψ100X

probes the expansion along the X direction that results from
outward motion of the pentamers, while Ψ010Y and Ψ001Z track
contraction along the Y and Z directions due to the interloop
hydrophobic interactions between neighboring pentamers. This
anisotropy in deformations along the three Cartesian axes
illustrates the symmetry-breaking nature of VLP disassembly/

Figure 2. Evolution of (a) typical lower-order Ψ⇀−K and Φ⇀−k , higher-order (b) Φ⇀−k and (c) Ψ⇀−K with a pentamer as the subsystem, and (d) higher-

order Ψ⇀−K with an L1 monomer as the subsystem. (e, f) Fluctuations λ of OPs presented in b and c showing the higher-order Ψ⇀−K are more coherent

than Φ⇀−k .
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collapse starting from an icosahedral arrangement. The results
also illustrate that VLP instability involves three processes: (1)
short time scale atomistic vibrations/collisions underlying free
energy driving forces, (2) intermediate time scale interactions
between closely lying subsystems, and (3) long time scale
subsystem migration. Thus, proper definition of subsystems
assists in clarifying the hierarchy of processes across scales in
space and time.
Another criterion for defining subsystems is the influence of

bonded and nonbonded interactions on the choice of
boundaries. If the subsystem boundary traverses a covalent
bond, then the ensemble generation procedure via eq B1 would
treat constituent atoms in different subsystems independently.
This would unphysically stretch the covalent bonds, resulting in
the generation of a significant population of very high energy
configurations. Generation of such improbable configurations
would increase the cost of hybrid sampling required for a
convergent Boltzmann averaging of thermal forces.33 Alter-
natively, if subsystems natural to an assembly like protomers or
pentamers are chosen, the covalent bonds are not stretched by
relative motions of the subsystems. In contrast, nonbonded
interactions bridging subsystems can still be perturbed, but they
do not produce very high-energy configurations. The latter is
because (1) such perturbations are achieved by moving atoms
in the ensemble with a measure of coherence (Appendix B) and
(2) energy changes generated by perturbing nonbonded
interactions are smaller than those for bonded ones. Short
MD simulations starting from these structures are run to enrich
the ensemble, as well as to anneal the nonbonded interactions
that are affected by the choice of subsystem boundary. Hence,
subsystems are specified such that their boundaries can cross
nonbonded interactions if required but never traverse bonded
ones. The hybrid ensemble generation procedure together with
a proper choice of boundary facilitates sampling modest energy
configurations. Thus, the size and boundary criteria are used to
guide our choice of subsystems.
A similar partitioning of bonded and nonbonded interactions

has been used to obtain a coarse-grained description of virus
capsids (as noted in section I). In this representation, covalent
interactions are between lumped elements; e.g., peptides are
conserved within “trapezoidal tiles” of capsid protein that
interact via weaker noncovalent interactions.24 However, this
approach does not address the shortest scale in the hierarchy,
i.e., the all-atom state.
B. Rationale for the Behavior of Hierarchical Order

Parameters. Now, the evolution characteristics of hierarchical
OPs are investigated and compared with those of the
nonhierarchical ones. As suggested by eq 11, and more
generally by eqs A12 and A13, the rate of change of OPs
depends on the associated masses, spatial distribution of the
polynomial basis functions that allows for cancellation of
atomic momenta, and the evolution characteristics of
subsystem-centered OPs. Contributions from these effects are
compared to validate the applicability of a fixed reference
structure (eqs 12 and 13) and hence explain differences

between the Ψ⇀−K and Φ⇀−k behaviors of Figure 2.
First, the inertial effects are considered. Effective OP masses

for hierarchical and nonhierarchical OPs of the L1 VLP are
shown in Figure 3. The masses primarily decrease with an
increase in the order of polynomial basis functions. Considering
systems with spatially uniform mass distribution,28 this suggests
that the higher-order OPs with smaller effective masses probe

relatively smaller regions in space. However, these OP masses
vary over similar ranges of magnitude for both the hierarchical
and nonhierarchical cases. This implies, for the same order of

polynomial, i.e., k = K, that Ψ⇀−K and Φ⇀−k characterize
deformations involving spatial regions of comparable size.
Consequently, inertial effects are not responsible for the

difference in behavior between the Ψ⇀−K and Φ⇀−k . Therefore,
differences in OP behavior can be attributed to the spatial
distribution of the basis functions and evolution characteristics
of the φS.
Now consider the evolution characteristics of the subsystem-

centered OPs φS. The time evolution of a typical subsystem-

centered OP φ001Z
S (Z component of φ⇀S

001) is plotted for 12
pentamer subsystems, i.e., S = 1, ...12 (Figure 4a). The
fluctuation λ of φ001Z

S is plotted in Figure 4c; we present λ only
for the pentamer having the maximum fluctuation. Results

suggest that the lower-order φ⇀
−k
S (e.g., φ⇀

−k
S with k = {000, 100,

010, 001}, which track pentamer position and orientation) have
significantly less fluctuation than do the higher-order non-
hierarchical OPs defined for the entire VLP, e.g., Φ101Z and
Φ011X (Figure 2b−f). However, with the choice of the L1
monomer as a subsystem, the φ001Z

S (and other members of φS

not shown here) are more rapidly fluctuating than when a
pentamer is the subsystem (Figure 4b,c).

The Ψ⇀−K are linear combinations of φS (eq 9), and the atomic

configurations consistent with fixed values of Ψ⇀−K belong to an

equilibrium ensemble (eq 13). This suggests that the rate of Ψ⇀−K
evolution is either slower than or comparable to that of φ⇀

−k
S. As

a result, the rate of φS evolution provides an upper bound to
that of Ψ. Figure 4 indicates that larger subsystems enable
construction of slower φS. Consequently, they yield more

coherent Ψ⇀−K . Therefore, given a set of subsystems, coherence
of the associated lower-order φS filters out the higher frequency

fluctuations from Ψ⇀−K dynamics. Physically, this signifies that
overall assembly behavior is slower than intrasubsystem
processes. Through the mathematical construction of our
OPs, this property of hierarchically organizing systems is

Figure 3. Effective OP masses μ̃K and μ̃k for the hierarchical and
nonhierarchical OPs versus K1 + K2 + K3  k1 + k2 + k3 show similar
ranges of magnitudes, which demonstrates that inertial effects do not

account for the difference in coherence between Ψ⇀−K and Φ⇀−k .
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naturally captured. In contrast, when k is the same as K, the Φ⇀−k ,
e.g., Φ101Z and Φ011X, are constructed directly from the all-atom
configuration and hence express more high frequency

fluctuations than Ψ⇀Κ− . This, in part, is the reason for obtaining

a slower and more coherent Ψ⇀Κ− relative to Φ⇀−k at K = k ≠
{000, 100, 010, 001}.
The subsystem-centered OP φ001Z

S , by construction, probes
deformations along the Z Cartesian axis for Sth subsystem.32

Truncation of the helices h2 and h3 disrupts inter-L1 monomer
interactions, triggering local deformations within the intra- and
interpentameric organization. Observed differences in the
evolution characteristics of φ001Z

S (Figure 4a) for the 12
different pentamers elucidate the anisotropic nature of these
deformations. While VLP shape and size follow simple trends
(Figure 1e), subsystem-centered OPs reflect the anisotropy of
local deformations that ultimately manifests in the symmetry-
breaking nature of the VLP disassembly. Therefore, accounting
for intermediate-scale deformations is necessary to probe the
local events that underlie VLP wide processes, i.e., symmetry

breaking here. For large K, the Ψ⇀Κ− evolution probes the

dynamics of spatial regions with size similar to those of the
constituting subsystems (Figure 3). Thus, such intermediate-
scale deformations are captured. In the companion article,37

this feature of the higher-order hierarchical OPs is demon-

strated for the specific case of a deforming pentamer. Next, the
evolution of polynomial basis functions is considered.
Terms omitted from eq 11 for obtaining 12 express the

dependence of OP velocity on the rate of change of the basis-
set polynomials A1. To investigate the effect of such changes on
Ψ dynamics, first define the quantity ΘK(t) via

Θ =
∑

∑−
= − −

= −

t
M U t U

M U
( )

( ) (0)

{ (0)}
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N S
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K
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where UK
S(t)  UK[

⇀R t( )
S

], ⇀R t( )
S

is the position of the S-th

subsystem CM at time t, and UK
S(0)  UK[

⇀R (0)
S

]. The
polynomials UK

S(t) are computed at each Langevin time step
from an evolving set of subsystem CMs as generated here using
SimNanoWorld. For the nonhierarchical OPs Φ⇀−k an expression
analogous to eq 14, Θk(t), is used with MS replaced by mi and
UK

S replaced by Uki for i = 1, ...N. This implies

Θ =
∑

∑−
= − −

= −
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m U t U

m U
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{ (0)}
k

i
N

i ki ki

i
N

i ki

1

1
2

(15)

The basis-set polynomials associated with nonhierarchical
and hierarchical OPs are organized into one-dimensional
matrices (i.e., vectors) of dimension (N × 1) and (Nsys × 1),
respectively (section SI3 in the Supporting Information). Here,

Figure 4. Evolution of φ001Z
S for the choice of the (a) pentamer and (b) L1 protein as a subsystem and (c) associated fluctuation λ (pentamer, red;

monomer, blue), illustrating that smaller subsystems have less coherent φ⇀
−k
S.
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Nsys = 12 or 60 for the choice of 12 pentamers or 60 L1
monomers as subsystems. For the nonhierarchical OPs, N = 4
× 105, as the VLP contains that many atoms. With this, Θ(t)
tracks the cosine of rotation angles of these vectors from their
initial orientation. Θk changes significantly with time for the Φ⇀−k
with higher k (i.e., k ≠ {000, 100, 010, 001}; Figure 5a).
However, for the hierarchical case with pentamers as
subsystems, this change diminishes, implying that the UK

S are
virtually insensitive to the evolving configuration of CMs
(Figure 5b).
Higher-order basis-set polynomials express significant spatial

variation and thus tend to probe local motions. However, for
the hierarchical formalism, these are expressed as a function of
the subsystem CMs RS (eq 10) or OPs φS (eq 9), which by
definition are mass-weighted averages of atomic positions (eq
6). Since the arguments RS of UK vary slowly in time, they
imply negligible rotations of the associated Nsys-dimensional
basis vectors (Figure 5b). For the choice of a smaller
subsystem, i.e., an L1 monomer versus a pentamer, these
arguments express more high-frequency local motions. This is
reflected in the greater variations of corresponding ΘK (Figure
5c).

Significant changes in Θ for the L1 monomer defined Ψ⇀−K
and higher-order Φ⇀−k suggest that the time dependence of the
basis-set polynomials is not negligible. This provides a sufficient
criterion for indicating the incompleteness of eq 12, which

neglects the rate of change of the basis-set polynomials. In
contrast, negligible changes in ΘK for the pentamer subsystem

defined as Ψ⇀−K do not guarantee the correctness of eq 12. This
is because ΘK tracks the time dependence of only one
component of the Nsys-dimensional vector of basis-set
polynomials. Evolution characteristics of the other (Nsys − 1)
components should be taken into account for validating eq 12
and hence the O(ε) scaling of our OPs (eq 13).
Evaluating ∂Ψ/∂t as −LΨ, the rate of change of UK

S enters
through spatial derivatives of these polynomials (Appendix A).
In Figure 5d, the time evolution of the ensemble-averaged ratio
of the last two terms in eq 11 to the first term,

⟨∑ S
⇀P

S
· {⇀R

S
· ( ∂U K

S / ∂⇀R
S
) − 2U K

S ( Ψ⇀−K · ( ∂U K
S /

∂
⇀R

S
))}/∑S

⇀P
S
UK

S⟩ is plotted. Results suggest that contribu-
tions from the omitted terms in eq 12 are several orders of
magnitude lower than the considered one. Numerically, these
are as small as the fluctuations in the hierarchical OPs (Figure
2e) and are hence negligible. Thus, eqs 12 and 13 are restored,
and the slow temporal evolution of the hierarchical OP basis-set
polynomials relative to the nonhierarchical ones is confirmed.
This suggests that a fixed reference configuration of subsystem

CMs for Ψ⇀−K construction holds for long periods of time.

In summary, the higher-order Ψ⇀−K are slower than Φ⇀−k for a
given K = k. This is because the scaled variables φS (e.g.,
subsystem CMs) vary more slowly in time than do the atomic

Figure 5. Evolution of Θ(t), the cosine of the angle of rotation from the original basis vector orientation to that at time t, for typical (a) Φ⇀−k and Ψ⇀−K
with the (b) L1 pentamer and (c) monomer as a subsystem. This shows that the hierarchical basis vectors rotate slower than the nonhierarchical
ones. (d) Ratio of the last two terms of eq 10 to the first term, showing that the rate of change of hierarchical OP basis-set polynomials is negligible
relative to that of the OPs themselves.
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coordinates. The choice of subsystem size determines the
dynamical properties of φS. This in conjunction with the slow
variation of the basis-set polynomials used to define UK

S makes
the Ψ⇀−K extremely coherent. For the demonstration system,
choosing the subsystem to be a pentamer implies slowly varying
φS and hence even slower Ψ. In contrast, if the L1 monomer is
the subsystem, the φS are less coherent and so are the resulting
Ψ⇀−K . This rationalizes the results presented in Figure 2.
The hierarchical OP formulation provides a “double filter” of

noise. Choosing φS (or RS) at the subsystem level itself filters
some local fluctuations. In turn, the noise in φS is refiltered over
the entire system via UK

S for S = 1, ..., Nsys to yield more
coherent Ψ dynamics. However, the lower-order OPs exhibit
similar evolution for both hierarchical and nonhierarchical
formulations (Figure 2a). This is explained in section SI4 of the
Supporting Information.

IV. DISCUSSION

Results presented imply that hierarchical OPs (Ψ⇀−K) express

much less fluctuation than nonhierarchical ones (Φ⇀−k) (Figure
2), even if they capture deformations involving spatial regions
of similar size (Figure 3). This follows from the enhanced
filtering of fluctuations embedded in the construction of the
hierarchical OPs. The number and character of the hierarchical
OPs depend explicitly on the definition of subsystems. For
example, choosing L1 monomers as subsystems for the T = 1
HPV assembly results in 4 × 60 = 240 subsystem-centered OPs.
Thus, the number of global OPs is limited to 240, i.e., those for
which K1 + K2 + K3 ≤ 11. However, the OPs in this formulation
are about as coherent as the nonhierarchical ones. In contrast, if
the subsystem is taken to be an L1 pentamer, the number of
subsystem OPs decreases to 4 × 12 = 48. With this, the number
of global OPs decreases to those with K1 + K2 + K3 ≤ 6. As
shown above, these hierarchical OPs are more coherent than
the nonhierarchical ones. The associated basis functions change
slowly in time, thereby enabling the application of a fixed
reference configuration over long time periods (Figure 5).
Furthermore, the Ψ⇀−K enable reconstruction of all-atom
structures consistent with global and subsystem assembly
architecture. This is achieved through the generation of quasi-
equilibrium ensembles that account for small-scale displace-
ment of each atom in addition to the coherent deformation
generated by the OPs (Appendix B). Thus, the hierarchical OPs
yield conceptual and computational advantages for multiscaling
macromolecular systems. These are summarized as follows:

• The time scale of Ψ⇀−K evolution is well separated from
that of atomic fluctuations (eq 13 and Figure 2a and c).

With this, the set of Ψ⇀−K enables one to uncloak multiple
spatial and temporal dependencies of the N-atom
probability density and thereby serve as the basis of a
multiscale analysis. As discussed in a companion study,37

this methodology starts with the N-atom Liouville

equation and yields Langevin equations for Ψ⇀−K
evolution, while mathematical reformulation of the
underlying molecular physics simultaneously captures
high frequency atomic fluctuations.

• A judicious choice of subsystems enables the hierarchical
OP construction scheme to generate a greater number of
slow variables than for the nonhierarchical approach.

Therefore, one can perform a multiscale simulation
which still provides all-atom detail as with the non-
hierarchical OPs but now with a richer set of slow
descriptive variables. Accounting for the evolution of a
greater number of OPs through associated Langevin
equations facilitates the capturing of multiple pathways
to structural transition.30

• The effective OP masses, μ̃K (eq 9 or 10), decrease for
larger values of K. This suggests that OPs with a higher K
probe deformation of smaller regions in space. Thus, a
model based on the hierarchical OPs captures a spatially
diverse range of coherent deformations through the Ψ⇀−K
for a set of K.

• Enhanced coherence of the hierarchical OPs relative to
the nonhierarchical ones enables the application of larger
Langevin timesteps for numerically simulating the Ψ
evolution. Furthermore, the hierarchical strategy tracks
deformation with respect to a fixed reference structure.
This avoids the need for frequent rereferencing and
recalculation of the basis functions while carrying out a
long-time simulation. Thus, interplay between the
characteristic time of OP evolution and the frequency
of rereferencing reflects in the overall simulation
efficiency.

• The Ψ facilitates generation of an ensemble of all-atom
configurations. This captures the exchange of informa-
tion across multiple scales in space and time and provides
criteria for judging the completeness of an OP
description (as shown explicitly in the companion
study37). For example, the appearance of long time
tails in the OP velocity autocorrelation functions or a
systematic growth in the size of residuals in these
ensembles indicates the necessity of adding more OPs to
the coarse-grained description. Consequently, one can
initialize multiscale simulations with a finite number of
OPs, e.g., 48 or less when pentamers are chosen as
subsystems, but change the number on the fly to account
for emergent motions.

These properties of the hierarchical OPs make them ideal
variables for developing a multiscale computational approach
that captures slow processes in macromolecular assemblies. In
the second part of this work, we formulate a Ψ-mediated
multiscale framework and provide further numerical validation
of the computational gain obtained by exploiting this algorithm.

V. CONCLUSION
This study is a part of a broader quest to discover OPs for
classical and quantum nanosystems.13,30,35,36,45 A subset of OPs
presented in this paper (e.g., ones with K1 + K2 + K3 ≤ 6) is
shown to evolve coherently and operate on time scales that are
several orders of magnitude greater than those of atomistic
fluctuations. These OPs capture the slowly varying modes of a
macromolecular assembly. The atomic scale fluctuations are
accounted for via the quasi-equilibrium ensemble of all-atom
configurations generated using OP-like variables (B1) and
enriched via short MD simulations. With this, the overall as well
as internal dynamics of macromolecules or their assemblies is
captured. Furthermore, hierarchical OPs enable the use of a
fixed reference structure for defining the OPs, an assumption
that is violated by the higher-order Φ. In summary, we
demonstrate the conceptual and technical advantages of the
hierarchical OPs over our nonhierarchical ones for multiscaling
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macromolecular assemblies. Putting the metaphysical question
of the exact “meaning” of an OP aside, even though as shown
above some physical meaning can usually be imparted, we
suggest that the purpose of our OPs is to serve as the basis of a
multiscale formalism designed to facilitate the all-atom
simulations of multimillion atom systems. In the follow-up
paper,37 such an algorithm based on the Langevin evolution of
hierarchical OPs and associated ensemble of atomic structures
is formulated and demonstrated.

■ APPENDIX A

Hierarchical Order Parameter Kinetics
Here, we determine the rate of change of hierarchical OPs via
the Liouville equation. Using eq 10, the rate of change of Ψ⇀−K is
given by
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Equation A1 and the Liouville equation yields
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We proceed via analysis of the three terms appearing on the
RHS of eq A2. The first term includes
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With eq A3, the definition of subsystem CM ⇀R
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where eα̂ is the unit vector along the α Cartesian direction.
The second term includes
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Furthermore,
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With eq A6, ⇀R
S
= ∑j=1

nS mj
S⇀r j
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Putting eq A7 into eq A5 yields
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Finally, the third term includes
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Using eq A7 in eq A9 yields
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Putting eqs A4, A8, and A10 into eq A2,

∑ ∑

∑

∑

μ

μ

∂Ψ⇀

∂
=

̃
⇀ + ⇀ ·

∂

∂⇀
⇀

− Ψ⇀ ⇀ ·
∂

∂⇀

=
̃

⇀ + ⇀ ·
∂

∂⇀
−

Ψ⇀ ·
∂

∂⇀

−

−
−

−

− −
−

−
−

−
−

−
−

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎫
⎬⎪
⎭⎪

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎫
⎬⎪
⎭⎪

t
U P R

U

R
P

U P
U

R

P U R
U

R
U

U

R

1

2

1
2

K

K S
K
S S

S

S K
S

S
S

K
S

K
S S K

S

S

K S

S
K
S S K

S

S K
S

K
K
S

S
(A11)

Thus, eq 11 is obtained.
Defining Ψ⇀−K via eq 9 instead of eq 10 modifies eq A11 to

∑
μ

φ
φ

φ

∂Ψ⇀

∂
=

̃
Π⇀ + ⇀ ·

∂

∂⇀

− Ψ⇀ ·
∂

∂⇀

−

− −
− −− −

−−

−

−− −
−−

−

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎫
⎬⎪
⎭⎪

t
U

U

U
U

1

2

K

K k S
k
S

K k
S

k
S K k

S

k
S

K k
S K

K k
S

k
S

,

(A12)

where Π⇀−k
S
= ∑j=1

nS ⇀
−

U pkj
S

j
S.
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Repeating steps similar to A1 through A11 for Φ⇀−k yields
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■ APPENDIX B

All-Atom Reconstruction from Hierarchical Order
Parameters

Consider an extended set φex
S of subsystem-centered variables

that include the φ⇀
−k
S for k in the list of OPs that compose Ψ (via

eq 9 or 10), plus additional variables φ⇀
−k
S

res for kres not in the

list of OP indices. Thus, we write the position of atom j in
subsystem S as

∑ ∑φ φ⇀ = ⇀ + ⇀

−
− −

−
− −

r U Uj
S

k
k
S

kj
S

kres
k
S

kj
SOP res

res ,res
(B1)

where Ukj,res
S = Ukres(⇀r j

S ,0). This equation maps φex
S onto the

all-atom configuration variables rS. The mapping is 1:1 when

the total number of φ⇀
−k
S

and φ⇀
−k
S

res equals the number of

atoms nS in the subsystem S. An expression for the residuals σ⇀ j
S

in terms of the φ⇀
−k
S
is obtained by comparing eq 5 and eq B1,

i.e., σ⇀ j
S
= ∑ φ⇀̲ − −

Uk k
S

kj
S

res
res

res ,resS. With this, eq B1 provides a

way to generate an ensemble of atomic configurations

consistent with a given value of φ⇀
−k
S
(and hence Ψ⇀Κ− ). For a

set of fixed Ψ⇀Κ− , these configurations are achieved by

accounting for the residuals σ⇀ j
S
via randomly varying φ⇀

−k
S

res.

However, this procedure typically leads to many very high
energy, low Boltzmann probability configurations. The practical

difficulty is readily avoided as long as σ⇀ j
S

is chosen by

constraining the magnitude of φ⇀
−k
S

res to small values for higher

kres.32,33 This procedure provides major structural variations by
moving atoms in the ensemble with a measure of coherence,
avoiding near atom overlap, and is simultaneously performed
for all of the subsystems. Thus, rich ensembles at fixed Ψ and
with modest energies (and hence Boltzmann relevance) are
generated. In practice, short MD runs are performed starting

with configurations from the φ⇀
−k
S

res-generated ensemble to

enrich fluctuations about the constant set of OPs Ψ. This is
self-consistent when the MD runs are much shorter than the
characteristic time of OP evolution. This procedure for
generating ensembles is henceforth termed hybrid sampling.33

■ APPENDIX C
λ Computation
Fluctuations λ in OPs are computed via

λ =
∑ − ⟨ ⟩

≡ Ψ Φ
=

−

− α −αf t
f t f N

f t
f( , )

[ ( ) ] /

( )
; ,i

i
N

i f

i
K k

0
1 2

max

f

(C1)

where ti is the ith Langevin timestep, Nf is the total number of
time frames used for the moving averages, ⟨f⟩ is the moving
average (over 50 frames), and fmax is the maximum absolute
value of the OP within the range of OPs sampled for the
moving average calculation. Fluctuations are defined about a
moving absolute maxima rather than a moving average to avoid
singularities from zero moving averages. The normalization
makes λ dimensionless. Thus, λ can be compared between
different hierarchical and nonhierarchical OPs.
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