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ABSTRACT 
The force of crystallization is of renewed interest as a diagenetic 

replacement mechanism. We present a quantitative reaction-transport 
model for mineral replacement driven by the pressure exerted by 
crystal growth, based on continuum equations accounting for conser-
vation of mass and momentum. A condition of volume-for-volume 
replacement during growth and dissolution is shown to arise naturally 
from the interaction of mechanical and reactive deformation. When 
applied to the postnucleation growth of quartz in a calcite plus amor-
phous silica host, a centimetre-scale concretion-like feature is shown 
from our simulations to arise within roughly 17 ka. 

INTRODUCTION 
A "force of crystallization" is thought to be responsible for phenom-

ena occurring at conditions ranging from surface temperatures and 
pressures to those characteristic of metamorphic depths. Maliva and Siever 
(1987,1988) have cited the force of crystallization as a means for constant 
volume replacement of calcite by quartz. Buczynski and Chafetz (1987) 
showed that growth of calcite grains can produce fracturing of quartz 
grains. Herein we follow up on our previous work (Dewers and Ortoleva, 
1989a, 1989b), in which we introduced a reaction-transport model de-
scribing the dynamics of the processes of pressure solution and pressure of 
crystallization. Our aim is to make further connections between the theory 
and field observations with emphasis on the growth of siliceous concre-
tions from a radiolarian- or sponge-spicule-bearing limestone. 

INTERPLAY BETWEEN MECHANICAL AND 
REACTIVE DEFORMATION 

The details of the mechanism of pressure of crystallization have not 
been clearly defined. Weyl (1959) presented a phenomenological model 
based on a linear dependence of solubility on stress. Rates of grain growth 
are in his model proportional to diffusional rates within a thin fluid film. 
Mineral growth against normal stress was shown to occur given a sufficient 
degree of supersaturation in the surrounding pore fluid. Other workers 
have also related the magnitude of pressure during mineral growth to 
levels of supersaturation in pore fluid but, to date, have been restricted to 
equilibrium thermodynamics (Maliva and Siever, 1988; Ostapenko and 
Yaroshenko, 1975). A result of this type, which follows from the pressure 
dependence of Gibbs free energy (neglecting strain energy), is (Maliva and 
Siever, 1988) 

fì = exp 
A V(P-P) 

R T 

between the molar volume of solid and solutes, P is normal (nonhydro-
static) stress applied across grain boundaries, R is the gas constant, and T is 
temperature. This relation gives the P at equilibrium that would result from 
a departure of H from unity. For fi values > 1 ,P> p. Use of equation 1 is 
restricted in that it is valid only under conditions of equilibrium; as such, P 
found from this equation must represent some limiting value of normal 
stress. 

Our model consists of coupled partial differential equations of grain 
growth and dissolution, solute transport, and rock deformation flow due to 
both dissolution and precipitation and linear viscous creep. We have 
shown (Dewers and Ortoleva, 1989a) that the interplay between the rates 
of mineral and fluid reactions, bulk-rock viscosity, and total (macroscopic) 
effective stress in a low-porosity rock controls the domain of influence of a 
force-of-crystallization-mediated constant-volume replacement mecha-
nism. This is shown from a Navier-Stokes equation accounting for the 
distribution of pressure, which, in the case of no imposed rate of strain, 
isotropic reaction, and Newtonian flow becomes (Dewers and Ortoleva, 
1989a) 

2 VPm = rjV2«* + j77V(V-«*), 

where 

_ _ M 
y-« = 2 nfiy. 

(2) 

(3) 

(1) 

where fl is the level of supersaturation of pore fluid above that in equilib-
rium with the solid at hydrostatic fluid pressure p, A V is the difference 

Equation 2 is derived by combining a linear viscous constitutive law for 
stress and strain rate, a force balance condition, and the relation between 
strain rate and rock deformation velocity; is the number of grains of 
mineral i per unit volume, u*is the rock flow velocity, rj is the bulk-rock 
viscosity (assumed constant), Pm is the pressure applied to and within a 
supra-grain-size rock volume element, G\ is the rate of grain volume 
change due to reaction, and M is the total number of minerals in the 
system. The usual incompressibility condition of viscous rock flow (i.e., the 
divergence of the velocity is zero) has been replaced by equation 3 be-
cause rock may locally "compress" or "dilate" due to dissolution and 
growth of mineral grains. 

The relative order of magnitude of the terms in equation 2 determines 
which of two limiting types of behavior best characterizes the system dy-
namics. For example, if the rock is not very viscous, the right-hand side of 
equation 2 is negligible compared to the left-hand side, implying constancy 
in pressure—the Reuss (1929) limit—on the time scale of reaction. Here, 
crystal growth would result in displacement of its surroundings. If the bulk 
viscosity is larger than a critical magnitude, the "stiffness" of the rock 
(relative to the time scale for reaction) implies a volume constraint condi-
tion wherein growth of one mineral is restrained to regions of dissolution 
of another. It is this limit in which we are interested. 
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Rates of grain/fluid reactions can be written 

where kl is the rate coefficient of the forward (dissolution) reaction and S, 
is the surface area of i grains, or the area of active dissolution or growth 
sites on the grain/solution interface. The form of k\ and ft; for water-film 
diffusion-limited reaction rates is givn in Appendix 1. In the case of rela-
tively small pressures, fast reaction rates, and/or high bulk-rock viscosities, 
the terms on the right-hand side of equation 2 will dominate. Specifically, 
this can be expressed in terms of a parameter, f, where 

f = 3 [1 - n } / 2 P m . (5) 

Here typical or average values are indicated with bars, P m being a typical 
Iithostatic pressure. If f » 1, the latter term in equation 2 will dominate, 
and thus the distribution of mean stress is controlled by grain growth and 
dissolution. We showed (Dewers and Ortoleva, 1989a) that in the limit of 
f — => for a closed system, 

i n f i y = 0 , (6) 

which, in the case of a calcite-quartz rock, becomes 

n q A : q 5 q { l - n q } = - « c A : c S c { l - n c } . (7) 

Thus, quartz growth must in this limit be accompanied by calcite dissolu-
tion. The crossover condition f = 1 gives a relation that may describe the 
transition between volume-for-volume replacement and "Reuss" behavior. 
For rocks closer to equilibrium, we find that the force of crystallization 
becomes less influential with greater depth. In situations where f << 1, 
crystal growth would proceed by pushing away (not dissolving) the sur-
rounding matrix of grains. This would be the case for a concretion growing 
in relatively unconsolidated sediment. Both constant-volume replacement 
and matrix displacement are features associated with concretions and other 
sedimentary segregations (Pettijohn, 1975); the crossover criteria (equa-
tion 5) shows that the occurrence of either behavior will depend on 
rheological and geochemical parameters. 

Equation 7 shows an important relation following from pressure of 
crystallization effects—that of constant volume replacement. It implies, 
e.g., if quartz is favored to grow (ftq > 1), then calcite must dissolve 
because the pressure would adjust to a value dictated by reaction rates of 
both quartz growth and calcite dissolution. In this way, equation 7 serves 
to fix the pressure of crystallization. As rock flow due to grain-fluid reac-
tions is negligible in large 17 systems, nq and nc are constant if nucleation of 
new grains is ignored. If we assume they are equal, and assume further for 
simplicity that the S values are constant and equal, we arrive at the relation 

= (8) 
kc Kc 

This implies that given a saturation level for calcite, ilc, the system will 
adjust by changing the saturation level of quartz, fiq, so that equation 8 is 
satisfied. Figure 1 is a schematic plot of fiq vs. fic as in equation 8. This is 
a generalization of the result given in equation 1; it accounts for the 
important role of kinetics (i.e., nonequilibrium) effects inherent to changes 
induced by pressure of crystallization. The heavy line in Figure 1 is the line 
satisfied by the volume constraint condition (equation 8). The dashed lines 
represent hypothetical saturation lines for quartz and calcite. For a given 
calcite supersaturation i)^ in Figure 1, the level of undersaturation result-
ing between pore fluid and quartz may be determined by following the 
vertical line from the point designated fié U P t 0 the volume constraint line, 

Figure 1. Pressure-of-crystallization "phase diagram" for calcite (c) -
quartz (q) rock. Volume constancy implies univariant condition in space 
of saturation levels (or ratio of activity product to equilibrium constant). 
Imposed oversaturation of pore fluid with respect to quartz (il^) would 
result in undersaturation with respect to calcite (fié'), magnitude of 
which is determined by ftp and ratio of rate coefficients k. Similarly, 
oversaturation with respect to calcite (flj) would produce undersatura-
tion with respect to quartz (ilq). 

then horizontally to the intersection of the vertical axis at fiq. As the line 
representing equation 8 passes through the intersection of the quartz and 
calcite saturation lines, any supersaturation of fluid with respect to calcite 
imposed on the system would induce an undersaturation with respect to 
quartz, the magnitude of which depends on the reaction kinetics of both 
minerals and the level of imposed supersaturation. The converse relation, 
of course, will also hold: an undersaturation in the pore fluid with respect 
to calcite, fi£', will result from a supersaturation in the pore fluid with 
respect to quartz, fiq. 

NUMERICAL SIMULATIONS OF CONCRETION GROWTH 
To explore more thoroughly the replacement dynamics implied by 

the pressure of crystallization, we present results on the silicification of 
limestones via the growth of quartz nuclei in a medium initially saturated 
with respect to amorphous silica. The latter represents sponge spicules or 
radiolarians as per Maliva and Siever (1988). The spatial distribution of 
siliceous concretions is commonly linked to localities originally rich in 
such high free-energy silica sources (Coniglio, 1987). We limit our consid-
erations to the time following the localized nucleation of quartz. No rock 
flow is imposed at the boundary of the simulation domain. Solute trans-
port is assumed to be solely diffusional. In addition to the Navier-Stokes 
equation (equation 2), which arose from conservation of momentum con-
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siderations, we require the equations accounting for conservation of mass. 
Letting Z,j represent the radius of a typical i grain and c'a the aqueous 
concentration of a in mol/pore volume, conservation of mass yields (see 
Dewers and Ortoleva, 1989a, for details) 

M 
V • W > D a V c a } + 2 va{ p i« i4r f ,?Gi = 0 , (10) 

where G, is the radial growth rate for mineral i, </> is porosity, and D„ is 
the diffusion coefficient for pore-fluid solute a. For the quartz, calcite, and 
amorphous silica system (M = 3), the reaction network is taken to be 

quartz ** Si02 

amorphous silica ** Si02 (11) 
calcite « Ca2+ + C O ^ . 

We have solved the conservation equations for each mineral and 
solute species simultaneously by a finite backward difference method. The 
spatial distribution of pressure Pm was calculated algebraically at the 
beginning of each time step by applying equation 6 to the three-mineral 

system. If we assume equilibrium between the concentrations of Ca2+, 
C O | ' (which, for a closed system, is related to Cca

2* via carbonate equilib-
ria) and calcite and between SiC>2 and amorphous silica, we regain from 
equation 6 an expression similar to equation 1 that applies to quartz, for 
the form of k and fi in Appendix 1. 

A typical simulation is shown in Figure 2 for a spherically symmetric 
system, r being the radial coordinate. We consider a situation wherein 
quartz has nucleated in the vicinity of the origin; we follow the postnuclea-
tion genesis of a siliceous "concretion" that grows there. A localized region 
of calcite dissolution accompanying quartz growth is seen to evolve after 
16.7 ka. An abrupt transition develops that separates the domain of quartz 
growth and calcite dissolution from that of calcite growth and dissolution 
of amorphous silica, marked by a discontinuity in the reaction-mediated 
pressure. The region of calcite growth may be likened to a calcification 
front (so denoted by Maliva and Siever, 1987) that arises adjacent to zones 
of silicification, or in this case, a concretion. The cgio2 profile, initially at 
equilibrium with amorphous silica, follows closely the volume fraction 
profile of the amorphous silica. The cca2+ profile shows that calcite activity 
is highest in the region of quartz growth. The resulting concentration 
gradients drive, via down-gradient diffusional transport, the differentiation 
between quartz and calcite, influencing as well the distribution of pressure. 
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Figure 2. Simulation showing evolution of domain of quartz growth in initially homogeneous rock of calcite plus amorphous silica; t0 = 0.0 ka, t1 = 
8.3 ka, and t2 = 16.7 ka. a, b, c: Volume % of quartz, calcite, and amorphous silica, d: Pressure normalized by applied (lithostatic) pressure, P"1. e: 
Concentration of Si02 normalized by concentration of Si02 in equilibrium with quartz at Pm. f: Concentration of Ca2+ normalized by concentration 
of Ca2+ in equilibrium with calcite at P"1 under closed-system conditions with pH of 7. 
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The apparent discontinuity in pressure seen in Figure 2d is a conse-
quence of the large viscosity assumed for the rock. As the viscosity de-
creases, such a quasi-discontinuity becomes smoothed out. The results 
show that in stiff rocks, large pressure gradients exist in the vicinity of the 
concretion/host interface, making this region very active chemically. 

The maximum pressure increase at the end of the simulation run is 
about 33 MPa above the background value of 50 MPa. The limiting stress 
increase predicted by equation 1 is, from data given in Appendix 1, about 
280 MPa, or about a factor of three larger than that obtained from our 
simulation. This demonstrates the importance of considering the nonequi-
librium aspects of the replacement problem, because the stress estimates 
obtained from the equilibrium result (equation 1; see also Fig. 2 of Maliva 
and Siever, 1988) represent an upper bound. The stress in our simulation 
was relieved by calcite dissolution; equilibrium between quartz and pore 
fluid was not closely approached, and so the stress did not build to a level 
predicted by the equilibrium condition given in equation 1. By performing 
other simulations, we have found the maximum stress obtained for a given 
amount of concretion growth to be inversely proportional to the concen-
tration of Ca2+, which may vary over orders of magnitude depending on, 
e.g., the partial pressure of carbon dioxide in the pore fluid. 

CONCLUSIONS 
The simulation of spherical concretion growth presented herein 

demonstrates that siliceous segregations growing from a high free-energy 
silica source in a limestone whose mechanical response is sufficiently rigid 
may proceed over geologic time by local dissolution of that limestone 
through a pressure-of-crystallization mechanism. The effects of more so-
phisticated accounts of solution chemistry, lithology, multiphase rock 
rheology, and crystal growth kinetics on model predictions remain for 
future investigation. 

APPENDIX 1. DATA AND REACTION RATE LAWS USED 
IN SIMULATION OF FIGURE 2 

Equilibrium constants, molar volumes, and other data 
K m = 4.162E-3 (Fournier and Marshall, 1983) 
K<p = 4.354E-4 (Fournier and Potter, 1982). 

From Plummer and Busenberg (1982): 
K a = 1.356E-9; K[ = 4.916E-7; K2 = 7.447E-11. 

From Robie et al. (1979): (solid molar densities) 
Para = 0.0366 mol/cm3; pqz = 0.0441 mol/cm3; pam = 0.0271 mol/cm3 

T = 343.15 K (temperature) 
P m = p = 50 MPa (lithostatic and fluid pressures) 
Dc = 2.0E-10 cm2A (grain boundary diffusion coefficient) 
D = 1.0E-5 cm2/s (pore fluid diffusion coefficient) 
A = 1.0E-7 cm (fluid film width; Weyl, 1959) 
<t> = 1.0E-3 (porosity) 

F s i 0 2 = 11.00 mol/cm3; K c o i- = -7.65 mol/cm3 (solute molar volumes). 

Relations for reaction rate laws 
From Dewers and Ortoleva (1989b) (for use in equation 4): 

ki = 32 D a Ac aJL\ Pi (rate coefficients, i = calcite, amorphous silica and 
quartz) 

flj = cn/c M (saturations; a = Ca2+ for calcite, Si02 for amorphous silica and 
quartz) 

=exp \t- & m; *rep™ 
ß^a 

for calcite and vp, = 0 for quartz and amorphous silica. 
Pmax -p = 3 (Pm - p) (Pm is average normal stress across contact, P^ is stress 

at contact center, and p is fluid pressure). 
For closed system with constant pH (total calcium equals total carbonate): 

f 10"pH (10-P«)21-1 
' c o - c ^ l l * — . 
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