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We consider the growth of a spherical crystal in a supersaturated solution. In the
first part, existence and uniqueness results for radially symmetric growth are
obtained, provided that the supersaturation is not too large; conversely, when the
far-field supersaturation exceeds a critical value, it is shown that the radially
symmetric solution ceases to exist in finite time. In the second part, we examine
the linear stablhty of a radially symmetric similarity solution (in which the radius
grows as t}) to shape perturbauons The results are compared with previous
quasi-static analyses, and, in particular, the critical radius at which the crystal
becomes unstable is found to be larger for small supersaturations, but smaller for
large supersaturations, than those predicted by the quasi-static analysis.

1. Introduction

IN THIS paper, we study the growth of an amorphous solid from a diffusing growth
material which surrounds it (for example, a precipitate particle growing from a
supersaturated solute). Our mathematical model is similar to the classic Mullins—
Sekerka model [1,2] (cf., in addition, the excellent review article of Langer [3]
and the references therein), but does not impose the quasi-steady-state assump-
tion whereby the diffusion equation is replaced by Laplace’s equation. Specifi-
cally, if ¢ is the concentration of the solute and the solid—solute interface is
S(x, t) =0, then the problem is to find these two quantities subject to

¢,=DAc in {S(x, ) >0}, (1.1a)
c=cCeq[l+ yx(S)] on {S(x, ) =0}, (1.1b)
D % =(p—-c)V, on{S(x,¢t)=0}, (1.1c)
C—Co as x|, (1.1d)
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c(x, 0) =co(x) in {S(x, 0) = S(x) >0}, (1.1e)

for given initial functions co(x) and So(x). Here, p is the density of the solid, c., is
the equilibrium concentration on a planar interface, c., is the ambient concentra-
tion far from the solid, and n is the normal to S(x, ¢) = 0. The function x(S) is the
mean curvature of the surface §=0, and y=0 is a measure of the interfacial
energy. That is, the equilibrium concentration on $=0 is given by the
Gibbs—Thompson relation. Lastly, we shall take D =1 by rescaling distance with &
a typical length L and time with L?/D.

Problem (1.1) is a generalization of the classical one-phase Stefan problem
[4-7] in that it includes the nonlinear function x(S) in (1.1b) and that p —c in
(1.1c) is not constant (which would result from assuming p>>c). The most
important difference, however, is that we will study growing solutions of problem
(1.1) rather than the shrinking ones associated with melting problems. This is the
basis for the instabilities which we will later analyse. In Section 2, we shall study
spherically symmetric versions of problem (1.1) along the same lines as previous
treatments of the planar version [8,9]. In particular, we shall examine the
existence and uniqueness questions of global (in time) solutions. If the ratio
(Coo — Ceq)(P — Ceq) ™" (a measure of the supersaturation) is positive (corresponding
to growing solutions) and sufficiently small, we prove an existence and uniqueness
result and establish /¢ growth bounds on the radius of the expanding solid. An
explicit similarity solution (in the variable r/2/t, where r = |x|) is given Wthh has
the same growth bounds and is unique for each O<(cm—c,q)(p—ccq) <1.
Section 2 is concluded by showing that these restrictions on the size of s
(ca — Ceg)(p —ccq) ! were not merely an inadequacy of the methods. We show S S
that if the ratio is larger than one, then the solution for growing spheres will blow CE
up in finite time.

In Section 3 we study the shape stability of spherical solutions to small
harmonic perturbations. We postulate that the r/2/t similarity solution &
is marginally stable among all spherical solutions with a given value of %
(€= Ceq)(P — Ceq)™". (A similar result was proved in the planar case [7].) As § 8
expected from phy51cal principles, and demonstrated by Mullins and Sekerka%
(1,2] in the quasi-steady-state diffusion model, we show that all spherlcal CE
harmonics (Y,,,-modes, for / = 2) are always linearly unstable if surface tension is ©
not included (i.e. y=0). Further, the quasi-steady-state diffusion growth rate S
t¢-Y of the perturbations is obtained in the present case. In the quasi-steady- ~
state model, the inclusion of surface tension (i.e. y >0) reduces this growth rate,
and indeed stabilizes the spherical growth while the radius is sufficiently small,
although all perturbations eventually grow again when the radius is sufficiently
large. The radius at which any Y,,,-mode stops decaying and starts growing is
termed the critical radius for that mode; it increases with /.

In the full diffusion model, we have more freedom in that we must prescribe
co(x) (equation (1.1e)) as well as Sp(x). We find a class of similarity solutions to
the linearly perturbed problem which have ‘sensible’ initial data and which are
comparable to those used by Mullins & Sekerka in the quasi-steady-state limit.
These solutions also have a critical radius for each Y,,,-mode, which is found to be
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smaller than the corresponding quasi-steady-state value, for all /, when the crystal
is growing very fast (c. is nearly equal to p) and, for a slowly growing crystal,
when /=2 (the most unstable mode); conversely, the present critical radius is
larger than the Mullins—Sekerka radius for the slowly growing crystal for all / > 2.

2. Spherical solutions: existence and uniqueness

With S(x, t) =r — R(¢), the spherical version of equations (1.1) with D =1 is
¢ =rr%,), (r>R()), (2.1a)
c=ceqg[1+2y/R(t)] (r=R(t)), (2.1b)
¢, =(p — )R(r) (r=R(®), (2.1¢)
c—Co (r—ox), (2.1d)

co(r, 0) = co(r) (r=R(0)=Ry). (2.1e)

We begin by noting that a similarity solution in the variable & =r/2,/t can be
computed explicitly, using standard methods [4: p. 23; 10: pp. 50-51; 11, 12].
Indeed, denoting this special solution with an overbar,

R()=pd, (2.2)
&(r, 1) = ALo(&) + BEo(&) + 174 CE_,(8) + DE_(B)), (23)
where £, and £, are linearly independent solutions of
"+ 257+ 8E)8 —2pL =0.
One finds [10: pp. 50-51] that it is convenient to write

co(s)=s-‘f: effords,  C(E)=Eerfc, (2.42.b)
EE) = Co(=8),  E(B)=E(-E), 24c,d)

so that the constants A, B, C, D, B can be computed explicitly from the interface
and asymptotic conditions (2.1b-d). Since the explicit form of &(r, ¢) is never
required in what follows, we only write down the equation which determines B:

2 @
= _ 2/4 —2 = Co — Cc
£8):= (1~ [ e?ar) ==t @2.5)

Thus B depends on the single parameter

@ = (Co— Ceq)/(P — Ceq); (2.6)

in a metallurgical context, & would be the dimensionless undercooling [1], while,
for crystal growth, a represents the supersaturation.

The function f defined in (2.5) is monotonically increasing on [0, «], with
f(0)=0 and f(«) =1 (this can be zproved using the continued fraction expansion
[13: 7.1.14, p.298] for e’[7e " dt). Thus, for positive values of the ratio
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(€= €eq)(P — Cog)™!, we obtain a solution, growing like Btl, with B the unique
solution of (2.5), provided that

0<a<l. Q2.7

While (as we mentioned) the precise form of c¢(r,¢) is not required, it is
interesting to note that it arises from the physically most simple initial condition

¢(r, 0)=c.+const - c.qy/r;

i.e., when y =0, c is initially constant and equal to the ambient concentration.*

Having observed that the above special solution restricts the size of a, it is not
surprising that similar, more restrictive conditions will be necessary to prove
existence for all time of solutions to problem (2.1) for arbitrary data cy(r) and
R(0) = R,.

The method to be used is an extension of the integral equation technique used
by Rubinstein (4] and later by Friedman [14-16]. Indeed, since the problem
defined by equations (2.1) has so many features in common with the two
problems studied in [15, 16], and, since the proof of existence and uniqueness
here is a straightforward combination of the proofs there, we shall omit all the
details and content ourselves with an outline of the proof. The result is contained
in the following theorem.

THEOREM 2.1 Let c(r, t) satisfy equations (2.1) with the additional assumptions

(8) cu>ceg(1+2Y/Ry); (B) p>ceq(1+2y/Ro);

(c) c(r, 0) = co(r) must be such that r*{c.. — co(r)] € L'(Ro, ©) N L™(R,, ©) and
Ceq(1+ 2Y/Rg) = co(Ro) S co(r) <o

(d) a=0

Then there is a number a,> 0 such that the solution to equations (2.1) exists for all

t provided that 0 < o < ay. Moreover, there exists a positive constant A such that,
for sufficiently large t, [2a/(1 - &) }[t} + o(t})) < R(r) < Arh.

Outline of proof. We introduce a new variable u(r, t) =rc.—c(r, )]/(co—Ceq)-
Then u satisfies

u=u, (R(t) <r <), (2.8a)
u=R({)-¥ (r=R()), (2.8b)
ou, = a — RR + aj(R -~ 1/R) (r=R(t)), (2.8¢)
with u(r, 0) = uo(r) =0, where uy(r)— 0 as r— , and where
wlR)=Ro=7, 7= k=

The first stage is to reformulate the problem for u(r, t) as an integral equation for

* Sec note added in proof.
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o(¢) = thu, (R(t), t). This is achieved by introducing the kernel

N —(r- &y
K(r, 1§, ’)“2,,%(;- L CXP( 4(t—-1) )

and integrating the relation

d a
3 (Kug — uKg) - p (Ku)=0
over the region {0 <t <t, R(1) <§ <}, to give
u(r, )= f‘{K(r, t; R(7), ©)[u(R(3), T)R(z) + u,(R(2), 7)]
—u(R(7), 1)Ke(r, t; R(7), T)} dr + r K(r, t; E, O)uo(E) dE.  (2.9)
Ro

Letting r — R(t), and after some manipulation (including a correct treatment of
the singularity at ¢ = 1, details of which are given in [14]), we obtain the equation

9(t) = =2(Ro — 7)K(R(¥), t; Ry, 0)

+2 f BK,(R(1); 1; €, 0)uo(E) dE

_zaf BK(R(), £; R(z), r)R()——aY
+2a f 2K (R(), ; R(7), 1) ﬁ‘%ﬂ
—2f:41( (RQ), t; R(z), )v(t) <

dr
R(7)[R(7) — aF]’

where, from (2.8¢c), R(t) = [— bt~} — aF/R(t) + @]/[R(t) — a7]. The right-hand
side of (2.10) can be thought of as a transformation of ¥ denoted by To. Clearly
from (2.9) knowledge of ©#(¢) and R(¢) gives us u(r, 1).

Let C, ,, be the space of functions ¢~ ©(f) that are continuous for 0<t=<o,
with norm ||D]) = Supo«,<o |U(t)| <m. The first stage of the proof establishes
existence for small times by showing that T defined by equation (2.10) maps C, ,,
into itself and is a contraction for some positive m and sufficiently small « and
o >0. This is achieved by proving a series of lemmas (analogous to the results of
[15: §§ 3.1, 3.2] and [16: §3]) which establish bounds on the terms for the r.h.s. of
(2.10), and for R(¢), with the result that there exist ag, 0y, and M such that, if
0<a<ap and 0< 0 < 0y, then |T5|| <||©]|- The operator T is thus a contrac-
tion, and its unique fixed point in C, ,, is the solution of (2.10).

The global existence result now follows by a continuation argument, provided

+2a¥ fo 2K (R(), t; R(7), ©) (2.10)
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that we can show that R(¢) is bounded for ¢ > 0; in order to do this, we must show
that R =0 in the interval of existence.

LEMMA 2.1 Under the conditions of Theorem (2.1), R(t) =0.
Proof. Letting w =c — c.q (1+2y/R,), one finds that
=Aw (r>R()), (2.11a)
w=2yco[1/R(t) — 1/Ry) (r =R()), (2.11b)
W, =[P — Ceq — 2¥Ceq/ R(1)]R (r =R(1)), (2.11¢)
W—> Co — Ceq(1+2Y/Ry) (r— ). (2.11d)
Because cy(r) = co(Ry) (by assumption), we have that
W,(Ro) = (p — Ceq — 2YCeq /R)R(0)>0.

Since p >c4(1+2y/Ry), then p — c.q— 2yCq/Ro >0, giving that R(0) > 0. But
R(t) is continuous so that R(¢) >0 in some interval 0 <t <A. We now show that
this interval can be enlarged by means of an argument which is independent of A.
Thus the procedure can be repeated to fill the interval of existence. Letting
E=r—-R(t) and r =t one obtains

w, = Aw + R(T)w; (E>0) (2.12a)
w = 2yceo[1/R(%) — 1/Ry) (E=0) (2.12b)

=[P = Ceq = 2¥cea/ R(DIR() (E=0) 2.120)
W= € — Ccq[1 + 27/R(7)] (E—>) (2.12d)

The problem has been transformed to one with fixed boundaries, at the expense
of a term R(t)wg in (2.12a) that does not affect the maximum principle. In
particular, since 0= w(0, 0) <w(y, 0), the strong maximum principle implies that
w(0, 1) <w(§, t) for £>0 and 0 <t <A. Thus, w(0, 1) <w(E, 4) for all £>0,
which gives

0< w (0, /1)=[p—c = 2.Y/R(A)IR(A).

But R(A)> R, ensures that [0 — c.q—2¢.qY/R(A)] > (P — Ceq— 2¥Ceq/R0) >0, s0
that R(A)>0 Again, continuity of R allows the enlargement of the interval
where R >0 and the proof is complete.

Boundedness of R is now achieved by integrating the equation ug = u, over
the region {0 <t <t, R(1) < £ <K} (where K > R;) to obtain

t—[R¥(t) - RY(1 - a)/2«
= f uo(E) dE + f (K, T)dT + m - Rmu(g, f)dE. (2.13)

We now use (2.10) to estimate I = [§ ), 4 |u(E, t)| d& where H = Hyt} and H, is a
constant at our disposal. We will then write [X as [R*" + [X., in the last term of
(2.13) and let K— = in order to obtain an inequality showing that R(t) is
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bounded for finite ¢. This procedure is analogous to that of [15: §5] and [16: §6}.
After some manipulation we obtain the result that, as K— o,

I<co+ B8 {R(t) — 7] + cot(1 + 7/Ro) + c3R¥(t)/ a,

where c,, ¢, and c, tend to zero as Hy,— ». Noting also that, by the maximum
principle, |u(&, r)| < max {||uo||, R(r) — 7} and so

R(1)+H
[l 0l dr < Hotbtluol) + R - 91,

R(r)
we finally obtain
|t = 3(a™! = DIR* (1) = REl < co+ tH{c\[R(1) ~ 7] + Hof luoll + R(r) - 71}

7\ _(" dt R*(1)
+c,t 1+—) + 7| ——+c3—,
et R/ ThR@ T
which establishes the boundedness of R(f). The bound R(f) <At (for all
sufficiently large ¢) also follows from this equation by choosing H, sufficiently
large.
Lastly, we show that R*(t)>[2a/(1 - a)][t + 0o(t)] as t—=. Observe that,
since u(r, t) =0 by the maximum principle, then the right-hand side of (2.13) is
less than [%, uo(r) dr. Noting also that

ydt <’ﬁ
o R(T) Ro
(since R(¢) > R,), we obtain from (2.13) (as K — )
2o ¥
Xt -Rzz——lt(l——)—r ] .
R*(r) °F1 4 R, Ro“o(’) dri, (2.14)
and the existence of A, =0 with R(¢) > A, ! for large ¢ follows immediately. This,
in turn, means that
‘ydr s
L R(7) ytiA, +o(1?)

as t— o, and returning to (2.13) we have R*(t) =[2a/(1 - a)][t + o(t)] as t > .
(Note that, for small a, equation (2.5) also gives R*(t) = 8% ~2az.)

We have thus shown that if o is small and positive, the solution for a growing
crystal exists for all time.

The methods outlined here can also be used to treat the case of a shrinking
crystal with p > c.o(1+2y/R,) still but now c.(1+2y/Ro) = co(r) = c.; some
modifications must be made to the final stage, to take account of the possibility
that R(¢)— 0 in finite time, and we shall not pursue this question here. We now
show that for larger positive values of a, specifically, for & >1, the solution
blows up after finite time. Thus the restrictions on « in Theorem 2.1 and
especially in the special solution (2.2,3) are not merely deficiencies of the
methods.
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THEOREM 2.2 With the assumptions of Theorem 2.1 and, in addition, c.> p (i.e.
@ = (Cao— Ceq)(p — Ceq) ™' > 1), the solution of equations (2.1) exists for only a finite
time.

Proof. Integrating (2.8a) over the region {R(t)<§<w»:0<t<t} and using
(2.8b,c) one has

J;uo(E) dE + LR(')u(g, ) dg — fo (1 —%— o« 'RR + wé) dr + L'(R — PR dv=0

which can be reduced to

31— a~Y)[RY(s) — R} = f: uo(E) dE — j; (& 0 dE+ fo (% - 1) dr. (2.15)

Because of the assumed rate of convergence of cy(r) — c., as r— o, the first term
on the right of (2.15) (denoted by A) is finite while the second is negative.
Moreover, R(t) = R,, so that

(AIE
-L(R 1) dr R 1)t
Thus 3(1 — a™)[R*(t) — R%) <A + (¥/R5")t and, because 1 — a~' =0, we have

R(t*<R3+2(1—a V)7 '[A+(7/Ro— 1)) (2.16)

But y/Ry—1<0 by assumption (a) of Theorem 2.1, and hence we have a
contradiction after a finite time ¢*. It follows that the solution cannot exist for
t>t* (indeed it may even blow up for some ¢<t*). A similar result for a
one-dimensional Stefan problem in a finite region and without surface energy was
established by Sherman [17].

3. Linearized stability of spherical solutions

We assume that a global spherical solution with arbitrary data (as discussed in
Theorem 2.1) asymptotically is bounded close to the special solution with the
same value of a. More precisely, if r = R(¢) is the position of the interface of the
solution, there exist constants a,,a, =0 such that, as t— o,

a,<R(t) - Bti<a,,

where f is given by (2.5). The growth estimates proved in Theorem 2.1 suggest
this but do not give the precise values of 8. We do not obtain these more precise
bounds here, as we have done in the planar case [8], but rather assume them to
be true in order to carry out the stability analysis which is more in the mainstream
of our purpose.

With this ansatz in order to study the shape stability of any global spherical
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EXISTENCE AND STABILITY FOR SPHERICAL CRYSTALS 9

solution with arbitrary data, it suffices to study the stability of the limiting special
solution (2.2), (2.3), (2.5) with the same value of a.
In spherical polar coordinates (r, 6, ¢) we write

ce(r, 0, d, 1) =&(r, ) + ec(r, 6, ¢, t) + O(&?), (3.1a)
R.(8, ¢, t) =R(t) + eR(0, ¢, t) + O(£?); (3.1b)

with € small, the linearized (first variational) equations for c(r, 6, ¢, 1),
R(6, ¢, 1) are

= Ac (r>R(), (3.2a)

c= = (o - cca= 2 )RR + ccqrry r=R@),  (3.2b)

Rzz—,z + [ (1 + —%)]R - ceqyﬁxl (r=R()),
(3.29)

in which 2/R + ek, + O(£?) is the curvature of the surface r = R,(0, ¢, t); also
c=>0 (rox) (3.2d)
o, 8, ¢, 1) =co(r, 6, 9)  (r>R(t)) (3.2¢)

where the initial data cy(r, 6, ¢) and R(6, ¢, t;) = Ro(0, ¢) are given.
We now seek solutions to these linear equations of the form

c(r, 8, ¢, 1) =c(r, 1)Y,;.(06, ¢) (3.3a)
R(er ¢) t) = 6l(t)Ylm(9r ¢) (33b)

where, as usual, the amplitudes do not depend on m, and equations (3.2) become

dc; 8%, 23c I(I+1)c
e P B }
ot 8r2+r8r r? (r> pe),

(3.4a)

¢ = ( - %q pr i+ cﬁ}—*L;Y @+2(-1+ Bz]t'l)él(t) (r=PBt), (3.4b)

%‘;i’ - [-”“2—6“* (% + 2)r1 —%Z B+ (I +2)(I—1)+ 2]t-i]<s,(t)

HGRIPEESTI0 (=fd) (4

along with the asymptotic and initial conditions.

At this stage we could follow Wey et al. [18] and consider the local stability
analysis of (3.4) in which all the coefficients are frozen temporally; by considering
initial data c(r, 6, ¢, to) = Ar~“*VY,,(8, ¢) related to the corresponding quasi-
steady-state analysis, results similar to those of Mullins & Sekerka [1,2] can be
obtained. Instead we present a class of similarity solutions to the linearized
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solutions to the problem (3.4) which, being intrinsically diffusive in nature,
cannot necessarily be expected to reduce precisely to the Mullins & Sekerka
results (which can be obtained by first letting D —  in (1.1)). This reflects the
fact that initial data for ¢ must be specified for our parabolic problem, whereas
such data are implicit in the elliptic quasi-steady-state case once the perturbed
free boundary is prescribed. We thereby seek to generalize the results of Mullins
& Sekerka to the case when diffusive effects are included; our initial data has
been chosen so that diffusive length scales are necessarily important.
We begin by noticing that equation (3.4a) has solutions of the form

alr, £) = °7%, ,(r/2tY) (3.5)
where {, (&) satisfies
(1+1)
EZ
The linearly independent solutions of (3.6) can be expressed in terms of
Whittaker functions [19: §16.12, p. 339]:

Gp(E) = e 3FETIW_y 34 y(8D), (3.7a)
Co(8) =e 1¥ETIW_y, 5 1a(-8), (3.7b)

but it is sufficient for our purposes to note that the first has an integral
representation

e+ 2(E + E)E - [2p+ ]g:o. ' (3.6)

L (E) = e FE-C+ r AP+ (] 4 E-2)i0-p=De=t 4y, (3.8)
A _

which follows from that in reference [19: p. 340]. For p </ -2, it is clear from
(3.8) that

Cp(E)~O(E~ D) as E—0, (3.9a)
Lp(E)~O(e ¥E~C*Y) as E—o, (3.9b)

and from the asymptotic behaviour of the Whittaker functions [19: §§16.3-16.4,
pp. 342-3] that

Ep(E)~O(E) asE—w. (3.10)

Motivated by the special solution (2.2)—(2.3) to the spherical equation, we first
look for solutions of the form

8,(t) = dt®+17?2 (3.11a)
c(r, £) = P AL, (r/26}) + BE, ,(r/2th)]
+ 1OV CL, ,_\(r/2t}) + DT, (r/2eY)]. (3.11b)

The interface conditions (3.4b,c) then impose the following conditions on the
coefficients A, B, C, D:

AL, + B, = —3(p - co)Pd, (3.12a)
Al + BE,=3(p —c.o)[B* + 2(p +3)14, (3.12b)
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Ct,p_y+DE s = if%” B2+ (1 + 2)( - D}d, (3.12¢)

Ctipr+DEfp = - Cﬂf}’—” B+ (+2)(-1)+2p+2))d, (3.12d)

where §;, =0, ,(B/2) etc. Clearly, when y =0 one has C=D =0. In order to
obtain the (presumably maximum) Mullins—Sekerka expansion rate for solutions
without surface tension, /=2, we must take p =/ —2 in (3.11a). But from (3.8)
we find that

T -2(E) = const - e FE~¢+D (3.13)

which implies in (3.12a,b) that B = 0. In summary, we have shown the following
result.

Prorosimion 3.1 For y=0 (no surface energy) there are solutions of the
linearized equations (3.4) of the form

5,(t) = dt'=172, (3.14a) ;
c(r, 1) = AtU7P2L, _o(r/2th) (3.14b)
where A = A(B, d) and §,,_, is given by (3.13).

It was fortuitous that B =0, because, setting p =/—2, £, (&)~ O(§Y"?)
as £— oo, which is never of finite mass (that is, [ £°C, ,—,(§) d&€ = ), and hence
would have to be excluded on physical grounds. On the other hand, when y #0,
then also D #0, because

G- , _ 28 482+ (1+2)(-1)+2
CI,I—B(E) 452 + (1 + 2)(1 - 1) ’

which is straightforward to verify. Thus, to see how the solution (3.14) is modified
by the inclusion of surface tension, we are forced to look for solutions of the form

clr, £) =124, _o(r/2eh) + 14240, 5(r/2eY)

+ 1AL, (/2 + -

+ A5G i (r/288) + BE, _y(r/2tY)], (3.15a)
where the sum ends with ﬁ,__.,(r/Zti), because it is the first tilded solution which
has finite mass. To balance (3.15a) in the interface condition, we must choose

S(1) =dot"" M +d "D .. 4 d 7 (3.15b)

and we find the following recursion formula for the coefficients of §,(¢) (those
in ¢(r,t) can also be found, but are unnecessary for what follows). For
i=1,...,1+1,

2y BBZ+P+31=20)8, 2+ [B2+ (= 1) +2)]E1 15
B (p = ceq) B2+ 20+ 1= ))& 1—a-i+ BEli—a-i

d[ d, 1.

(3.16)

In summary, we have the following result.
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ProposiTioN 3.2 For y#0, there exists a solution of equations (3.4) of the form
(3.15), where the coefficients in the amplitude 6,(t) of the perturbation are given by
(3.16).

The coefficients d, are too complicated to compute explicitly for all 8. Instead,
we examine them in the limits §— 0 and B — . In the former, using (3.9a), we

find that I+ 2)( +1)({ —1)\'d
d,=(2 Ceay (4 2+ 1) = ))—," (i=1,...1+1). (3.17)
P—Ceq B i
Thus, if K is the quantity in large parentheses in (3.17) we have
(-3 22
&)= do(t("m + K92 4 K2 5 +-.. 4 KM ITI> . (3.18)

If the amplitude in (3.18) with y#0 is initially the same as that with y =0 (i.e.
3.11a), then, at subsequent times, &, ,xo(t) <&, ,=0(t); i.c. the surface energy
slows down the growth rate, as one expects on physical grounds. The question
then arises, whether this solution with y #0 predicts a critical radius and, if so,
how it compares with that from the quasi-steady-state model. Letting 7 = K 14,
(3.18) can be written as

oot
I+1

Because dr/dr =0, the sign of the derivative of §; is the same as that of D;(r),
where

t(l—3)/2 1-2
6[ = doK;_l<f(’-1)a + T(I_z)fz + ) .

D/(r) = (r"“) S S L + r_z) : (3.19)
I-1 I I+1
Clearly, > -
Dj(1)= ((1 gD g 2T ) ,
I I+1
-3 -4
Dj(zx) = ((1— DI-2)" V4. +271 +f:_ 1),

which shows that D; is a monotonically increasing function on (0, ©), going from
—® to +, Thus the Y,,-mode is stable for 0 < t < 7;, where 1, denotes the zero
of D', or (equivalently) for
ﬁz(p - Ceq)
2y +2)(I+1)(I-1)

For —0, one has from (2.5) that B2 ~2(c. — Ccg)(P — ceq) ™', so that the critical

R() <71, (3.20)

radius is
R.=1 (+2)(1 + 1) — 1)cgy (3.21)
Cwo — Ceq
=ig(l+2)(l + ) - 1)R*, (3.22)

where, in Mullins & Sekerka’s notation, R* =2¢.¥(Cw —Ccq)”' is the so-called
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critical nucleation radius. Thus the behaviour is qualitatively (if not quantita-
tively) similar to the quasi-steady-state diffusion model.

In order to compare our results quantitatively with the Mullins—Sekerka critical
radius R*[1+ 3(! + 1)(I +2)], we investigate the dependence of 7, upon /.

Firstly we write

Di(r)=pi(%r) —qi(z), ~
where p, and g, are positive increasing functions of 7. We can then show that, for
1>2:
(a) 1, is less than the root of

2v/(1-2)+ 1/ - 1) - 1I2=2/({ + ) =0,
which, in turn, is less than the root of
2t+(1-2)/(I-1)-1/v?-2/P°=0,

whose zero is between 1 and 2; thus 1, <2.

(b) % >1/(I +1); in fact, It;—> = as | > «, s0 7,5 O(1/]).

The first two roots are 7, ==1.06 and 7, = 0.68, giving critical radii of 6.4R* and
13.6R*, compared to 7R* and 11R* from the Mullins-Sekerka analysis. The ! =2
mode thus becomes unstable at a slightly smaller radius than that predicted by the
quasi-steady-state theory, but the critical radius for the modes with / =3 is larger,
and indeed the ratio of the two critical radii tends to « as [ — o,

For §—  (i.e. ¢, = p) one requires more precise behaviour of {;, because of
cancellations in (3.17). In particular, using

1p(8)=eH(EE I+ AETOTD + BETOH N 4 ) (3.3)

where A=3[I(l+1)—(p +2)(p +3)) and B=3[I(I+1)— (p +4)(p + 5)]A, one
finds, fori=1,...,[+1, that

g (),
For [ =2, we obtain
8,(t) =do(} + 2L + §LA 1 + §L%7Y), (3.25)
where L =2[c.q¥/(p — ceq)B). Thus, if n = L™}, then

Sy=doL(n+2+4n~"+§n7%. (3.26)
The same argument gives that, for / =2,
R.=2 —<ea? N2,
P —Ceq
where n,=2.25 is the zero of dé,/dn; since p = c.,, we have
R.=nR* (3.27)

when / =2. The more general case /> 2 is harder to treat because of the more
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complicated form of the recurrence relation (3.24), but we can obtain an upper
bound on 7, the zero of dd,/dn, by approximating §, by its last four terms (this
argument is the same as that used previously). We find that 7, < n*, the root of

Lj_{ +2[1+312+3l—2(l+ 1 )]}_0

an " 2A0+1) \n 2/l 7

which, in turn, is less than the root obtained by replacing the term involving / by
3; the net result is 1, <2.36. We thus conclude, from (3.27)—which holds for all
[—that the critical radius for large B is always less than 2.36R*; this is a
considerable quantitative difference from the Mullins—Sekerka formula R.=
R*[1+3(! +1)( +2)], especially for large /. The diffusion model predicts much
earlier instabilities, which must be due to the high velocity of the moving front
(the Mullins—Sekerka formula is independent of 8).

4. Condlusion

The inclusion of the time-derivative term, then, enlarges the class of solutions;
those we have written down explicitly are reasonable ones to consider, in that
they agree with the ¢‘~"?2 growth rate of Mullins & Sekerka when y = 0, and they
have well-behaved initial data. Moreover, the critical radii for these solutions for
large B are smaller than those for the quasi-steady state model, and we conclude
that the diffusion is a destabilizing influence here; indeed, our results on blow-up
and instability for large supersaturation highlight the shortcomings of the model,
e.g. the assumption of local thermodynamic equilibrium on the solidification front
(see [20] for discussion of this point). When B is small, our results agree broadly
with the quasi-steady-state analysis of Mullins & Sekerka [1, 2], although the
inclusion of diffusive effects results in some difference of detail, in particular the
slightly smaller critical radius for the / =2 mode.
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Note added in proof

The applicability of this similarity solution in the ‘near nucleation’ range
(R(f) ~ R* = 2ycq/(ca — Ceq), the critical nucleation radius) has recently been
called into question by Sekerka et al. [21]. They argue that, when B is small and
R <2R*, the concentration profile (2.3) exceeds c, and is hence physically
unrealistic. On the other hand, the concentration is a monotonically increasing
function of r for all R>2R*, and in this respect the similarity solution is
physically reasonable in this ‘post-nucleation’ regime. In any event, all the
stability results in Section 3 for small 8 involve values of R several times bigger
than 2R*. For larger values of 8, this question remains to be investigated.

We are grateful to Professor Sekerka who drew this point to our attention.
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