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Abstract Enveloped viruses are viewed as an opportunity to understand how highly organi-
zed and functional biosystems can emerge from a collection of millions of chaotically moving
atoms. They are an intermediate level of complexity between macromolecules and bacteria.
They are a natural system for testing theories of self-assembly and structural transitions, and
for demonstrating the derivation of principles of microbiology from laws of molecular phy-
sics. As some constitute threats to human health, a computer-aided vaccine and drug design
strategy that would follow from a quantitative model would be an important contribution.
However, current molecular dynamics simulation approaches are not practical for modeling
such systems. Our multiscale approach simultaneously accounts for the outer protein net and
inner protein/genomic core, and their less structured membranous material and host fluid.
It follows from a rigorous multiscale deductive analysis of laws of molecular physics. Two
types of order parameters are introduced: (1) those for structures wherein constituent mole-
cules retain long-lived connectivity (they specify the nanoscale structure as a deformation
from a reference configuration) and (2) those for which there is no connectivity but organiza-
tion is maintained on the average (they are field variables such as mass density or measures
of preferred orientation). Rigorous multiscale techniques are used to derive equations for
the order parameters dynamics. The equations account for thermal-average forces, diffusion
coefficients, and effects of random forces. Statistical properties of the atomic-scale fluctua-
tions and the order parameters are co-evolved. By combining rigorous multiscale techniques
and modern supercomputing, systems of extreme complexity can be modeled.
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1 Introduction

Deriving principles of microbial behavior from laws of molecular physics remains a grand
challenge. While one expects many steps in the derivation can be accomplished based on the
classical mechanics of an N -atom system, it is far from clear how to proceed in detail due to the
extreme complexity of these supra-million atom systems. Most notably, molecular dynamics
(MD) codes are not practical for simulating even a simple bionanosystem of about 2 million
atoms (e.g. a nonenveloped virus) over biologically relevant time periods (i.e. milliseconds or
longer). For example, the efficient MD code NAMD, run on a 1024-processor supercomputer
[1], would take about 3000 years to simulate a simple virus over a millisecond; the largest
NAMD simulation published to date is for a ribosome system of approximately 2.64 million
atoms over few nanoseconds only [2].

We hypothesize that a first step in the endeavor to achieve a quantitative, predictive viro-
logy is to establish a rigorous intermediate scale description. Due to their important role in
human health, complex structure, and inherent multiscale nature, enveloped viruses provide
an ideal system for guiding and testing this approach. Experimental evidence suggests that
an enveloped virus manifests three types of organization:

• an outer protein net that can display several well-defined structures; for each structure,
proteins maintain long-lived connectivity with specific nearest-neighbor units (Fig. 1);

• a sea of membranous material below the protein net; this subsystem consists of phospho-
lipid molecules whose nearest-neighbors are continuously changing but for which there
is long-lived structure on-the-average. Also, biological membranes display liquid-crystal
transitions [3] either autonomously or as promoted by proteins traversing the membranous
subsystem; and

• genomic RNA or DNA complexed with proteins in which there is long-lived connectivity
between nucleotides but which, as evidenced by cryo-electron microscopy and X-ray
diffraction data, often lack well-defined structure [4].

We hypothesize that these three types of organization and the interplay of their stochastic
dynamics is the essence of principles governing the structural transitions and stability of
enveloped viruses.

Developing a quantitative understanding of enveloped viruses is of great importance for
global health. Human pathogenic enveloped viruses include Dengue (Fig. 1) and HIV. Unders-
tanding the mechanisms underlying virus entry and hijacking of host cell processes is a main
step in preventing the often fatal virus infections. The aim is not only to be able to attack
the virus in question (or simply prevent its docking proteins from binding to the host cell
receptors), but also to use viruses for therapeutic delivery. Since viruses have a natural ability
to find and penetrate host cells, using them as a means to deliver genes, drugs, and other
therapeutic agents holds great promise in medical advancement. Enveloped viruses provide
a natural choice as they are able to entirely fuse inside the cell before delivering their pay-
load [7]. Our strategy is to develop a predictive whole-virus model that serves as a basis of
a computer-aided antiviral vaccine and drug design capability. Furthermore, this predictive
model could be a key element of a system for forecasting the potential pandemic of a given
strain via an assessment of computer-generated mutants, and similarly for testing the effects
of a library of potential antiviral drugs.

To achieve these practical goals, and to arrive at a fundamental understanding of complex
bionanosystems, we suggest starting from the laws of molecular physics. These, as considered
here, are Newton’s equations for an N -atom system. For an enveloped virus, N is on the order
of 108. However, the conceptual framework within which one discusses viral phenomena does
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Fig. 1 A Cryo-EM reconstruction of the immature Dengue virion at neutral pH. B Cryo-EM reconstruction
of the immature virion at low pH. C Cleavage of the prM protein into its ‘pr’ peptide and M protein by the
host endoprotease, furin. D The cryo-EM reconstruction of the mature virion. From Refs. [5,6]

not involve keeping track of the positions and momenta of all the atoms. Nonetheless, an
all-atom description is required to derive the principles of enveloped viral behavior from
laws of molecular physics. Processes involved in viral behavior include the 10−14 second
atomic vibration and collisions and the millisecond or longer overall structural transitions.
In addition, various size scales are involved: The scale of the nearest-neighbor atom distance
(a few angstroms) to the diameter of the enveloped virus and a closely associated aqueous
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Fig. 2 Order parameters
characterizing nanoscale features
affect the relative probability of
the atomistic configurations
which, in turn, mediates the
forces driving order parameter
dynamics. This feedback loop is
central to a complete multiscale
understanding of nanosystems
and the true nature of their
dynamics. This loop is also the
schematic workflow of our
AMA/ACM computational
strategy.
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layer (several thousand angstroms). As the short scale phenomena affect the larger scale ones,
and conversely (see Fig. 2), viruses have a strongly multiscale character.

Multiscale techniques have been discussed extensively in the literature [8–31]. These
studies start with the Liouville equation and arrive at a Fokker-Planck or Smoluchowski type
equation for the stochastic dynamics of a set of slowly evolving variables (order parameters).
Of particular relevance to the present study are recent advances [20–31] wherein it was shown
one could make the hypothesis that the N -atom probability density is a function of the 6N
atomic positions and momenta both directly and, via a set of order parameters, indirectly. It
was shown that both dependencies could be reconstructed when there is a clear separation of
timescales, and that such an assumed dual dependence is not a violation of the number (6N )

of classical degrees of freedom. Technical advances were also introduced which facilitated
the derivation of the stochastic equations of the order parameter dynamics and allowed for
an atomistic description of the entire system (i.e. within the host medium and the nanostruc-
tures). Furthermore, it was shown in earlier work [30,31] how to transcend the conceptual
gap between continuum and all-atom theories; starting from the more fundamental all-atom
formulation and, via a deductive multiscale analysis, equations coupling field variables with
selected facets of the all-atom description were derived.

For the present study, we suggest that a mixed continuum/all-atom approach is a natural
framework for achieving an integrated theory of enveloped viruses. As there are several types
of molecular organization to account for, we introduce distinct types of order parameters to
characterize them. Details on these order parameters are provided in Sects. 2 and 3. Common
features of both types of order parameters are as follows:

• they are expressed in terms of the all-atom state (i.e. the 6N positions/momenta of the N
atoms) in terms of which the basic laws of molecular physics are posed;

• they evolve on timescales relevant to virology (i.e. microseconds or longer, and not
10−14 seconds as for atomic vibration/collisions);

• they characterize the nanoscale features of interest to virology (e.g. outer protein net
structure, genomic structure, and liquid-crystal order in the membranous subsystem); and

• they form a complete set, i.e. they do not couple to other slow variables not considered in
the analysis.

In Sect. 4, we develop a multiscale theory of viral dynamics and, in the process, clarify the
need for the above criteria on the nature of order parameters. We derive rigorous equations
for their stochastic dynamics, notably structural fluctuations and transitions. In Sect. 5, we
discuss our multiscale simulation method and present results for the STMV virus to illustrate
the feasibility of our approach. Applications and conclusions are discussed in Sect. 6.
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2 Order parameters for connected structures

Order parameters for subsystems of connected atoms have been constructed as generalized
Fourier amplitudes [23,24]. They represent the degree to which a structure is a deformation
of a reference configuration (e.g. a cryoTEM reconstruction). For Fourier analysis one uses
sine and cosine basis functions. In our approach, other basis functions are introduced as
follows.

The system is embedded in a volume �. Orthogonal basis functions U�

(⇀
r
)

for point
⇀
r in �

with triplet labeling index � are introduced. The basis functions are periodic if computations
are carried out using periodic boundary conditions to approximate a large system by minimi-
zing boundary effects or to handle Coulomb forces. According to our earlier method [32], a
virus and its microenvironment are embedded in a 3-D space where a point

⇀
r is considered a

displacement from an original point
⇀
r 0 in the undeformed space. The deformation of space

taking any point
⇀
r 0 to the position after deformation

⇀
r and the basis functions are used to

introduce a set of order parameters
⇀

�� via

⇀
r =

∑

�

⇀

��U�

(
⇀
r 0
)

. (2.1)

As the
⇀

�� change, a point
⇀
r 0 is moved to

⇀
r and thus, to connect the

⇀

�� to the physical

system, the nanostructure embedded in the space is deformed. The
⇀

�� are interpreted to
be a set of vector order parameters that serve as the starting point of an AMA (All-Atom
Multiscale Analysis) approach. In what follows, we show how to use (2.1) for a finite set
of basis functions and the associated order parameters, and prove that the latter are slowly
evolving for appropriately chosen basis functions.

Each atom in the system is moved via the above deformation by evolving the
⇀

��. However,
given a finite truncation of the �-sum, there will be residual displacement of individual atoms
above that due to the continuous deformation generated by the order parameters. Denoting
the residual of atom i as

⇀
σ i , we write its position

⇀
r i as

⇀
r i =

∑

�

⇀

��U�

(
⇀
r 0
)

+ ⇀
σ i . (2.2)

The size of
⇀
σ i can be controlled by the choice of basis functions, the number of terms in the

�
−

sum, and the way the
⇀

��−
are defined. Conversely, imposing a permissible size threshold

for the residuals allows us to determine the number of basis functions needed to minimize
the

⇀
σ i , and hence order parameters, to include in the analysis.

A concrete definition of the order parameters is developed as follows. Define the mass-
weighted mean-square residual S via

S =
N∑

i=1

mi

∣∣∣
⇀
σ i

∣∣∣
2
�c

i , (2.3)

where N is the total number of atoms in the system, mi is the mass of atom i , and �c
i is one

when atom i belongs to the connected subsystem and zero otherwise. With (2.2), this yields
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S =
N∑

i=1

mi�
c
i

∣
∣
∣
∣
⇀
r i −

∑
U�−

(
⇀
r

0
i

)
⇀

��−

∣
∣
∣
∣

2

. (2.4)

We assert that the optimal order parameters are those which minimize S, i.e. those containing
the maximum amount of information so that the ⇀

σ i are, on the average, the smallest. Thus,

we obtain the relationship between
⇀

��− and �r =
{

⇀
r 1,

⇀
r 2, . . . ,

⇀
r N

}
via minimizing S with

respect to the
⇀

��− keeping �r constant [22]. This implies

∑

�−′
B�−�−′

⇀

��−′ =
N∑

i=1

mi
⇀
r i U�−

(
⇀
r

0
i

)
�c

i , (2.5)

B�−�−′ =
N∑

i=1

mi U�−

(
⇀
r

0
i

)
U�−′

(
⇀
r

0
i

)
�c

i . (2.6)

Orthogonality of the basis functions implies that the B matrix is nearly diagonal. Hence, the
order parameters can easily be computed numerically in terms of the atomic positions by
solving (2.5).

To proceed, we must be more precise regarding the normalization of the basis functions.
For the function U�− with �− = (0, 0, 0), we take U0− = 1. Thus, B0−0− is the total mass of the

atoms in the connected structure. Furthermore, if the B matrix is diagonal, one can show that
⇀

�0− is the center-of-mass (CM). From earlier studies [20–29], this implies that
⇀

�0− is slowly

varying. If ε = m/B0−0− for typical atomic mass m, then the eigenvalues of B are large, i.e.

O
(
ε−1
)
.

A necessary condition for a variable to satisfy a Langevin equation (i.e. to be an order
parameter in our multiscale formulation) is that it evolves on a timescale much longer than
that of the vibration/collisions of individual atoms. It can be shown that for diagonal B matrix

d
⇀

�0−/dt = ε
⇀


0−, where
⇀


�− is the conjugate momentum of
⇀

��−. Taking d
⇀

��−/dt = ε
⇀


�−, and

applying Newton’s equations (d
⇀

��−/dt = −L⇀

��− for Liouville operator L), yields

ε
∑

�′

⇀


�′ B��′ =
N∑

i=1

⇀
pi U�

(
⇀
r 0

i

)
�c

i . (2.7)

Inclusion of mi in the above expressions gives the order parameters the character of genera-
lized CM variables.

While the
⇀

��− qualify as order parameters from the above perspective, they do not suffice

as a way to characterize the aqueous microenvironment or the membranous material of
the enveloped virus. This follows because the molecules in these two subsystems do not
maintain nearest-neighbor connectivity. Thus, a second type of order parameters is required
for enveloped virus modeling, as developed in the next section.
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3 Order parameter fields for disconnected subsystems

For disconnected systems, one needs an all-atom/continuum multiscale (ACM) approach
[31]. The starting point of our ACM theory is a set of field variables that change across the
system. These field variables must be related to the atomistic description to achieve a rigorous
formulation. The membranous material of an enveloped virus contains a subsystem composed
of continuously changing molecules. Application of ACM theory to such systems is illustrated
as follows. Let the membranous continuum be comprised of Nt types of molecules labeled
k = 1, 2, . . . , Nt . Each type is described by a mass density field variable �k at spatial point
⇀

R:

�k

(
⇀

R, �r

)
=

N∑

i=1

miδ

(
⇀

R − εd
⇀
r i

)
�k

i , (3.1)

where δ is the Dirac delta function centered at
⇀

0, εd is a smallness parameter, and �k
i = 1

when atom i belongs to a molecule of type k in the disconnected subsystem, and zero

otherwise. As these field variables are intended to be coherent in character,
⇀

R is scaled
such that it undergoes a displacement of about one unit as several nanometers are traversed.
In contrast, the

⇀
r i undergo a displacement of about one unit as a typical nearest-neighbor

interatomic distance for a condensed medium (a few angstroms) is traversed. Thereby, it is
natural to scale

⇀
r i to track the fine-structural details in the system. With this, we let εd be the

ratio of the typical nearest-neighbor interatomic distance to the size of a nanocomponent (e.g.
a viral capsomer). This length scale ratio characterizes the multiscale nature of the enveloped
virus. As εd � 1, it provides a natural expansion parameter for solving the equations of
molecular physics, i.e. the Liouville equation for the N -atom probability density. Newton’s
equations imply

d�k

dt
= −L�k = −εd

⇀∇ ⇀

Gk

(
⇀

R, �

)
≡ εd Jk

(
⇀

R, �

)
(3.2)

⇀

Gk

(
⇀

R, �

)
=

N∑

i=1

⇀
piδ

(
⇀

R − εd
⇀
r i

)
�k

i , (3.3)

where
⇀

Gk is the momentum density of molecules of type k,
⇀∇ is the

⇀

R-gradient, Jk is the

divergence (defined by (3.2)),
⇀
pi is the momentum of atom i , and � =

{
�r ,

⇀
p1,

⇀
p2, . . . ,

⇀
pN

}

is the set of 6N atomistic state variables. For quasi-equilibrium conditions, the average

momentum
〈
⇀
pi

〉
is small. Thus, the momenta of the atoms in the expression for

⇀

Gk tend to

cancel each other. This suggests that
⇀

Gk are of order O
(
ε0

d

)
, and thus �k are slowly evolving,

at a rate of O (εd).

Order parameter fields like �k are indexed by
⇀

R which varies continuously across the

system. Thus, with �r dependency being understood, we sometimes use the notation �k(
⇀

R)

to reflect this parameterization, i.e. to label �k as the
⇀

R-associated order parameter, much
like

⇀
r i is the i-associated position variable (although

⇀
r i is not an order parameter as it has

predominantly 10−14 second timescale dynamics). That for each molecule type k there is a

�k for every point
⇀

R in the system suggests there is an uncountable infinity of slow field
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variables, �k(
⇀

R). Finally, in order to connect the smallness parameter, ε, of Sect. 2 with that
of this section, εd , we suggest that εd is proportional to ε, and thus take εd = ε for simplicity.

4 Multiscale integration for enveloped virus modeling

Integration of the multiple types of order parameters (Sects. 2 and 3) needed for enveloped
virus modeling is achieved in a self-consistent fashion as follows. We hypothesize that the
N -atom probability density ρ for the composite virus/microenvironment system has mul-
tiscale character and can thus be rewritten to express its dependency on both the set of
atomic positions and momenta � and the order parameters. The reduced probability density
W is defined as a function of the set of order parameters describing the connected sub-

system
⇀

�− = ⇀

��− for all �− included, and a functional of the set of order parameter fields

�− (
⇀

R) = {�1(
⇀

R), . . . , �Nt (
⇀

R)} describing the disconnected subsystem. By definition, W

takes the form

W

[
⇀

�− , �− , t

]
=
∫

d6N �∗∏

�−

δ

(
⇀

��− − ⇀

�
∗
�−

) Nt∏

k=1

�
(
�k − �∗

k

)
ρ
(
�∗, t

)
, (4.1)

where � is a continuum product of δ-functions for all positions
⇀

R, �∗ is the N -atom state over

which integration is taken, and
⇀

�
∗
�− and �∗

k are the order parameters for state �∗. With this and

the fact that the N -atom probability density ρ satisfies the Liouville equation ∂ρ
/
∂t = Lρ,

W is found to satisfy the conservation equation

∂W

∂t
= −ε

Nt∑

k=1

∫
d3 R

vc

δ

δ�k

(
⇀

R

)
∫

d6N �∗∏

�−

δ

(
⇀

��− − ⇀

�
∗
�−

)

×
Nt∏

k=1

�
(
�k − �∗

k

)
J ∗

k

(
⇀

R

)
ρ
(
�∗, t

)

−ε
∑

�−

∂

∂
⇀

��−

∫
d6N �∗∏

�−

δ

(
⇀

��− − ⇀

�
∗
�−

) Nt∏

k=1

�
(
�k − �∗

k

)⇀



∗
�−ρ
(
�∗, t

)
(4.2)

where vc is the minimal volume for which it is reasonable to speak of a field variable, and
the superscript * for any variable indicates evaluation at �∗.

We hypothesize that to reflect the multiscale character of the system, ρ should be written
in the form

ρ

(
�,

⇀

�− , �− , t0, t−; ε

)
. (4.3)

The time variables tn = εnt , n = 0, 1, . . . are introduced to track processes on timescales
O
(
ε−n
)

for tn . The set t− = {t1, t2, . . .} tracks the slow processes of interest to viral dynamics,

i.e. much slower than those on the 10−14 second scale of atomic vibration/collisions. In
contrast, t0 tracks the fast atomistic processes. The ansatz (4.3) is not a violation of the
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number (6N ) of degrees of freedom, but a recognition that ρ depends on � in two ways (i.e.

both directly and, via
⇀

�− and �− , indirectly).

With this and the discrete and field order parameters, the chain rule implies the Liouville
equation takes the multiscale form

∂ρ

∂t
= (L0 + εL1) ρ (4.4)

L0 = −
N∑

i=1

(
⇀
pi

mi

∂

∂
⇀
r i

+ ⇀

Fi
∂

∂
⇀
pi

)

(4.5)

L1 = L� + L� (4.6)

L� = −
∑

�−

⇀


�−
∂

∂
⇀

��−

(4.7)

L� = −
Nt∑

k=1

∫
d3 R

υc
Jk

(
⇀

R

)
δ

δ�k

(
⇀

R

) (4.8)

The operator L1 involves derivatives with respect to
⇀

�− and functional derivatives with respect

to �− at constant �, and conversely for L0. By mapping the Liouville problem to a higher

dimensional descriptive variable space (i.e. 6N plus the number of variables in
⇀

�− and the

function space of the order parameter fields �− ), our strategy as suggested by our earlier

studies [20–31] is to solve the Liouville equation in the higher dimensional representation,

and then use the solution to obtain an equation of stochastic
⇀

�− ,�− -dynamics.

The development continues with the perturbation expansion

ρ =
∞∑

n=0

εnρn, (4.9)

and examining the multiscale Liouville equation at each order in ε. We hypothesize the lowest
order behavior of ρ is slowly varying in time since the phenomena of interest vary on the
millisecond or longer, and not the 10−14 second time scale. Thus, we assume the lowest order
solution ρ0 is independent of t0 and, furthermore, is quasi-equilibrium in character.

To O
(
ε0
)
, the above assumptions imply L0ρ0 = 0 so that ρ0 is in the null space of L0 but is

otherwise unknown. We determine ρ0 by adopting an entropy maximization procedure with
canonical constraint of fixed average energy as discussed earlier in the context of nanosystems
[24]; this is equivalent to taking the system to be isothermal. With this, we obtain

ρ0

[
�; ⇀

�− , �− , t−

]
= ρ̂

[
�; ⇀

�− , �−

]
W0

[
⇀

�− , �− , t−

]
(4.10)

ρ̂ = e−β H

Q

[
⇀

�− , �−

] , (4.11)

where β is the inverse temperature, H is the Hamiltonian,

H (�) =
N∑

i=1

p2
i

2mi
+ V (�r ) , (4.12)
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for N -atom potential V , and Q is the partition function which is a function of
⇀

�− and a

functional of �− given by

Q

[
⇀

�− , �−

]
=
∫

d6N �∗∏

�−

δ

(
⇀

��− − ⇀

�
∗
�−

) Nt∏

k=1

�
(
�k − �∗

k

)
e−β H∗

. (4.13)

To O (ε), the multiscale Liouville equation implies

(
∂

∂t0
− L0

)
ρ1 = −∂ρ0

∂t1
+ L1ρ0. (4.14)

This admits the solution

ρ1 = −
t0∫

0

dt
′
0e

L0

(
t0−t

′
0

) {
∂ρ0

∂t1
− L1ρ0

}
, (4.15)

where the initial first order distribution was taken to be zero as suggested earlier [25,26]
to ensure that the system is initially in equilibrium. As a consequence, the final stochastic
equation is closed in W .

Inserting (4.6), (4.7), (4.8), and (4.10) in (4.15) yields

ρ1 = −t0ρ̂
∂W0

∂t1
− ρ̂

t0∫

0

dt
′
0e

L0

(
t0−t

′
0

)
⎧
⎪⎨

⎪⎩

∑

�−

⇀


�−

⎛

⎜
⎝

∂

∂
⇀

��−

− β

〈
⇀

f �−

〉
⎞

⎟
⎠

+
Nt∑

k=1

∫
d3 R

vc
Jk

(
⇀

R

)
⎛

⎜⎜
⎝

δ

δ�k

(
⇀

R

) − β

〈
hk

(
⇀

R

)〉
⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
W0 (4.16)

where the thermal-average forces are given by

〈
⇀

f �−

〉
= − ∂ F

∂
⇀

��−

(4.17)

〈
hk

(
⇀

R

)〉
= − ∂ F

∂�k

(
⇀

R

) (4.18)

and F is the free energy related to Q via Q = e−βF .
Using the Gibbs hypothesis, imposing the condition that ρ1 be finite as t0 → ∞, and

using the fact that the thermal-averages of Jk and
⇀


�− are zero (since the weighing factor ρ̂ is

even in the
⇀
pi , while Jk and

⇀


�− are odd in them), we find W0 to be independent of t1. With
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this, (4.16) becomes
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Inserting (4.10) and (4.19) in the conservation equation (4.2) yields
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where
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D
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As in Ref. [31], there are symmetry rules relating the cross-diffusion coefficients. The set of
Langevin equations equivalent to this generalized Smoluchowski equation (4.20), provides
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a practical approach to the simulation of enveloped virus systems as outlined in the next
section.

5 Multiscale computations and the NanoX platform

The all-atom multiscale approach of the previous section can be implemented as a plat-
form for the simulation of nanosystems. In the flow chart of Fig. 3 it is seen how order
parameters are co-evolved with the statistics of the atomic fluctuations in our NanoX plat-
form. Interscale coupling as in Fig. 2 is manifested through the thermal-average forces and
diffusion coefficients constructed via short-time ensemble/molecular dynamics computations
in the indicated modules. We have implemented this Fig. 3 workflow, creating the NanoX
simulator.

At this writing, NanoX is built on the order parameters of Sect. 2. For it to be practical,
the diffusion coefficients and thermal-average forces must not be excessively demanding on
CPU time. In Fig. 4a we show an example of an order parameter trajectory for the STMV
(nonenveloped) virus in vacuum. This system has been studied elsewhere using classic MD
[33]. Our simulation began from the crystal cryo-structure which was equilibrated for 1 ns
at various temperatures. The order parameter trajectory (here we choose the z component
of the 001 mode) is shown for the first 20 ps and is seen to change slowly except at the
beginning where the system escapes from its potential energy-minimized unphysical struc-
ture. The velocity of the order parameters are obtained by differentiating equation (2.1). After
thermalization, the order parameters hardly change for several picoseconds (Fig. 4b) whereas
the velocity (not shown) appears to fluctuate about zero. These fluctuations are not highly
correlated in time as shown by the rapid decay of the velocity auto-correlation function in
Fig. 4c. This demonstrates that only short MD runs are required to calculate the diffusion
coefficients via (4.21). The behavior of the auto-correlation function was studied at various
temperatures to check consistency with the notion that the diffusion coefficient decreases
with temperature. The auto-correlations were normalized by dividing by their starting values
which are provided in Table 1. If the velocity autocorrelation function does not approach
zero exponentially, then the friction-dominated Smoluchowski limit of Sect. 4 is not valid
and the order parameter velocities should be added to the list of order parameters, i.e. a
Fokker-Planck limit is appropriate [24,25]. This does not appear to be the case in this sys-
tem. To add artificial intelligence, NanoX will automatically determine if a Smoluchowski or

Langevin 
simulator 

Output 
control 

Time series 
graphical 

output

Diffusion
coefficients

Thermal 
average 
forces

Specify initial structure of 
nanostructures, host medium 

conditions, payload, and run time 

Fig. 3 Schematic NanoX workflow indicating that thermal-average forces and diffusion coefficients are com-
puted “on the fly” since they co-evolve with the order parameters describing overall features of a bionanosystem
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Fig. 4 A Order parameter 001z as a function of time. B Order parameter 001z as a function of time after
equilibration (300 K). C Normalized order parameter velocity auto-correlation function for component 001z
as a function of observation time for different temperatures
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Table 1 Initial order parameter
velocity auto-correlation function
for component 001z at different
temperatures

Temperature (K) Initial order parameter
velocity auto-correlation function

50 1.49E-09

200 7.08E-09

300 9.33E-09

400 2.08E-08

Fokker-Planck approach is required. In a similar way, NanoX will include additional order
parameters if necessary, a capability enabled by our automated order parameter generation
scheme of Sect. 2. This feature gives our approach a degree of self-consistency; for example,
if the order parameter velocity autocorrelation functions are poorly behaved, then additional
order parameters are needed to complete the theory.

The thermal-average forces are calculated using two methods. In the first method, the
integral in (4.17) is calculated by a Monte Carlo approach by sampling a fixed order parameter
ensemble. Random sampling generates unfavourable configurations and yields high energy
configurations with negligible Boltzmann weight. Rather, we use a sampling method whereby
only order parameter components orthogonal to the fixed ones are varied. We use this high
frequency order parameter ensemble to calculate order parameter velocities and forces. In
the second method, a short MD run is performed and Gibbs hypothesis is used to calculate
the averages. This approximation is valid since, as discussed above, the order parameters
vary slowly in time and the only limitation is the sampling of configuration space by the MD
trajectory. We hypothesize that a necessary condition for self-consistency is that the order
parameter velocity auto-correlation time is much less than the characteristic time of evolution
of the order parameters as driven by the thermal-average forces. Once the thermal-average
forces and diffusion coefficients are calculated, the feedback loop in Fig. 3 underlying our
multiscale approach is accounted for via the flowchart. The system evolution is carried out
via a sequence starting with short MD runs followed by a Langevin evolution timestep for
the order parameters. This requires the thermal-average forces and diffusion constants. After
the Langevin evolution timestep, the atomic configurations are regenerated by using equation
(2.2). Constrained energy minimization and annealing of high energy contacts generated by
this “fine graining” is needed to ensure sensible atomic scale configurations. This completes
the evolution cycle of Fig. 3. We have implemented this workflow for the STMV virus in our
NanoX simulator.

The calculation of the thermal-average forces, diffusion constants, and the energy mini-
mization are all CPU intensive requiring optimizations at different stages. Our simulations
were run on the 768 node IBM JS21 cluster at Indiana University using NAMD and we built
our simulation modules to effectively utilize existing NAMD resources without introducing
unnecessary overhead. Based on preliminary estimates, the thermal-average force module
takes about 30 minutes to sample and analyze 2000 configurations, a 10 ps NAMD run for
STMV in vacuum takes 15 minutes on 64 processors. Further reductions in CPU time will
be possible with greater integration into the NAMD source code.

6 Applications and conclusions

Because of the impracticality of straightforward all-atom models, phenomenological app-
roaches have mainly been used for systems biology. These approaches require recalibration
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with each new application, a main impediment to progress in computer simulations of bio-
logical systems. This difficulty is compounded by the complexity of the systems of interest,
leading to ambiguities created by over-calibration, i.e. arriving at the right answer for the
wrong reason. To transcend this impediment, we derived principles of microbiology from
the laws of molecular physics as outlined for bionanosystems as in Sects. 2 to 4.

To demonstrate that this is possible with extreme complexity, we focused on enveloped
viruses. We integrated several types of order parameters into a self-consistent framework and
showed that this can be accomplished via rigorous multiscale analysis. This approach over-
comes computational difficulties associated with the great number of atoms involved, and
accounts for the existence of subsystems with distinct types of physics. Enveloped viruses
with their self-assembly, maturation scenario, structural transitions, and richness of pheno-
mena appear to be a prime candidate.

Many systems can be modeled if a self-consistent ACM theory was developed. Examples
include

• local sites such as receptors or pores in a cell membrane;
• an enveloped virus involving a composite of a lipid membrane and protein/DNA or RNA

structures;
• a nanocapsule with its surrounding cloud of leaking drug molecules;
• an intrabacterial energy-storage granule; and
• a nanodroplet with embedded macromolecule(s).

The fundamental science of these systems and their potential importance for medicine
and nanotechnology make the development of ACM approaches of great interest [31]. For
example, an ACM approach could provide the basis of a computer-aided strategy for the
design of antiviral vaccines or nanocapsules for the delivery of drugs, genes, or siRNA to
diseased cells.

Open questions about enveloped viruses include the following.

• What is the structure of the genome-protein core complex deep within the phospholipid
subsystem, i.e. is it well organized or highly fluctuating?

• Does the interaction of the phospholipid subsystem with the outer protein net, traver-
sing protein or the genome-protein core, induce liquid-crystal order in the phospholipid
subsystem?

• What factors restrict the size, structure, and stability of the ghost particles that are devoid
of the genome-protein core?

• What are the ranges of pH, salinity, concentrations of selected ions, and other conditions
in the microenvironment that favor a given structure of the protein outer net (see Fig. 1)?

• What is the effect of an applied electric field, or stress applied through an AFM tip, on
viral structure and stability?

• Can the virus be grown around, or injected with, a magnetic or fluorescent nanoparticle
probe?

• Does the structural transition in Dengue’s outer protein net (Fig. 1) involve bond cleavage
or formation?

• Can chemical labels pass through the outer protein net and selectively bond to the genome-
protein inner core and provide structural information on the core structure [24]?

An integrated multiple order parameter model to address these questions is suggested in
Fig. 5.

We propose a model composed of four order parameters accounting for each of the sub-
systems of Fig.5. Starting from the aqueous microenvironment, we proceed inward to the
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Fig. 5 Schematic four
subsystem model: AM (aqueous
microenvironment), PN (outer
protein net), PL (phospholipid
zone), and CP (inner
genome-protein core particle)

PL

AM PN

CP

genome-protein core. The aqueous microenvironment is described by a set of order parameter
fields �

aq
q specifying the mass-weighted position-orientation density for the water molecules

(as in Sect. 3). The outer protein net is considered to be connected over the time period of the

structural transition. Thus, it is described via a set of structural order parameters
⇀

�
P N

�− from

the set of order parameters introduced in Sect. 2 that specify the CM, orientation, and details
of the conformation of the outer protein net. The membranous zone contains at least two
major components (e.g. phospholipids and Glycoproteins) denoted by A and B here. These
are characterized by the order parameter fields �A and �B giving the spatial distribution of
their CM. The genome-protein core is, for simplicity here, assumed to consist of one connec-
ted object described by a set of order parameters, as in Sect. 2. More complex models would
also include multiple parts of the core, each of which is connected internally, which require
their individual set of order parameters and, therefore, could be suited to study core self-
assembly/maturation within the overall assembled enveloped system. Proteins bridging the
outer protein net and the core could also be accounted for via such structural order parame-
ters. Finally, order parameter fields could be used to track the exchange of small molecules
between the microenvironment and the various inner subsystems.In the integrated model,
one solves the Langevin equations as outlined in Sect. 5, but for all the order parameters. All
order parameters in the model are coupled in two ways. The thermal-average force for any
one order parameter depends on others, thereby accounting for a variety of thermodynamic
interactions. Furthermore, the diffusion coefficients for the order parameters provide cross-
frictional effects among them. Those associated with the field variables introduce nonlocal

effects so that the thermal-average force at
⇀

R affects order parameter fields at
⇀

R′.
While the solution of the Langevin equations presents no major computational challenges,

the construction of thermal-average forces and diffusion coefficients does. However, recent
results of Sect. 5 suggest that the correlation functions for our order parameters have a
characteristic time of around a picosecond. Thus, only short MD simulations are needed to
estimate them.

A simple system for testing the multiscale model of Sect. 4 is to use the structural transitions
in the outer protein net of Dengue virus (Fig. 1). In particular, Dengue “ghosts” consist only of
an outer protein net and inner phospholipid material, i.e. they are devoid of the inner protein-
genomic core assembly. Thus, the model of a ghost consists of the protein-net, as described
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via the set of discrete structural parameters introduced in Sect. 2, while the surrounding
aqueous medium and inner phospholipid subsystems can be described via order parameter
fields. With this, we conclude that with the integration of rigorous multiscale analysis and
supercomputing, complex bionanosystems can be modeled, principles of microbiology can
be derived, and practical benefits for nanotechnology and biomedicine can be achieved.
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