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ABSTRACT: An approach for the automated discovery of low
free energy states of macromolecular systems is presented. The
method does not involve delineating the entire free energy
landscape but proceeds in a sequential free energy minimizing
state discovery; i.e., it first discovers one low free energy state
and then automatically seeks a distinct neighboring one. These
states and the associated ensembles of atomistic configurations
are characterized by coarse-grained variables capturing the
large-scale structure of the system. A key facet of our approach
is the identification of such coarse-grained variables. Evolution
of these variables is governed by Langevin dynamics driven by thermal-average forces and mediated by diffusivities, both of which
are constructed by an ensemble of short molecular dynamics runs. In the present approach, the thermal-average forces are
modified to account for the entropy changes following from our knowledge of the free energy basins already discovered. Such
forces guide the system away from the known free energy minima, over free energy barriers, and to a new one. The theory is
demonstrated for lactoferrin, known to have multiple energy-minimizing structures. The approach is validated using experimental
structures and traditional molecular dynamics. The method can be generalized to enable the interpretation of nanocharacterization
data (e.g., ion mobility−mass spectrometry, atomic force microscopy, chemical labeling, and nanopore measurements).

I. INTRODUCTION
Multiple macromolecular conformational states are observed in
numerous experimental studies. However, it is often difficult to
directly extract the 3D structures of a biomolecule from such
data. Coarse-grained information on macromolecular assem-
blies is obtained in ion mobility−mass spectrometry experi-
ments,1 atomic force microscopy (AFM),2 chemical labeling,3

and nanopore measurements.4 Such experimental data leave
much ambiguity regarding the detailed structure. These data
provide only a few parameters, while many configurational
variables are required to capture the secondary structure of a
large macromolecular system. Here, an information theory
based method for the sequential discovery of conformational
states of a macromolecular system as free energy minimizing
structures is presented.
The dynamics of macromolecular systems involves the

coupling of processes across multiple time and space scales.
This multiscale character of macromolecular systems presents a
challenge for identifying their numerous structural states. Here,
this is addressed using a deductive multiscale approach5 as the
basis of a structure discovery method.
The structural states usually of interest for macromolecular

systems are those which minimize the free energy (FE). Each
such state represents an ensemble of all-atom structures. The
set of such structures, to which the nearby structures evolve
spontaneously, is denoted a FE basin. However, due to thermal
fluctuation, there are no all-atom structures that initiate

trajectories which subsequently always reside in the basin,
although high-energy barriers may trap these trajectories within
a basin for an exceedingly long time. Here, a framework for
characterizing a FE basin and associated ensemble of all-atom
configurations is presented. The ensemble for a given basin is
required to compute associated average quantities that mediate
the evolution of its all-atom configurations.
As one is typically interested in analyzing the kinetics of the

transitions between FE minimizing structures, i.e., FE basins, a
dynamical theory of the quantities characterizing the ensembles
of all-atom configurations is needed. Here, the set of variables
used to characterize such dynamical ensembles is denoted order
parameters (OPs) Φ̲. Implicit in the above discussion is that
there is a time scale separation between the dynamics of Φ̲
and the individual all-atom states. Thus, while the system
rapidly visits many all-atom configurations within the basin, the
character of the ensemble, as tracked by Φ̲, is slowly varying.
Therefore, a dynamical theory of OPs allows tracking the
ensemble as the system evolves from one basin to another.
Interest in the biomolecular structure−function relationship

has led to the development of theoretical structure discovery
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methods inspired by quickly growing sequencing data.
However, progress in obtaining experimental structures has
been much slower. Theoretical and computational methods for
discovering the structure of macromolecular systems have
recently been reviewed6 and include the following: combinato-
rial methods7,8 for finding global minimum energy conforma-
tions; all-atom structure reconstruction methods9 which start
with experimental Cα trace and rely on combinatorial side-chain
optimization and standard molecular dynamics (MD) energy
minimization; approaches which employ specific energy
functions,10 simulated annealing,11 and mean-field optimiza-
tion;12 global optimization approaches for the structure
prediction and FE calculations of solvated peptides;13 Monte
Carlo method14 in conjunction with simulated annealing;15,16

genetic optimization algorithms;17,18 rigid-cluster elastic network
interpolation technique19 and normal-mode analysis20 for
generating feasible transition pathways between known macro-
molecular conformations; and enhanced rare-event sampling
techniques such as transition path sampling21 and metady-
namics22,23 (including molecular dynamics flexible fitting24 for
resolving low-resolution cryo-EM structures).
These approaches provide insights into global protein

structure optimization, transition paths, and FE landscapes.
However, there is still room for improvement of theoretical
structure determination strategies in light of one or more of the
following. (1) They are usually limited to small systems and
biologically short times. (2) Most implementations use simplified
potential models. (3) Coarse-grained models require extensive
recalibration for each new application, and governing dynamics
equations must be postulated. Calibration is often limited to a
small set of equilibrium states, even when used to describe
nonequilibrium processes. Extensive data are used for calibration
including system-specific information such as the area and
volume accessible to the solvent, the sparse sets of NMR data, or
subsystem structural information integrated via bioinformatics
methods. (4) No criterion is provided for determining the
completeness of the set of coarse-grained variables used to
characterize the FE landscape. (5) All-atom interactions and
states are not used or obtained. (6) Only unsolvated structures
are addressed. (7) Only a single FE minimizing structure is
provided. (8) Potential energy minimizing structures, and not FE
minimizing ones, are provided. (9) Long computational times
are needed to simulate transitions between energy basins. (10)
Guide a system through a path that is not necessarily natural for
the molecular physics. (11) The history of configurations
generated in a Monte Carlo sequence is not always accounted
for when mapping the energy landscape. (12) No guidelines are
provided for optimization, although performance may be very
sensitive to the specific implementation, e.g., as in the genetic
optimization algorithm. (13) The simulation may be trapped in
local, but not global, minima. (14) Knowledge of initial and/or
final states may be required.
The objective of the present approach is to overcome most

of these difficulties using the following: an all-atom underlying
formulation and continuous (and not discrete) configuration
space; coarse-grained structural variables; a multiscale method-
ology to derive Langevin equations for the OPs and algorithms
for computing all factors in these equations from an interatomic
force field; a FE basin discovery method using modification
of FE driving thermal-average forces for OP evolution that
integrates prior knowledge of known FE minimizing structures
to guide the evolution to yet-unknown ones; an efficient,
calibration-free multiscale simulation methodology on which to

build the methodical search algorithm and which is flexible
enough to incorporate experimental data of a range of
resolutions; the FE basin sequential elimination technique
introduced here does not require prior knowledge of the
reaction path, nor the final or initial structure.
A FE basin is defined as an ensemble of all-atom configura-

tions consistent with a set of OPs that minimize the FE, i.e.,
for which thermal-average forces vanish. As the multiscale
simulations progress via Langevin timesteps, it is often
necessary to modify the definition of the OPs,25 so that other
variables (denoted descriptors here) are also used to character-
ize a FE basin. These descriptors are defined directly in terms
of all-atom configurations and are typically directly measurable
characteristics (e.g., moments of inertia or electrical dipole and
quadrupole moments). Thermal-average OP forces modified
by using the descriptors characterizing known structures are
introduced to guide a multiscale simulation away from the
known basins to a new one.
The multiscale formalism for simulating macromolecular

assemblies is reviewed (Section II). The thermal-average forces
arising in multiscale analysis are modified such that they drive
macromolecular systems to new FE basins, enabling a
sequential basin discovery algorithm; details on implementation
are provided (Section III). Validation is presented (Section IV),
and conclusions are drawn (Section V).

II. BRIEF REVIEW OF THE DEDUCTIVE MULTISCALE
APPROACH

A natural framework for casting an FE basin discovery algorithm
is deductive multiscale analysis.5,26,27 Let r ̲ ≡ ⇀ ⇀ ⇀r r r{ , , ..., }N1 2
denote the all-atom configuration of the structure of interest.

In the approach adopted here, OPs Φ̲ ≡ Φ⇀ Φ⇀ Φ⇀{ , , ..., }N1 2 OP
describe the overall structure of the system. As earlier,26,28,29 the
starting point of the analysis is the Φ̲−r ̲ relationship29

∑ ⃑⇀ = Φ⇀ + σ
=

r Ui
k

N

ki k i
1

OP

(1)

The residuals σ⃑i are introduced to address the truncation of the
k-sum in eq 1 resulting from taking a relatively small number of
OPs, NOP ≪ N. With this, the k-sum generates the continuous
deformation of the N-atom assembly via changes in Φ̲, while the
σ⃑i account for more random individual atomic motions.30 A
reference structure r°̲ is used to construct the basis functions Uki
as stated earlier.25 Using mass-weighted orthogonalized31 Uki,

26

one obtains

∑ ∑Φ⎯⇀ =
μ ⃑ μ =

= =
m U r m U

1
,k

k i

N

i ki i k
i

N

i ki
1 1

2

(2)

mi being the mass of atom i. This formulation has the only
difference from the one in ref 26 wherein the μk was directly
embedded in Uki. This more explicit formulation suggests that

the Φ⎯⇀k are generalized CM variables and the μk are associated
masses. For example, if Uki is independent of i, then the related

OP is the center of mass. Other Φ⎯⇀k characterize finer details of
the distribution of mass.32 Equation 2 does not provide the
reciprocal relation, i.e., does not imply r for given Φ̲, since the σ⃑i
are yet-unspecified. This is expected since a given coarse-grained
description (Φ̲ here) corresponds to an ensemble of all-atom
configurations, as addressed in more detail below.
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The deductive multiscale approach25 starts with the N-atom
probability density ρ that depends on the 6N atomic
coordinates and momenta (denoted Γ). While the N atoms
constitute the structure of interest, atoms in the remainder of
the system are labeled with i > N. The starting point of the
multiscale analysis is the ansatz that ρ depends on Γ both
directly and, via the OPs, indirectly. When the Uki change
slowly as the reference structure r°̲ varies, use of the OPs as
defined in eq 2 introduces a smallness parameter ε in the
Liouville equation obtained through the ansatz

ρ = ρ Γ Φ ε ≡ = εt t t t t t t( , ; , ; ), { , , ...}, n
n

0 1 2 (3)

Since ε is related to the ratio of the mass of a typical atom to
that of a subset of the atoms, it is small and thereby enables a
perturbation analysis.26 The result is a Langevin equation for Φ̲
and the coevolving OP-constrained, quasi-equilibrium proba-
bility density ρ̂ of all-atom structures25,26,30

∫
ρ̂ = −β

Φ = Γ*Δ Φ − Φ* −β *

β =

+
H Q

Q H

k T

exp( )/ ,

( ) d ( )exp( ),

1/ B (4)

where * denotes evaluation at Γ* over which integration is
taken, and H is the Hamiltonian. The Δ+ factor is the product
of NOP narrow Gaussian-like functions introduced to impose an
OP constraint on the ensemble of all-atom configurations.
With the above, the ensemble of all-atom configurations

characterized by ρ̂ evolves with Φ̲. In turn, Φ̲ evolves via the
following Langevin dynamics

∑∂Φ
∂τ

= β + ξ τ = εα

′α′
α ′α′ ′α′ αD f t,k

k
k k k k

2

(5)

Φkα is the αth Cartesian component of Φ⎯⇀k, and
⎯⇀fk is the

thermal-average force given by the phase space average of the
corresponding OP force25,26

∫ ∑⎯⇀ Φ = Γ*Δ Φ − Φ* −β * ⃗*+

=
f H U F( ) d ( )exp( )k

i

N

ki i
1 (6)

where F⃗i is the net force on atom i. The diffusivity factors Dkαk′α′
in eq 5 are related to correlation functions of OP time
derivatives.5,26 A random noise term ξk⃑ determines the
stochastic part of Langevin evolution and is constructed by
requiring the integral of its autocorrelation function to be
proportional to the diffusion coefficient Dkαkα.

26

The above multiscale methodology was implemented as the
DeductiveMultiscaleSimulator (DMS) software,5,26 originally
as the MD/OPX software,29,33 and recently redesigned,
optimized, and seamlessly integrated with NAMD34 via a
new Python interface. In the present implementation, the

thermal-average forces
⎯⇀fk were calculated using Monte Carlo

integration. The ensemble of all-atom configurations r ̲ needed
was generated in two steps. First, eq 1 was used with statistically
chosen σ̲ to generate a preliminary ensemble of all-atom
configurations consistent with instantaneous values of the OPs
as they evolve according to the Langevin dynamics (eq 5).
This initial ensemble was enriched via short isothermal MD
runs over which Φ̲ does not change appreciably. The method

takes advantage of the special properties of the OPs introduced
as in eq 1,25,26,30 originally cast as a space-warping framework.28

III. FORMULATION AND IMPLEMENTATION OF THE
SEQUENTIAL BASIN DISCOVERY METHOD

III.A. Discovery Concepts. The foundation of the
sequential elimination method for FE basin discovery is as
follows. Free energy is thermal energy minus temperature times
entropy. Entropy depends on the available information on the
constraints to which the system is subjected (e.g., temperature
or specific values of Φ̲). In the sequential elimination approach,
this information includes the fact that some FE basins are
known and one seeks to discover new ones.
To implement this basin discovery method, a set of Nd

descriptors η ̲ ≡ {η1, ... ηNd
} is used to characterize a basin. While

these descriptors characterize overall system structure as do the
OPs, they are not used directly in the multiscale formulation
since they may not serve as the basis of the r−̲Φ̲ relation 1.
In what follows, we develop formulas for these descriptors

and show how they can be used to automatically guide the
multiscale dynamics (Section II) to a new basin given the
descriptors for the known ones. For simplicity, we present
the method for the case when one basin is known and a second
one is sought. Generalization for multiple known basins is
straightforward (see below).
The search algorithm we provide combines elements of (1)

the multiscale analysis of macromolecular systems;25,26,30,35−48

(2) the notion of a stepwise procedure that precludes evolu-
tion into basins of attraction identified in earlier steps in the
computation; (3) an OP method for simplifying the FE
landscape to eliminate thermally irrelevant basins of attraction.
In addition, (4) an algorithm for accounting for experimentally
determined structural information can be incorporated in the
search algorithm.30

III.B. Implementation of the Basin Discovery Algo-
rithm. The methodology of Section III.A for FE basin discovery
was implemented by modifying the DMS software;5,25,26 this
implementation is denoted here DeductiveMultiscaleSimulator.-
BasinDiscovery (DMS.BD). DMS uses NAMD with the
CHARMM force field to perform selected calculations to
construct forces and diffusions in the Langevin equations
(Section II). Details on these MD calculations are provided in
the Supporting Information. DMS was modified by changing
the expressions for thermal-average forces (Section III.D) and
similarly for the diffusion factors via averaging over restricted
phase space. The workflow of DMS.BD is shown in Figure 1.
The entire FE landscape is not calculated since the discovery

of adjacent basins does not require it.49 Instead, the natural

thermal-average forces
⎯⇀fk (eq 6) are used to locate basins in the

space of OPs or descriptors. The bottom of a basin is defined to
be the point in OP space where all natural thermal-average
forces vanish. If a simulation winds up in a local minimum
(which, coincidentally, may be physically interesting), then in
the next stage of sequential elimination the system will evolve
to another basin, and so on. Like in any other method, the local
minima are distinguished from a global minimum according to
the depth and breadth of the basins of attraction discovered. At
the end of the given step of sequential elimination, the system
will be at the bottom of a well and will have departed from the
saddle point.
DMS enables evolution of OPs along with an ensemble of

all-atom configurations constrained by the instantaneous OP
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values. Such ensembles are constructed using a set of MD runs
that capture a time scale much shorter than those of the OPs
and are initialized to a given value of the OPs using higher-
order OP-like variables as earlier26 and in Section II. Thus, OPs
remain essentially constant when the all-atom configurations
are sampled using such MD runs. As a result, the state-counting
factor Δ+ appearing in the partition function (eq 11) is
accounted for in thermal force and diffusivity calculations. At
each Langevin time step, OPs constrain the quasi-equilibrium
ensemble of atomic states which, in turn, enables the computa-
tion of the thermal-average forces (eq 19) and diffusivities5,26

that mediate Langevin OP dynamics (eq 5). With this, the
modified thermal-average forces guide the system to new FE
basins as in Section III.D.
In DMS.BD, the coevolving quasi-equilibrium ensemble is

modified using the method of Section III.D. Information on
known basins is accounted for in the state-counting factor Δ−

in the form of the product, with one factor (eq 10) for each
basin. In the current implementation of DMS.BD, each of these
factors involves several descriptors, as follows. The set {a1,...,
aNd

} of accompanying exponential width factors (Section III.D)
was taken to be identical for all basins.
III.C. Descriptors. Examples of descriptors that can be used

for basin discovery include total mass, charge, length of the
dipole moment, and eigenvalues of the moment of inertia or
electrical quadruple moment tensors. Such descriptors have

the important property that they are independent of system
orientation. In the current implementation, the three
eigenvalues of the moment of inertia tensor of the structure
relative to its center of mass are chosen. To discriminate
between more complex structures and associated FE basins,
more descriptors can be used.

The moment of inertia tensor ⎯⇀⎯⇀M is defined via

∑⎯⇀⎯⇀ =

+ − −

− + −

− − +
=

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
M m

y z x y x z

x y x z y z

x z y z x y
i

N

i

i i i i i i

i i i i i i

i i i i i i
1

2 2

2 2

2 2
(7)

Being the eigenvalues of ⎯⇀⎯⇀M , molecular descriptors satisfy the
cubic equation

η − + + η + +

+ − − − η

+ − +

+ − =

M M M M M M

M M M M M

M M M M M M

M M M M M

( ) ( ( )

)

( )

( 2 ) 0

xx yy zz xx yy zz

yy zz xy yz xz

yy xz xx zz zz xy

yz xx yz xy xz

3 2

2 2 2

2 2

(8)

whose coefficients are determined by the elements of matrix 7.
To proceed in a sequential elimination calculation, all-atom

configurations which yield descriptors close to those for the
known basin are eliminated from the ensemble as follows.
First one must specify the descriptors that characterize the
known basin. However, a basin includes an ensemble of
all-atom configurations. For isothermal systems, this
ensemble is generated as earlier25,26 using short isothermal
MD runs initialized with configurations consistent with
instantaneous values of Φ̲ (Section II). Out of this ensemble,
a most probable structure with the lowest potential energy
is chosen to calculate descriptor values characterizing the
known basin.

III.D. Modification of Thermal-Average Forces to
Include Known Basin Information. The starting point for
the sequential basin discovery is entropy maximization to
determine the quasi-equilibrium probability density ρ̂ con-
strained by the known information. These constraints include
the isothermal condition and fixed system volume, as well as
the instantaneous values of the OPs at a given stage of the
Langevin dynamics. In addition, states that resemble those in
the known basin are excluded from the counting of states in the
entropy for a sequential elimination computation. With this, the
entropy S ̂ takes the form

∫̂ = − Γ*Δ Φ − Φ* Δ η* − θ ρ̂* ρ̂*+ −S k d ( ) ( ) lnB known

(9)

where an additional factor Δ− is introduced to discount the
known FE basin via the descriptors at its bottom, θ̲known = {θ1,
..., θNd

}. Since the descriptors are coarse-grained variables, they
can be expressed in terms of a complete set of OPs (see second
subsection of Supporting Information). Therefore, they are
used here to introduce information on the known basin to
enable the discovery.
The factor Δ− has the character of 1 − Δ+ and therefore

excludes configurations in the known basin, i.e., configurations
which have descriptors close to θ̲known. In other words, to give

Figure 1.Workflow of the DMS.BD algorithm that enables traversal of
FE barriers and discovery of new basins. (a) Input includes an initial
all-atom structure in solvent, definition of basis functions and OPs, size
of the Langevin time step, update frequency for the reference
structure, and conditions in the host medium. Discovery of a new FE
basin starts with establishing descriptors and values of OPs at the
bottom of known basins and choosing width parameters for the Δ−

factors. (b) Flowchart for evolution to new basin via guided Langevin
dynamics. For a detailed explanation of each step, see the first
paragraph of the third subsection in the Supporting Information.
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preference to the states that are different from those in the
known FE basin, this counting factor is set to one for con-
figurations distinct from the known one and is zero within the
known basin. The particular form of Δ− was chosen as

∑Δ η − θ = − − η − θ−

=
a r( ) 1 exp( ( ) )

d

N

d d dknown
1

,known
d

(10)

The parameter ad is proportional to the inverse width of the
Gaussian-like exponential function associated with descriptor d
in eq 10. The ad values are chosen to ensure escape from the
known basin (see below).
Using eq 9 and entropy maximization, one arrives at the

OP-constrained all-atom probability density ρ̂ (eq 4). The
associated partition function Q takes the form

∫Φ θ = Γ*Δ Φ − Φ* Δ η* − θ

× −β *

+ −Q

H

( ; ) d ( ) ( )

exp( )

known known

(11)

This yields the Helmholtz free energy F

= −
β

Φ θF Q
1

ln ( ; )known
(12)

By analogy with the developments of Section II, the modified

thermal-average forces ⎯⇀fk
m

are obtained (see below). Then,

the Langevin eq 5 can be used to evolve the system from
the known basin to a new one. This calculation is carried out
in the present implementation using methods as described
earlier25,26,29 but with the present modified OP forces described
in detail below. At the end of each Langevin time step, the
updated OPs are obtained along with the associated ensemble
of all-atom configurations. In turn, the latter are used to
generate the next Langevin time step. This Langevin time-
stepping is stopped when the natural (not modified; see
Section II) thermal-average forces are negligible, indicating
arrival at the bottom of the new FE basin.
Here we derive the expression for the thermal-average forces,

modified by the state-counting factors Δ− (eq 10) accounting
for the earlier discovered FE basins. Provided the set of known
FE basins with associated low-energy states, characterized by
NdNknown descriptor values θd,b, the Δ− is calculated for each of
the atomic configurations r ̲ generated by MD sampling at a
given Langevin time step. The associated contribution to the
OP forces is composed of the derivatives of Δ− with respect to

the OPs Φ⎯⇀k. The latter can be computed using the derivatives
with respect to atomic coordinates, the chain rule, and the Φ̲−r ̲

relationship 1. When deriving new thermal-average forces ⎯⇀fk
m
,

one brings the ∂/∂Φ⎯⇀k derivative into the integral (eq 11) and
uses the property of the Hamiltonian H that it does not depend
on OPs explicitly

∫ ∑β ⎯⇀ = Γ −β ∂
∂ ⃑

Δ Δ
∂ ⃑

∂Φ⎯⇀=

+ −Qf H
r

r
d exp( ) { }k

i

N

i

i

k

m

1 (13)

Assume that r ̲ can be obtained from an augmented set of
OPs (i.e., those including the residual parameters as in eq 1).
Then the following approximation holds29

∑ ∑∂ ⃑
∂Φ⎯⇀

=
∂

∂Φ
=

α=

α

α
α

α
α

r r
U r( )i

k x y z

i

k
k i i

{ , , }

o

(14)

Using eq 14, one obtains

∫ ∑β = Γ −β ∂
∂

Δ Δ
= α

+ −
α αQf H U

r
d exp( ) { }k

i

N

k i
i

m

1 (15)

With this, the thermal-average force is that obtained earlier
(eq 6), with the extra Δ− weighting factor (eq 10), plus a new

term ⎯⇀f
b
arising from the following integral

∫

∑

∑ ∑

⎯⇀ = ⎯⇀

=
β

ΓΔ −β ∂Δ
∂η

∂η
∂

=

+

= =

−

α

α

α

f f f

Q
H U

r

,

1
d exp( )

k

N

k k

i

N

k i
d

N

d

d

i

b

1

b b

1 1

OP

d

(16)

In view of eq 16, the derivatives of Δ− with respect to the
descriptors η ̲ should achieve their maximum values in the

already discovered stable states to maximize biasing force ⎯⇀f
b
.

The derivatives of the descriptors with respect to the atomic

coordinates ∂ηd/∂riα in the new thermal-average force term ⎯⇀fk
b

in eq 16 are to be taken numerically for each of the
OP-restricted configurations within same Langevin time step.
These derivatives were calculated using 3N independent offsets
in the x, y, and z coordinates of each atom with subsequent
recalculations of ηd. The speed-up in calculating these derivatives
was achieved by using the analytical roots of polynomial 8, as
opposed to using the eigenvalue calculation subroutines.

The thermal-average forces ⎯⇀f in our earlier approach
(Appendix C in ref 26) are obtained from the ∂Δ+/∂ ⃑r i term
in eq 15

−β ∂Δ
∂

= ∂
∂

Δ −β

− Δ
∂ −β

∂

+

α α
+

+
α

H
r r

H

H
r

exp( ) { exp( )}

exp( )
i i

i (17)

Using the property of Δ+ that it does not depend on spatial
coordinates explicitly, but rather via OPs, and employing the
divergence theorem, we present the first term in eq 17 in a form
of full gradient and note that its contribution to the integral 15
is zero. The space derivative of H in the second term of eq 17 is

a negated α-component of the corresponding atomic force, ⎯⇀Fi.
Thus, one obtains

∫

∑

∑

⎯⇀ = ⎯⇀

= − Γ −β Δ Δ

−

=

−

− + −

=
αα α

f f

f
Q

H U F

,

1
d exp( )

k

N

k

k
i

N

k i i

1

1

OP

(18)
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Here, the ⎯⇀−
fk are thermal-average forces modified by the Δ−

factor in the phase space integral 18.
It was verified that by neglecting the biasing force (eq 16)

and using only the term ⎯⇀−
f (eq 18), i.e., by simply multiplying

the integrand in the expression for thermal-average forces
(eq 6) by the anti-Gaussian-like probability function Δ− of
descriptors, one does not provide the desired driving force for
the system to evolve out of the discovered FE basins. This is
because the noise term dominates over the OP forces (eq 5).
Attempts to increase the Langevin time step Δt and narrowing
the widths ad

−1 of the anti-Gaussian Δ− did not lead to the
increase in OP forces.
The overall thermal-average force consists of two compo-

nents: the FE driving forces f kα modified by Δ− factor and the
biasing information theory-guiding ones ( f kα

b),
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Discussed in Section IV, the mutually opposing nature of these
forces underlies the discovery of basins and associated free-
energy minimizing structures via DMS.BD.
III.E. Guided Evolution from the Known to Unknown

Basins. The calculation from a known basin to a new one
proceeds as follows. One starts the calculation within the
known basin and then evolves the system via Langevin eq 5
with modified thermal-average forces of eq 19. A Langevin
evolution course is tracked by the values of potential energy

and
⎯⇀fk (eq 6). After a high FE barrier is overcome and the

system descends toward the bottom of a new FE basin, the
basin discovery simulation is carried on until the thermal-
average forces become negligible. A new basin structure is

chosen from the time step at which
⎯⇀fk are negligible, signifying

that minimum free energy was achieved within the new basin.

Let the biasing thermal-average force ⎯⇀fk
b
(eq 16) be the Φ⎯⇀k

gradient of the FE associated with the modified partition

function (eq 11). Specifically, the ⎯⇀fk
b
are computed using the

derivatives of the state-counting factor 10 with respect to the
descriptors

∑∂Δ
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= Δ
η − θ

∑ η − θ −

−
−

= =

r a

a r

sgn( ( ) )

exp( ( ) ) 1d b

N
d d b d

d
N

d d d b1

,

1 ,

known

d
(20)

It is also necessary to make an estimate of the Nd inverse
width parameters ad. In the present implementation, this is
accomplished via adjustment to ensure escape from the known
basin (see third subsection of Supporting Information).
The present approach not only allows the system to escape

previously discovered minima but also ensures that it reaches
the next state at which the modified free energy is minimal.
When the system departs far enough from all known free
energy basins such that the molecular descriptor-dependent Δ−

factor grows to almost one, it becomes insensitive to the escape

factors in the Monte Carlo integration formula (see eqs 19 and 20).
As a result, the biasing force (eq 16) approaches zero as the
barrier separating the new minimum from the old one is
surmounted. The remaining part of the thermal-average force
then is the natural force modified by the (almost constant) Δ−

factor (see eq 18). Thus, after escaping the known basins of
attraction, the system is essentially only driven by the natural
free energy force which, by construction, drives the system to a
minimum in the true free energy landscape.
At the stage when the system is driven downhill by only the

natural free energy force, the simulation algorithm becomes the
same as implemented in our DeductiveMultiscaleSimulator. The
latter proceeds one or more orders of magnitude faster than
traditional MD and preserves accuracy. Therefore, the search for
a new energy minimum is not random but is directed both out
of known basins and to new ones. Unlike other approaches, our
multiscale methodology provides the way to find multiple free
energy minima in a sequential manner, as explained below. In
contrast, a random search based on randomly chosen initial data
could lead to many evolution scenarios ending in the same basin
and, therefore, wasting simulation time.

III.F. Generalization for Sequential Discovery of
Multiple Free Energy Basins. The case of a single known
basin and the discovery of a new one was considered above.
This algorithm can readily be generalized to the case of
sequential discovery in a stepwise procedure. At each step, the
system is guided away from the basins discovered in earlier
steps to a new one. In a given step, the Δ− factor (eq 10) can
be generalized to be a product of similar factors Δ−(η ̲ − θb̲),
one for each of the known basins labeled b = 1, ..., Nknown. For
basin b, the Nd descriptors θd,b are accounted for, and the set
{a1, ..., aNd

} of factors in the exponential function (eq 10) is
chosen to ensure escape from each of the known basins.
The Δ− factors artificially lower the FE of a system as it

evolves out of the known basins. When Δ− are incorporated in
a sequential calculation, the system is driven away from all
basins discovered in earlier phases of the calculation by the

modified thermal-average forces ⎯⇀fk
m

(eq 19). Within a given
phase of such a calculation, a number of Langevin steps are to
be carried out to arrive at the set of OP values at the bottom of
a newly discovered basin.
It is possible that an artificial minimum is created due to the

alterations of the free energy functional. Such artifacts can be
detected and eliminated via a subsequent traditional MD
simulation. Alternatively, one can restart this process at an
artificial minimum, and the system will be driven away to a new
minimum. However, this was not found to be a problem for the
case of lactoferrin studied.

IV. VALIDATION FOR HUMAN LACTOFERRIN
The FE basin discovery method was validated by finding two
new FE basins on the FE landscape for human lactoferrin.50

A brief summary of observations on this system is as follows.
Two crystal X-ray structures are available for this protein:
diferric lactoferrin (PDB code 1LFG) and apolactoferrin (PDB
code 1LFH).50

To validate the general DMS.BD algorithm of Section III.F,
an arbitrary structure, and notably the compact closed-lobe
diferric conformation 1LFG19 with the iron and carbonate ions
removed (Figure 2a), was used to start a DMS simulation to
find the bottom of a first FE basin. Then DMS.BD was used to
simulate traversal of the FE topography and discover a new
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basin for lactoferrin starting from the diferric basin. A set of
descriptors characterizing the closed-lobe lactoferrin structures
from the bottom of this first basin were used to guide
simulation away from it. Lactoferrin was guided to a second
basin with slightly opened structures. Next, a set of descriptors
characterizing the second “pseudodiferric” basin were incorpo-
rated to guide protein to a third basin. The third basin contains
open-lobe structures (Figure 2h) which are similar to the
apolactoferrin conformation 1LFH but are less open than the

X-ray structure 1LFH (Figure 2b). Additional details on DMS
and DMS.BD simulations are provided in the Supporting
Information.
Implementation of DMS.BD is based on the interplay of Δ−-

modified ⎯⇀−
f( )k and biasing

⎯⇀f( )k
b

components of the modified

FE driving forces ⎯⇀fk
m

(eq 19). Inclusion of the Δ− factor in

state counting reduces those FE minimizing forces ⎯⇀−
fk (eq 18)

that would have otherwise kept the system within the known

Figure 2. Following types of human lactoferrin structures are presented: crystallographic (a), (b); discovered basin bottoms (c), (e) and (f), (h); and
transition points (d), (g). These are (a) closed 1LFG X-ray structure, (a′) 1LFG MD used to start DMS simulation; (b) open 1LFH; (c) at the
bottom of basin 1; (d) transition point along the basin 1→2 pathway; (e) arbitrarily chosen Langevin time step from basin 2 (called “descent 2”
structure, see subsection five in Supporting Information); (f) bottom of basin 2; (g) basin 2→3 transition point (starting at the “descent 2”
structure); (h) bottom of basin 3. All these structures are of lowest potential energy among those in the ensemble consistent with the instantaneous
OP values. A transition point between basins is taken to be at the Langevin time step for which the potential energy goes through a maximum. Such
points are close to transition regions where FE force changes sign (see paragraph 6 in Section IV).
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basin (i.e., if
⎯⇀fk and not ⎯⇀fk

m
was used). The biasing forces

⎯⇀fk
b
,

by design, oppose the ⎯⇀−
fk and, by the choice of inverse width

parameters ad in eq 10, drive the system away from known

basin(s). Once out of a known basin, ⎯⇀fk
b
becomes smaller than

⎯⇀−
fk if the structure changes appreciably relative to those
characterizing the known basins. Thus, after a barrier is crossed,
the ⎯⇀−

fk drive the system toward the FE minimizing structure
for which descriptors differ from those in the known basin(s).

With this, the
⎯⇀fk

m
drive the system away from known basins

and to new ones.
To rationalize the above effects, we compute the thermal-

average forces
⎯⇀fk (eq 6) at each Langevin step of a DMS.BD

trajectory. For structures near the bottom of a basin, all
⎯⇀fk are

close to zero. However, stochastic forces ξk⃑ (eq 5) force the
system to fluctuate about the bottom. If the system is far from

the bottom, the
⎯⇀fk are appreciable and drive the system to the

bottom. With this, the
⎯⇀fk provide information on the FE

landscape topography along a Langevin evolution path. They
indicate the location of FE barriers along the path (i.e., places

where the
⎯⇀fk vanish). For extensive sampling, integration over

these forces yields an estimate of FE barrier height when the ⎯⇀fk
are integrated (see subsection four in Supporting Information).
For lactoferrin oriented as in Figure 2, lobes open in the

xz-plane accompanying the transition from the diferric to the
apolactoferrin basin. In particular, OPs Φ100X and Φ001Z track
extension-compression along the x and z directions, capturing
the structural transition. The closed and open states are also
characterized by values of the descriptors (i.e., moment of
inertia eigenvalues, Figure 3). Thermal-average forces along the
DMS.BD trajectory from the diferric to the pseudodiferric basin
are shown in Figure 4. Most forces fluctuate around zero along
this trajectory, suggesting that local topography along the
guided trajectory has the character of a valley. However, forces
f100X and f 001Z along the trajectory suggest that a barrier is
crossed; i.e., they change from negative to positive as the barrier
is traversed, stop growing, and ultimately go to zero as the
system approaches the bottom of a new basin (Figure 4). This
illustrates that our method explores local topography in the
vicinity of high probability pathways; i.e., the FE is minimum
along the directions orthogonal to the path.
In Figure 5, we plot potential energies of the most probable

atomic configurations from constant OP ensembles at every
Langevin step during transitions between specified basins. The
potential energy profile also suggests a barrier crossing. The
presence of such barriers suggests that the FE and potential
energy landscapes are related, but not identical (Figure 4 versus
Figure 5). This is expected because entropy effects at finite
temperatures are not reflected in the potential energy profile
and, therefore, can shift the location of potential energy features
(minima or transition points) relative to the FE ones. The
above transition path and topography are not readily accessible
via traditional MD, as follows.
To confirm that different FE basins were discovered, an

ensemble of all-atom configurations in the vicinity of the
bottom of each basin was explored using traditional isothermal
MD. For a given basin, the MD was initialized with an all-atom
state of minimum potential energy, which was consistent with

the OPs at the bottom of the basin. Then, 10 ns NAMD runs
were performed to show that an all-atom trajectory starts and
ends in the same basin (Figures 6 and 4c). This MD sampling

Figure 3. DMS.BD Langevin timecourses for descriptors showing
distinct differences between the basins. (a) Eigenvalue 1, (b)
eigenvalue 2, and (c) eigenvalue 3 of the moment of inertia tensor
for human lactoferrin. (black) Basin 1 → 2 transition; (red) control
simulation launched from basin 2; (green) basin 2 → 3 transition
proving robustness of the basin discovery method (subsection five in
Supporting Information). The eigenvalues remain fairly constant at the
bottom of basins (Figure S2) and change during interbasin transitions.
Eigenvalues 2 and 3 behave similarly during the basin 1→ 2 transition;
however, this similarity is lost in the next transition. If one starts in
basin 1, only modest changes in descriptors are observed. In contrast,
when precluding basins 1 and 2 in going to basin 3, descriptors change
much more, implying greater extent of lobe opening.
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validates our method, i.e., trajectories remain for long times in a
given FE basin. That a trajectory remains in a basin is indicated

by the fact that the OPs do not change appreciably over their
timecourse. In these samplings one does not obtain structures
whose set of descriptors (and, therefore, OPs) falls in the
domain sampled by MD in any other basin (Figure S2,
Supporting Information). In addition, the DMS.BD is robust to
the choice of initial all-atom structure. The analysis described in
the fifth subsection of the Supporting Information suggests that
DMS.BD can guide a system away from a known basin through
the arbitrary choice of initial structure, which does not
necessarily characterize the bottom of the basin. In this context,
we probe the basin 2 to 3 transition using an arbitrary initial
structure denoted “descent 2”.
We compare our results with those from experimental and

previous theoretical observations. Transition of lactoferrin from
the diferric to apolactoferrin states is accompanied by changes
in the vicinity of residues THR90 and VAL250. These residues
act as hinges that facilitate the lobe-opening transition.51 We
observe substantial differences in the backbone dihedral angles
of these residues between the closed state and the discovered
slightly open one (Figure S1, Supporting Information). In
particular, more differences in dihedral angles are observed for
residues in the loop region than in the highly structured parts of

Figure 4. Thermal-average forces
⎯⇀fk are shown along a transition path from basin 1 to 2: (a) forces of maximum magnitude showing clear interbasin

transition pattern and (b) second-highest amplitude ones oscillating around zero. Values of k are shown in legends. The figure suggests that the FE
minimizing tendency of lactoferrin in basin 1 makes it contract in the z-direction and expand in the x-direction (implied by the negative f 001Z and
positive f100X). During barrier crossing, the sign of these forces changes to positive along z and negative along the x direction. This leads to further
expansion of lactoferrin along the z direction and hence lobe opening in basin 2. (c) Contrasting behavior of thermal-average f100X (black) and
biasing f100X

b (magenta) forces. f100X
b is maximum near the bottom of the basin and gradually decreases as the system escapes from the FE minimum as

indicated by the increase in f100X. Inset shows that f100X computed from MD simulations are small and random when sampling structures in basin 1
and, therefore, do not drive transitions between basins.

Figure 5. Energy timecourse of lowest potential energy structures of human
lactoferrin generated from constant OP ensembles during the discovery of
FE basins. Line styles and simulations are the same as in Figure 3.
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lactoferrin. This validates that most of the secondary structure
is preserved during the transition, as has been suggested by
previous theoretical results.19 A residue-by-residue rmsd
comparison of the backbone Cα atoms between structures
from basin 1, 2, and 3 with respect to that of the X-ray structure
1LFG of closed lactoferrin (Figure 7) is performed. To

understand differences with the apolactoferrin structure 1LFH,
we also plot the rmsd between diferric and apolactoferrin
structures. The rmsd gradually increases from basin 1 to 3
indicating lobe opening. The deviations are significant in the

vicinity of residues 90 and 250, indicating that the hinge motion
is captured through DMS.BD simulations. Thus, the DMS.BD
predicted FE minimizing structures approach the experimen-
tally observed open state 1LFH.

V. CONCLUSIONS

A methodology for the sequential discovery of FE basins for
macromolecular systems was presented. Structural information
from known basins is used to escape/avoid them and thereby
enable the discovery of yet-unknown basins. The approach was
implemented via our DMS software and validated using two
X-ray structures for human lactoferrin. Two new FE basins were
discovered. The method has the potential for discovering
pathways of transitions between basins, including estimates of
FE barriers along the transition paths. Comparison of nano-
characterization data with values calculated for the discovered
all-atom states provides an approach for interpretation of
such data. One example of nanocharacterization data to
which this approach can be applied is collision cross sections
from ion mobility−mass spectroscopy experiments for charged
biomolecules.
The basin discovery algorithm is built on multiscale techniques.

The latter provide orders of magnitude increase in the efficiency
of simulation for large macromolecular assemblies.5,26 These
efficiencies allow the methodology and the implementation of
interest in biophysical studies such as on structural transitions in
viruses.33,52

For high temperature, the distribution of likely states within a
FE basin is very broad, and therefore, the basin becomes less
well-defined. In particular, FE barriers that would otherwise
sequester all-atom trajectories to lie within the basin are lower,
enabling more frequent escape. It was shown here that
descriptors chosen at the state of minimum FE in the basin
can be used to guide multiscale simulations from known to yet-
unknown ones (Section IV).
The present method achieves system evolution and FE

landscape exploration via a trifold approach. OPs provide the
coarse-grained description via an expression that facilitates the
construction of the ensemble of all-atom states consistent with
the instantaneous OP values. However, as the system departs
significantly from an initial reference all-atom structure, the
OPs may not provide a viable description. Thus, in our
implementation a new all-atom reference configuration and
resulting newly defined OPs are established when needed.
This implies that the present OPs do not serve as an appropriate
coarse-grained description for mapping the broader FE
landscape. In contrast, the system descriptors can serve as the
coarse-grained state variables with which to define the landscape
since their definition does not involve a reference configuration.
However, the descriptors do not provide a convenient way to
generate the ensembles of all-atom states needed to construct
the thermal forces and diffusion factors mediating the evolution
of the coarse-grained state. Thus, the present OPs facilitate
ensemble generation and coarse-grained evolution; the
descriptors provide a coarse-grained variable for a continuous
mapping of the FE landscape despite the changing definition of
the OPs. Thus, our method integrates the OPs, the descriptors,
and ensembles of all-atom states to enable multiscale simula-
tions across a FE landscape. This is the logic behind our trifold
simulation and basin discovery approach.

Figure 6. Potential energy timecourse of lactoferrin from MD
sampling simulations starting at structures near the bottom of
discovered basins. (black) Basin 1, potential energy minimum of
basin 1 was achieved at time instance t = 9.940 ns; (red) “descent 2”
structure from basin 2, with a potential energy minimum at t = 3.686
ns; (blue) lowest-energy basin 2 structure, with a potential energy
minimum at t = 3.621 ns; (green) basin 3, with a potential energy
minimum at t = 2.733 ns. Distinct energy bands indicate that each MD
trajectory is confined to a given basin.

Figure 7. Residue-by-residue rmsd relative to closed-lobe diferric X-ray
structure 1LFG averaged over a 25 residue window: (black) diferric
basin 1, (blue) pseudodiferric basin 2, (green) open-lobe apo-like
basin 3, and (magenta) the apolactoferric structure 1LFH. This
analysis implies that the lactoferrin gradually opens during DMS.BD
simulation, exploring a range of states from diferric to apolactoferric
character.
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