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Microbiology by Multiscaling
Laws of Molecular Physics

I
t has long been an objective of the physical sciences to derive
principles of biology from the laws of physics. At the angstrom
scale for processes evolving on timescales of 10�14 s, many
systems can be characterized in terms of atomic vibrations and

collisions. In contrast, biological systems display dramatic trans-
formations including self-assembly and reorganization from one
cell phenotype to another as the microenvironment changes. We
have developed a framework for understanding the emergence of
living systems from the underlying atomic chaos.

Our conceptual starting point is the recognition of the key role
of coupling among processes across many scales in space and
time that underlies microbial systems (Figure 1). Highly fluctuat-
ing atomic-scale processes lead to the thermal-average and fric-
tional forces driving the evolution of order parameter (Figure 2).
In our studies, order parameters characterize suprananometer-
scale features of a virus, nanocapsule, or other microbiological or
nanomedical structures. However, these order parameters control
the statistics of atomistic fluctuations. This completes a key feed-
back loop underlying the microbial behavior. This feedback is
ignored in decoupled coarse-grained theories [1], [2].

The significance of the workflow of our project (Figure 3) is
both fundamental and practical. It is fundamental because it
advances and integrates methods in the theory of Brownian
motion to understand the stochastic world of nanobiology. It is
practical since it can lead to calibration-free models of microbes
and nanomedical systems that can, for example, serve as the basis
of computer-aided vaccine or microbial fuel cell design strategies.

Phenomena under study in our center include viral structural
transitions, bionanosystem (BNS) migration and self-assembly,
and self-organized chromosome segregation and division in
bacteria. In this article, we provide more details on the concep-
tual flow (Figure 2) and on our applications to specific biologi-
cal phenomena. Implications for the medical and energy
sciences and conclusions are drawn.

All-Atom Multiscale Analysis of BNSs
To derive principles of microbiology, we assume that the N-atom
system evolves via classical mechanics. Thus, our starting point
is the application of Newton’s laws to molecular systems. These
laws describe the dynamics of the N-atom configuration of the

virus, ribosome, bacterium, or other microbiological structure.
As the laws of molecular physics are well established, this pro-
vides a reliable starting point. However, present-day molecular
dynamics (MD) is not practical for simulating these supramillion
atom systems by a direct all-atom approach. For example, the
highly optimized MD package nano molecular dynamics
(NAMD), run on a 1,024 processor platform, would take about
3,000 years to simulate a structural transition in a small virus over
its characteristic millisecond timescale. The object of our ap-
proach is to use the multiscale character of BNS to overcome this
barrier and enable the computer simulations needed to discover
the principles of microbiology.

There have been other attempts to overcome the computa-
tional barrier, but they have limitations. Decoupled coarse-
grained MD [1], [2] groups atoms into lumped elements and
calibrates effective forces between them. This misses the feed-
back given in Figure 1 and makes the incorrect assumption
that the lumped elements satisfy simplified laws (Langevin
equations). However, a more rigorous multiscale approach
shows that if the lumped elements are too small they satisfy
friction-dominated, non-Newtonian mechanics; if they are too
large, then the exchange of energy between their internal
degrees of freedom and those of neighboring lumped elements
must be accounted for via the feedback shown in Figure 1. In
contrast, a rigorous way to reduce the computation is to use
projection operators [3]. However, this introduces factors into
the reduced set of equations for the dynamics of the multiatom
features of interest; unfortunately, these factors are difficult to
evaluate in terms of the interatomic forces or via MD.

In contrast to the all-atom starting point we advocate, one
usually conceives biology in terms of nanoscale or larger com-
ponents. A virus contains several hundred protein units (cap-
somers) that encase the genetic material and, for enveloped
viruses, contains an outer membrane. The dynamics of a virus
is described by virologists in terms of these subunits. However,
it is not always clear if these units are well defined (e.g., capsid
pentamers or hexamers) or are simply expressions of icosahe-
dral symmetry and are not well defined energetically, i.e., are
not invariant over the process of interest.

What is needed is a set of variables that can be automati-
cally constructed and which do not impose preconceived
notions of structure and dynamics. Such an approach would

BY PETER J. ORTOLEVA, P. ADHANGALE,
S. CHELUVARAJA, MAX W. A. FONTUS,
AND ZEINA SHREIF

© DIGITAL VISION

Digital Object Identifier 10.1109/MEMB.2009.932389

Applications in Nanomedicine and Energy

70 IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE 0739-5175/09/$25.00©2009IEEE MARCH/APRIL 2009



avoid omitting unforeseen structures or transition pathways
connecting them. Variables characterizing the supramillion
atom-scale features that we use in our studies are of two types.
The first type describes objects that are intact during the
process of interest, e.g., macromolecules during viral self-
assembly; these are generated by conceiving all space as a
deformable medium, embedding the system in this space and
introducing order parameter U that generate the transforma-
tion of interest via deformation of space. Example processes
that can be treated in this way are viral capsid structural transi-
tions or bacterial daughter chromosome segregation following
replication. The second type describes interdiffusing molecu-
lar species and includes generalized density variables. These
variables are much like molar concentrations and describe the
spatial distribution of a cloud of many individual features
(e.g., drug molecules escaping from a nanocapsule delivery
system or phospholipids in a membrane). For the intact system
components, we introduce a discrete set of order parameters.
However, for interdiffusional phenomena, we introduce an
uncountable infinity of variables, i.e., one for each of the
uncountable set of spatial points within the system [4].

To proceed, the order parameters must be related to the all-
atom configuration. With this, we determine, via Newton’s
equations, if the order parameters evolve slowly relative to the
timescales of atomic vibrations or collisions. When this
timescale separation is present, a factor e, the ratio of the
characteristic time of atomic dynamics to that of order param-
eter evolution emerges. For phenomena involving the rear-
rangement or assembly of major viral components, this can be
10�5. Thus, if one could derive equations for order parameter
dynamics free of explicit atomistic fluctuations, they would
evolve roughly 10�5 times slower than atomic vibration. This
implies that a simulator based
on such equations could pro-
ceed 105 times faster than
MD, without loss of accuracy
or unjustified simplification.
Such an approach avoids the
need for recalibration with
each new application, as it is
based on the laws of molecu-
lar physics. Thus, simulation
of a BNS over biologically
relevant time periods would
then be feasible.

Our procedure is outlined
and reviewed earlier in Fig-
ure 2. The system is de-
scribed via the positions and
momenta C of the N atoms (a
total of 6N variables). As we

are not able to comprehend or are interested in the detailed
time course of each atom, we introduce the probability density
q for the state C at time t. The evolution of q is determined by
the Liouville equation. To evoke the biology from the atomis-
tic chaos described by this equation, we make the hypothesis
that q depends on C both directly and, via our C-dependent
order parameters, indirectly. The system, and hence q, evolves
on multiple timescales, i.e., 10�14 s for atomic vibrations to
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Fig. 2. Schematic multiscale algorithm indicating that thermal-average forces and friction
coefficients are computed on the fly, since they coevolve with the state of the bionanosys-
tem by solving Langevin equations. This has been implemented as a simulator NanoX, a multi-
scale software for modeling nanosystems.
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Fig. 1. Order parameters characterizing nanoscale features
affect the relative probability of the atomistic configurations,
which in turn, mediate the forces driving order parameter
dynamics. This feedback is central to a complete under-
standing of nanosystems and the true nature of their dynam-
ics. Our rigorous multiscale approach captures all such
feedback by coevolving the order parameters with the
thermal-average forces and coefficients quantifying the role
of frictional forces.
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10�3 s or longer for viral migration or bacterial daughter chro-
mosome segregation. Thus, we introduce a set of time varia-
bles tn ¼ ent, n ¼ 0, 1, . . . to track the distinct ways in which
q depends on time t. Although t0 tracks atomistic timescale
events, the set of longer times t ¼ ft1; t2; . . .g track the slower
processes, i.e., tn changes by about one unit when time t
changes by e�n.

Our hypothesis on q takes the form

q ¼ q(C, U, W, t0, t; e), (1)

where U is a set of discrete order parameters, W a set of spatial
profiles of order parameter field variables, and t0, t track the
various dependencies on time. With this and the chain rule,
the Liouville equation takes the multiscale form

X1
n¼0

en @

@tn
� Ln

� �
q ¼ 0, (2)

where the Ln arises from the original Liouville equation and
the chain rule. The operator L0 drives the short timescale (t0)
dynamics, while the Ln for n > 0 mediates the slow evolution
associated with order parameter dynamics.

To solve the aforementioned problem, we take advantage of
the timescale separations, i.e., the smallness of e. We write q as a
Taylor series (q ¼ q0 þ q1eþ � � �), then analyze the multiscale
Liouville equation order by order. To lowest order, (2) implies
@q0=@t0 ¼ L0q0. For most microbial phenomena, the evolution
of interest is slow (i.e., on timescales greater than a nanosecond).
Thus, q0 is assumed to have no t0 dependence. On this timescale,
the system explores many atomistic configurations and hence
can be described via a probability distribution that coevolves
with the slowly changing order parameters. In this case, we show

that q0 has the quasi-equilibrium form q̂W0(U, W, t), where q̂ is
determined by entropy maximization. This introduces the free
energy for given values of U and W; W0 is determined in the
analysis of higher-order equations in e as follows.

Before proceeding, we introduce the reduced probability
density W for the order parameters. First, we derive an exact
conservation equation for W. While this equation is not closed
in W (i.e., depends on q and not just W), with the Taylor expan-
sion for q we show that as e! 0 it is closed, W ! W0, and the
resulting dynamics occurs on the e�2 timescale or longer.

Highlights of the final results are the following:
� All parameters in the final equations are calculated via

formulas in terms of the interatomic force field that can
(unlike for projection operator methods [3]) be evaluated
via MD, constituting a calibration-free theory.

� The formalism breaks down when the factors appearing
in the stochastic order parameter equations show anoma-
lous (divergent) behavior, providing a self-consistency
check. The remedy is to add more order parameters and
repeat the analysis.

� When order parameter fields W are included, the resulting
equation determining W involves functional derivatives, and
the Langevin equation for the stochastic dynamics of these
order parameters involves a generalization of diffusion equa-
tions with thermal-average forces, nonlocal behaviors, and
random force terms whose statistics are well characterized.

� The feedback of Figure 1 is incorporated in the theory,
and the interaction of atomistic variables with discrete
or field-order parameters is captured, all in a rigorous,
self-consistent fashion.

� Our stochastic equations are generalizations of those intro-
duced by Einstein and Smoluchowski to study Brownian
motion. Although one of their objectives was to show that
Brownian dynamics follows from the laws of physics, we
complement this by developing a theory that captures the
key role of Brownian motion in microbial systems.

From this methodology and results, we are deriving princi-
ples of microbiology.

Bioelectrics
Electrical forces between charges are strong and long range.
Thus, the approach outlined earlier must be modified. Nonethe-
less, a multiscale perspective provides insights into bioelectric
phenomena and a way to solve otherwise difficult equations.

Electrical effects in microbial systems are of two types. Elec-
trostatics strongly influences bionanostructure and dynamics
because of Coulomb interactions among charged groups on the
structure and the counterion layers induced in the electrolyte
from local variations in concentrations of mobile ions. Mem-
brane potentials can be induced by active transport of ions or
the restricted membrane permeability of some ions across the
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Fig. 3. The principles of microbiology are being derived from
the laws of molecular physics via multiscale analysis and an
all-atom starting description. Order parameters are created
that translate atomic descriptions into biological variables
that obey rigorous stochastic equations of self-assembly and
transformation.

A multiscale perspective provides insights into

bioelectric phenomena and a way to solve

otherwise difficult equations.
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membrane. In both bioelectric phenomena, one encounters mul-
tiscale effects. For example, the spatial variation of charge
density and dielectric constant shows an angstrom scale varia-
tion, but the structures of interest, such as viruses, are of supra-
nanometer size, counterion layers are on the nanometer scale in
thickness, and bacteria are micrometers in size.

Electrostatic interactions among fixed charges on a nano-
structure cannot be evaluated by considering Coulomb forces
directly. This is due to the channeling of electrical fields
induced by variations in the dielectric constant within the
BNS, e.g., between an electrolyte and the interior of a globular
protein. The Poisson–Boltzmann (PB) equation accounts for
this field channeling and the shielding effect of the mobile
ions in a host electrolyte. We have developed an efficient
algorithm for solving the PB equation [5]. Our methodology
follows from the recognition that the electrical potential
depends on the position across the system in two distinct ways:
1) the angstrom scale variations reflecting the millions of
charges fixed to the BNS and 2) the suprananometer scale
reflecting the overall variations in the field profile across the
BNS. Multiple spatial scales play a key role in these systems.
The thickness of the membrane, the thickness of counterion
charge layers (the Debye length), and the size of the intracellu-
lar granules, organelles, or the whole cell are examples of
these length scales. Using the ratio of the typical length associ-
ated with the distance between neighboring atoms (a few ang-
stroms) to that of the overall size of the BNS (greater than a
few nanometers), we derive rigorous coarse-grained equations
for the overall field profile. This coarse-grained equation and
the solution of a readily simulated linear equation for a
response function yields an efficient multiscale PB solver.
The solution technique preserves both angstrom and supranan-
ometer scale spatial variations in the electrical field. Its great
computational efficiency over other PB solvers that do not
take advantage of the multiscale nature of these systems will
open up new opportunities in biosystem modeling.

Active transport across biological membranes and fixed
charges in the medium create transmembrane electrical poten-
tials. The strength of Coulomb forces creates equal and oppo-
sitely charged layers on opposite sides of the membrane.
Thus, complete cell models must be electrometabolomic in
character; the electrically driven transmembrane ion fluxes
are coupled to the network of metabolic processes because of
active transport.

Applications and Simulations

Whole-Virus Simulation in Energy and Health
Sciences: The NanoX Software Package
Microbes in the soil, fuel tanks, petroleum reservoirs, and in engi-
neered fermentation systems play a key role in energy generation,

storage, loss, and transport [6]. For example, fuels stored in tanks
of subsurface reservoirs can be degraded by a number of microbes.
These microbes can be vulnerable to viral attack, presenting the
possibility of designing vaccines against bacterial degradation of
organic fuels. Viruses like poliovirus, human rhinovirus (HRV;
human immunovirus), and human papilloma virus (HPV) are
examples of nonenveloped systems, while human immunodefi-
ciency virus (HIV) and dengue are enveloped viral human patho-
gens. In all these cases, we suggest that the whole-virus modeling
can serve as a key element of a strategy for the computer-aided
design of antiviral vaccines or drugs and for understanding the
dynamics of natural and synthetic microbial colonies.

To this end, we have developed the NanoX all-atom multi-
scale simulation package (Figure 4). The virus we use to dem-
onstrate our system is the well-characterized cowpea chlorotic
mottle virus (CCMV) [7], [8]. The nonenveloped CCMV sys-
tem undergoes a swelling transition induced by pH changes.
Salinity, temperature, and Ca2þ concentration also regulate
the transition. Order parameters for this and other BNSs were
introduced to start our multiscale analysis as follows. Let
Uk(k ¼ 1, 2, . . . ) be a complete set of functions of position s

*0

relative to the center of the simulation domain. We introduce
vector-order parameters U

*

k via a transformation, taking an
atom i from its position s

*0

i to s
*

i:

s
*

i ¼
X

k

U
*

kUk s
*0

i

� �
þ r*i: (3)

As the k sum is finite (i.e., we seek only a minimal number
of key order parameters), one must add a residual contribution
r*i to the more coherent contribution. We then determine U

*

k to
minimize the mass-weighted sum of the r*i

�� ��2, i.e., the set U
*

k

contains the maximum amount of information on the deforma-
tion of the BNS. With this and the orthogonality of the Uk, we
find [9]

U
*

k ¼
XN

i¼1

mi

m�
Uk s

*0

i

� �
s
*

i, (4)

where s
*

i and s
*0

i are positions of atom i in a deformed and
reference configuration of the virus. For example, s

*0

i can be
derived from an X-ray cryostructure, while s

*

i will be the struc-
ture as it evolves due to changes in pH. Also, mi is the mass of
atom i while m� is the total mass of the atoms in the simulation
domain.

The vector-order parameters have a center of mass (CM)
character (for the particular basis functions Uk that vary
smoothly over the simulation domain). U

*

k changes slowly in
time (as can be verified using Newton’s equation). Thus, a via-
ble starting point for our all-atom multiscale modeling of tran-
sitions in CCMV capsid using basis functions Uk in the form of

Our objective is to use multiscale techniques

to derive principles of microbiology from the

laws of molecular physics.
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products of three Legendre polynomials, one for each (x, y, z)
Cartesian axis. Using these order parameters and a computa-
tional algorithm based on the extrapolation of the system in
time via the U

*

k and the periodic short MD simulation [9], we
evolve the capsid in time. As the number of order parameters
used exceeds the number of hexamers and pentamers, this
approach captures the swelling pathway proposed by Liu et al.
[8] involving the displacement and rotation of capsomers.

With the structural order parameter U
*

k, an all-atom multi-
scale analysis (AMA) yields a Smoluchowski equation for
W U; tð Þ of the form

@W

@t
¼
X
kk0

@

@U
*

k

� **
Dkk0

@

@U
*

k0

� bfk0

" #
W

( )
, (5)

where f
*

k ¼ �@F=@U
*

k for U-dependent free energy F and
**
Dkk0

is a tensor proportional to the
integral in time of the corre-
lation function

U
*

k

�

(t) U
*

k0

�

(0)

* +
, (6)

with � implying a time deriv-
ative. A necessary condition
for consistency of the AMA
is that the correlation func-
tions in (6) decay on a short
timescale relative to that on
which U

*

changes. Figure 5
shows this to be the case.
The correlation time is on
the order of that for single
atom velocities [10] and is
consistent with Figure 3. In
Figure 6, we present a simu-
lation of an order parameter
capturing the overall size of
CCMV (the same system for
the correlation function in
Figure 5). The correlation
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Fig. 5. Autocorrelation function of the 001z component of the thermal-average forces show-
ing their short time character [see (3) for definition].
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time is an order of magnitude or more shorter than the charac-
teristic time for order parameter dynamics. Similarly, the
thermal-average forces f

*

k drive the order parameters in a
coherent manner. The diffusion matrix

**
Dkk0 for various pairs

kk0 causes coupling such that f
*

k can create dynamics of U
*

k.

Nanocapsules for Delivery of Therapeutic Agents
Delivery of therapeutic small molecules, siRNA, or genes to dis-
eased cells via nanocapsules holds a great promise for improving
therapeutic efficacy and decreasing side effects. A well-designed
nanocapsule can stabilize and isolate its payload until it reaches
the target site; the payload must then be released (triggered by
conditions at the target site), ensuring high drug concentration
only at the target site. Considering the many, seemingly contra-
dictory, criteria imposed on the nanocapsule design, we propose
that a computer-aided strategy would accelerate progress.

The centerpiece of our computer-aided design strategy is
the AMA-based NanoX simulator (sysbio.indiana.edu). 1) It
does not require recalibration with each new application; 2) it
accounts for the atomic scale detail necessary to evaluate
interactions between a nanocapsule, the payload, host cell sur-
face receptors, and other nanocapsules; and 3) it incorporates
the interscale feedback of Figure 1. In the final regard,
changes in local pH could induce a structural transition in the
nanoscapsule, which could both induce its porosity and, via
enhanced atomic-scale fluctuations, enhance the rate of trans-
port across the nanocapsule.

In a preliminary study [11], this strategy was demonstrated
using a set of order parameters specifying the state of the
nanocapsule (i.e., position, orientation, and structure) and
the payload (i.e., the CM position and the spatial extent of the
cloud of payload molecules). The formulation yields the time
course of release, the dynamical changes in nanocapsule per-
meability, and the effect of stochastic nanoscale dynamics.
Thermal-average forces and diffusivities appearing in the sto-
chastic equation are calculable via MD using AMA formulas.
Alternatively, key parameters are identified that reduce the
need for extensive calibration. A phenomenological equation
relating our order parameters with the concentration profile
was used to predict the drug release scenarios (Figure 7). Dif-
fusion coefficients and thermal-average forces vary with bio-
logical conditions because of the changes in the free-energy
landscape and mobility of major components due to pH,
crowding, temperature, and other conditions.

Recently, an all-atom/continuum multiscaling (ACM)
approach was developed that enabled the first self-consistent
integration of atomistic and continuum theories [12]. Consider-
ing that the nanocapsule, the microenvironment, and the influ-
ence of stochastic forces on a nanocapsule or payload system
are active, a simulation technique is needed that is more gen-
eral than that used earlier. For example, the order parameters

used in our virus studies assessed a long-lasting connectivity
between the atoms (e.g., as in protein). However, the interdif-
fusional dynamics of a small molecule payload does not satisfy
this criterion. To address this, field variables (e.g., the mass
density profile for the drug) were introduced. This constitutes
an uncountable number of order parameters, i.e., the field vari-
ables at each point in the system. Instead of the four discrete
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Fig. 7. Predicted release profile of doxorubicin from a lipo-
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order parameters introduced earlier [11], two field variables
(mass density of the capsule material and that of the payload)
were introduced [12]. This accounts for all the needed informa-
tion on the position and overall structure of the nanocapsule
and the dispersion of a cloud of payload molecules in a general
way (e.g., without geometric restrictions). The result of ACM
is a continuum generalization of the Smoluchowski equation
for the stochastic dynamics of the field variables.

To illustrate ACM, consider the mass density field w. Our
Smoluchowski equation takes the form

@W

@t
¼ e2

Z
d3R

vc

d3R0

vc

d

dw(R
*

)

3 D(R
*

, R
* 0)

d

dw(R
* 0)
� b�f (R

* 0)

 !( )
W (7)

where R
*

is a spatial point at which w is evaluated, vc the mini-
mal volume for which it is meaningful to speak of a field
variable (contains a statistically significant number of mole-
cules), f the thermal-average force, D(R

*

, R
* 0) the diffusion

coefficient, and W is the probability density as a functional of
w. As mentioned earlier, d=dW(R

*

) is a functional derivative
and f ¼ �dF=dw(R

*

) for free energy F. Through ACM, algo-
rithms are provided for computing f and D so that, given the
interatomic force field, we arrive at a calibration-free
approach to the computer-aided design of nanocapsule deliv-
ery systems. This ACM formalism is also being explored for
applications in virology and for bacteria as described later.

Bacterial Division: Self-Organization Pathways
The onset, maintenance, and dynamics of intrabacterial struc-
ture are the result of a highly orchestrated, micron-scale
self-assembly dynamics. In our studies, we focused on the rep-
lication or division phenomena in E. coli. Our models inte-
grate the formalism given in the first two subsections of the
‘‘Applications and Simulations’’ section. Although the mech-
anisms of eukaryotic daughter chromosome segregation and
cell division have been elucidated to a certain extent, those for
bacteria remain largely unknown. We developed a computa-
tional string model of E. coli chromosome segregation dynam-
ics [13], [14]. The order parameters introduced were the CMs
of postulated local condensed zones of the chromosomes of
the original and daughter chromosomes. According to our
AMA approach, these CMs satisfy Langevin equations. In a
phenomenological approach, a novel thermal-average force
field was postulated to account for stretching and bending,
volume exclusion, and cell wall forces, all acting on the CMs
of the condensed zones. The diffusion matrix, accounting for
frictional effects, was assumed to be diagonal, i.e., each con-
densed zone experiences an average friction that is insensitive
to the detailed configuration of the set of CMs or proximity to
the cell wall. Langevin equations were simulated to model the
motion of the CMs, and thereby, the chromosome structure
changes. Chromosome mass was allowed to increase with rep-
lication. An extensive set of independent experimental data
was used to calibrate the model. The mechanism of chromo-
some segregation was found to be the result of free-energy
driven dynamics, i.e., the thermal-average forces were the
gradient of the free energy with respect to the CMs. Predic-
tions agree well with the observations of fluorescence-labeled
chromosome loci movement in living cells. The results dem-
onstrate the possibility of a mechanism of chromosome segre-
gation that does not involve cytoskeletal guidance or
advanced apparatus in E. coli. The model shows that DNA
condensation into locally compacted domains is a requirement
for successful chromosome segregation. Simulations imply
that the shape-determining protein MreB may play a role in
the segregation via modification of the cell wall force. An
illustrative simulation is shown in Figure 8.

Population levels of various assemblies were recently posed
as order parameters and a Smoluchowski equation, and Monte
Carlo equivalent Langevin equations were derived for sto-
chastic population dynamics [4]. When this theory is extended
via a field variable approach as in the ‘‘Nanocapsules for
Delivery of Therapeutic agents’’ subsection, one arrives at a
stochastic continuum reaction-transport model. A phenome-
nological continuum model of this type, cast in terms of the
concentrations of proteins and protein complexes in the cell

40 min 

20 min 

30 min 

60 min 

70 min 

80 min 

10 min 

50 min 

0 min 

Fig. 8. Simulated configuration of E. coli chromosome structures.
Pictured here are domains that contain the ori region, domains
undergoing replication, domains of mother and domains of the
two daughter chromosomes.

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE MARCH/APRIL 200976



interior and on the inner surface of the membrane, was devel-
oped [14]. Using a reaction-transport model approach and a
detailed model of active and passive biochemical processes
(e.g., diffusions, dimerization, catalyzed removal or attach-
ment of proteins to the intracellular side of the cell wall), we
constructed a model of the self-organization of the division
plane in E. coli based on the Min protein system. The simula-
tion of Figure 9 is a depiction of simulated protein patterns
for normal and abnormal E. coli morphologies. These phe-
nomena were not correctly predicted by other models,
wherein the self-organized patterns could only be predicted
when the cell was much larger than normal. All simulations
were carried out with our fully three-dimensional (3-D) finite
element software Cell3D. The Cell3D simulator can be used
to study cells of arbitrary size and geometry. The time aver-
age of the simulated normal and abnormal cell’s patterns of
Min protein distribution agrees well with the cell division
plane location. As the cell shape and size are varied, the nor-
mal Min dynamics of an oscillatory pole-to-pole wave is
transformed into a rotating or a bursting wave, wherein
islands of surface-adsorbed MinD appear and disappear in an
aperiodic spatiotemporal fashion.

The Cell3D simulator we developed accounts for Min
protein adsorption or desorption at the intracellular-facing
membrane surface and reaction and transport along this
surface and in the interior of the cell. The surface [two-
dimensional (2-D)] processes are coupled to those in the cell
interior (3-D) through boundary conditions. The numerical
approach overcomes technical difficulties with spherical coor-
dinate-based cell simulators. A novel reaction network, involv-
ing the role of Min protein dimers and other observed
complexes, makes Cell3D more complete and accurate than
other models. All processes included were firmly based on
observed reactions. Our results capture more observations than
those presented by other groups (see Ref. [13]). The generality
of stoichiometry and geometry of Cell3D makes it applicable
to a broad range of cellular self-organization phenomena.

Bioelectricity
Structure, self-organization, and pattern of energy and mass
flows in cells and bionanostructures are strongly affected by
electrical forces and the associated multiscale phenomena
they support. Our multiscale PB simulator PBms was demon-
strated on a CCMV capsid. Considering that such a system
requires a grid resolution of about 0.5 Å, a ð513Þ3 node grid
was used. This makes a conventional PB simulation computa-
tionally intensive. PBms proved extremely efficient. It pro-
vides both atomic-scale and coarse-grained partial profiles,
via our rigorous multiscale methodology [5]. Such potential
profiles and associated electrostatic energy computations
provide insights into the electrostatic effects in BNSs (e.g., pH
and salinity [15]). A preliminary result on a viral capsid is
shown in Figure 10. PBms takes 10 h to calculate the electro-
static potential isosurface on a single processor DELL Power-
edge Xeon dual quad-core workstation. The alternative
direction implicit (ADD) Poisson-Boltzmann (PB) solver by
comparison takes 4 h on 16 processors on IBM SP Power4
machines [15].

An electrometabolomic model of G. sulfurreducens was
developed, implemented as an extension of the Karyote cell
simulator [16], and used to analyze the production of electrical
current in a microbial fuel cell (Figures 11 and 12). The model

integrates a number of factors including the current driven
out of the cell via a redox complex, either along nanowires or
via direct cell or electrode-surface interactions. Cell mem-
brane potential-mediated transport of acetate Hþ and Kþ

were accounted for. The existence of an intracellular sub-
strate storage particle was postulated to explain the observed
persistence of current after acetate concentration when the
extracellular medium falls below detectable levels. The
model appears to explain the characteristics of a G. sulfurre-
ducens or acetate fuel cell and can thereby serve as the basis
of a computer-aided fuel cell design strategy. Preliminary
results suggest that the fuel cell performance can be enhanced
by injecting acetate accompanied by a positive ion to which
the microbial outer membrane is impermeable. For environ-
mental applications, the model can be used for cases wherein
oxidized minerals serve as the electron acceptor as well as to

Fig. 9. Schematic spherical E. coli cell of radius 0.3 lm shows
a rotating wave of MinD cloud. Because the cell size is too
small to allow MinD reassembly at another site, MinD desorbs
at the receding edge of the cloud and reabsorbs at the
glowing edge, making the cloud appear to move across
the spherical surface.

(a) (b)

Fig. 10. þ5kT=e (black) �5kT=e (gray) potential isosurfaces
for the 432,240 atom CCMV capsid immersed in a 0.01 M 1:1
electrolyte (NaCl) computed via rigorous multiscaling.
(a) External view. (b) Cut-away view.
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study the dynamics when an organic substrate or mineral
depletion leads to time-dependent effects.

Conclusions
Since the work of Einstein and Smoluchowski on Brownian
motion, a deepened understanding of the role of stochastic
forces in nanosystems has developed. As suggested in Fig-
ure 1, there is a feedback between the highly fluctuating
(atomic) degrees of freedom and the more coherent, slowly
varying ones (order parameters). We suggest that this concep-
tion provides a paradigm for understanding BNSs.

In our group, we have greatly extended this theme by a
number of innovations in the analysis of the Liouville equa-
tion that enables the derivation of rigorous equations of the

Smoluchowski or Fokker–Planck types that describe the
dynamics of BNSs. Innovations include the following: 1) con-
struction of sets of general order parameters that can auto-
matically be increased in number to achieve self-consistency
by eliminating memory effects, 2) avoidance of projection
operators that introduce memory kernels that are difficult to
evaluate, 3) an algorithm to derive equations for reduced
probability densities that avoids integration over selected
subsets of atomic variables and tedious bookkeeping to main-
tain the number of degrees of freedom, 4) use of an exact
conservation law to gain an order in accuracy and to ensure
conservation of probability in the final stochastic equation, 5)
a scheme for integrating continuous field variables for dis-
connected subsystems and structural order parameters for
connected substructures in one self-consistent theory via a
novel hypothesis on the N-atom probability density, and 6)
full accountability of the feedback across scales in space and
time as in Figure 1.

Our objective is to use multiscale techniques to derive prin-
ciples of microbiology from the laws of molecular physics. By
multiscale techniques, we do not mean taking models at vari-
ous spatiotemporal scales and adopting heuristic boundary
conditions between them. This now popular technique is
unfortunately fraught with inconsistencies and uncertainties.
Rather, by rigorous, deductive multiscale techniques we
derive a hierarchy of equations on increasingly longer scales.
Considering the potential benefits of this approach (e.g.,
avoiding overcalibrated and inconsistent modeling), we
believe that our approach could positively impact other multi-
scale modeling studies.

Although the multiscale character of these systems under-
lies computational difficulty, understanding it is also the key
to addressing difficulties. The AMA we have developed
accounts for the feedback between variables across scales in
space and time. For example, atomic-scale fluctuations
provide the entropic part of the free energy that drives the
coherent dynamics of the large-scale features (order parame-

ters) of the system. Con-
versely, the order parameters
modify the probability distri-
bution characterizing the
range of atomic-scale fluctu-
ations that are permitted.
The conceptual flowchart of
Figure 3 provides a road map
for arriving at equations for
the stochastic dynamics of
the order parameters. Our
equations provide a compu-
tationally feasible approach
to simulating microbiologi-
cal phenomena. Because all
factors in these equations are
related to the interatomic
force field via rigorous statis-
tical mechanical expressions,
our AMA addresses the chal-
lenge of predictive micro-
biological modeling for
fundamental studies and for
designing therapeutic strat-
egies. We are developing a
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Fig. 12. Response of the microbial fuel cell-generated current at 5 and 9 mM injections of
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wire of resistance r to the electrode across the application
(of resistance R) and ultimately to the reference electrode.
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multiscale software for the design of antiviral drugs and
vaccines. This software will enable us to predict strains of
known viruses with pandemic potential, enabling a preemp-
tive strategy where potential threats to global health could
be addressed via an ongoing computational effort.

To make our advances accessible to other researchers, we
make the following microbial systems modeling software
available through our Web portal (sysbio.indiana.edu):
� Karyote
� Cell 3D
� PBms
� CellX
� NanoX.MD/OPX
� NanoX.multiscale.
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