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Classical density functional theory of orientational order at interfaces:
Application to water
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A classical density functional formalism has been developed to predict the position-orientation
number density of structured fluids. It is applied to the liquid–vapor interface of pure water, where
it consists of a classical term, a gradient correction, and an anisotropic term that yields order through
density gradients. The model is calibrated to predict that water molecules have their dipole moments
almost parallel to a planar interface, while the molecular plane is parallel to it on the liquid side and
perpendicular to it on the vapor side. For a planar interface, the surface tension obtained is twice its
experimental value, while the surface potential is in qualitative agreement with that calculated by
others. The model is also used to predict the orientation of water molecules near the surface of
droplets, as well as the dependence of equilibrium vapor pressure around them on their size.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1630012#

I. INTRODUCTION

Although bulk water in the liquid or vapor phase is iso-
tropic at room temperature and pressure, net orientational
order at the interface has been observed experimentally,1–3 in
molecular dynamics simulations4–9 and through phenomeno-
logical density functional calculations.10–14The nature of this
orientation is an important issue in the study of mesoscopic
phenomena, such as the interface between two homogeneous
phases or the disturbance of a homogeneous phase due to the
immersion of a macromolecule in it.

Although quantum mechanics and mixed quantum/
classical molecular dynamics simulations yield the most de-
tailed information about an interface, they are time consum-
ing and suffer from statistical sampling errors.15 Treating
water as a continuum is an attractive alternative, in which
case a density functional approach must be used to model the
profile and orientational structure at the interface. However,
recent density functional studies of the liquid–vapor
interface12–14 are not in good agreement with molecular dy-
namics simulations as regards the orientation of the molecu-
lar plane and the dipole moment on the vapor side.

In this paper, we use a field theoretical approach to de-
vise a phenomenological expression for the Helmholtz free
energy of fluids that accounts for molecular structure. The
expression contains a sufficient number of terms to model
the phenomenon of interest. We apply this approach to de-
termine the position-orientation density of water molecules
at the liquid–vapor interface. The parameters of the model
are determined by fitting results to those of the molecular
dynamics simulations by Sokhan and Tildesley7 since the
SPC/E water model16 used in these simulations is one of the
better potentials available.17,18 Furthermore, they use a rela-
tively large number of water molecules in their simulations

and account for long range electrostatic interactions accu-
rately through the Ewald summation technique.19

II. FORMULATION

A. Descriptive variables

To identify a set of variables that describe the medium,
first consider a molecule of arbitrary composition and shape,
treated as a rigid body. It has three translational and three
rotational degrees of freedom. The three translational degrees
of freedom can be taken as the position,r , of an arbitrary
point in the molecule~point C in Fig. 1!, such as its center of
mass or its center of absolute charge. The three rotational
degrees of freedom are best described by the three Euler
angles,V[(f,u,x), which represent the rotation of a set of
body-fixed axes centered at C (xbybzb-frame in Fig. 1! about
a coordinate system that is also centered at C (x8y8z8-frame
in Fig. 1! but is always parallel to the space-fixed coordinate
system (xyz-frame in Fig. 1!. The three Euler angles used in
our model follow they-convention.20

Based on this description of one molecule, a collection
of N molecules treated as a continuum is characterized by its
position-orientation number densityr(r ,V). By normaliza-
tion,

E drdVr~r ,V!5N. ~1!

In practice, both for computational and model development
reasons, it is convenient to divider into two parts: one
orientation-dependent and another orientation-independent.
The motivation for this division is seen by expandingr in
generalized spherical harmonics:
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Since ther lmn are independent,r can be divided into two
independent parts,

r~r ,V![r0~r !1r1~r ,V!, ~4!

without any loss of generality. The two terms are given by

r0~r ![r000~r !5
1

8p2 E dVr~r ,V! ~5!
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By definition,r0 andr1 satisfy

E drr0~r !5
N

8p2 , ~7!

E dVr1~r ,V!50. ~8!

The latter constraint follows from the properties of the
Dlmn .21

For convenience, two additional functions are defined in
terms ofr0 andr1. The first is the orientation-independent
number density, given by

c~r ![E dVr~r ,V!58p2r0~r !. ~9!

It is equivalent to the number density used when molecular
orientation is not taken into account, such as in equations of
state, for example. The second function is the normalized
orientational probability density, defined by

f̂ ~r ,V![
r~r ,V!

c~r !
5 f̂ 0S 11

r1~r ,V!

r0~r ! D , ~10!

where f̂ 051/(8p2) is the orientational probability density in
an isotropic medium. These two functions satisfy the con-
straints

E drc~r !5N, ~11!

E dV f̂ ~r ,V!51. ~12!

B. Helmholtz free energy

In terms of r0 and r1, the Helmholtz free energy is
given by

F@r0,r1#5E@r0,r1#2TS@r0,r1#, ~13!

whereE is the internal energy of the system,T its tempera-
ture, andS its entropy. WhileE includes terms that might
favor some orientational order,S always favors a state of no
order.

Assuming thatE can be expanded as a series about the
isotropic state, it is written as

E@r0,r1#5E0@r0#1(
l 51

`
1

l ! E dr1dV1¯dr ldV l

3F l@r1 ,V1 ,...,r l ,V l ;r0#

3r1~r1 ,V1!¯r1~r l ,V l !, ~14!

where

F l@r1 ,V1 ,...,r l ,V l ;r0#[S d lE

dr~r1 ,V1!¯dr~r l ,V l !
D

r0

.

~15!

The functional derivatives are evaluated at the isotropic state.
For cases where the major contribution to the free energy
comes from the isotropic term, a truncated expansion is suf-
ficient to capture the phenomena of interest. As will be seen
in Sec. III, this assumption is valid for water.

The entropy term, on the other hand, is divided into two
parts:

S@r0,r1#5S0@r0#1DS@r0,r1#, ~16!

whereS0 is the entropy of the isotropic medium andDS is
the excess entropy due to anisotropy. The formula forDS is
derived by noting that the excess entropy density,s(r ), at a
point r in space is given by

s~r ![2RS E dV f̂ ~r ,V!ln f̂ ~r ,V!2E dV f̂ 0 ln f̂ 0D
52RS E dV f̂ ~r ,V!ln f̂ ~r ,V!2E dV f̂ ~r ,V!ln f̂ 0D
52RS E dV f̂ ~r ,V!ln

f̂ ~r ,V!

f̂ 0

D . ~17!

FIG. 1. Relation between space-fixed (xyz) and body-fixed (xbybzb) coor-
dinates. The intermediate set (x8y8z8) moves with the body but is always
parallel to the space fixed set.
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The total excess entropy in the system is the weighted inte-
gral of s over the whole system:

DS@r0,r1#[E drc~r !s~r !

52RE drdV~r0~r !

1r1~r ,V!!lnS 11
r1~r ,V!

r0~r ! D . ~18!

Inserting the expressions forE and S from Eqs. ~14!,
~16!, and ~18! into Eq. ~13!, the Helmholtz free energy is
given by

F@r0,r1#5F0@r0#1RTE drdV~r0~r !1r1~r ,V!!

3 lnS 11
r1~r ,V!

r0~r ! D1(
l 51

`
1

l ! E dr1dV1¯dr ldV l

3F l@r1 ,V1 ,...,r l ,V l ;r0#

3r1~r1 ,V1!¯r1~r l ,V l !, ~19!

where

F0@r0#5E0@r0#2TS0@r0#. ~20!

The first term in the expansion,F0 , is the only term that
survives when the medium is isotropic. For water, it consists
of a classical part~see Sec. III A! plus a gradient correction
that accounts for the finite width of interfaces~see Sec.
III B !. The other terms in the expansion are kernel-type inte-
grals of powers ofr1. The first order term, for example, can
be thought of as an external potential-like term. The second
order term, on the other hand, has two-body interaction char-
acter. In general, thenth-order term involves ann-body
interaction-like kernel. As explained in Sec. III C, an expan-
sion up to first order appears to be sufficient to capture in-
terfacial water orientation phenomena.

Although the above formalism has been developed with
water in mind, it is general and applies to any structured
fluid. A ferromagnetic-like phenomenon, induced by the sec-
ond order term, is presented elsewhere.22 There, the degree
of ordering in the homogeneous bulk is studied as a function
of interaction strength. This example was also used to verify
our numerical approach by comparing numerical results with
the analytical results that are obtained via a bifurcation
analysis.

C. Free energy minimization

The mesoscopic structures of interest arise from the
minimization ofF with respect tor0 andr1, subject to the
constraints in Eqs.~7! and ~8!, respectively. Using the
method of Lagrange multipliers, an auxiliary functional

F̃@rI 0,rI 1#[F@rI 0,rI 1#2m̄S E dr8p2r0~r !2ND
2E drl~r !E dVr1~r ,V! ~21!

is defined. In this equation,m̄ is a Lagrange multiplier asso-
ciated with the mass conservation constraint@Eq. ~7!#, while
l~r ! is a Lagrange multiplier function associated with the
constraint onr1 @Eq. ~8!#. Setting the functional derivatives
of F̃ to zero, the equilibrium conditions are given by

dF

dr0~r !
58p2m̄, ~22!

dF

dr1~r ,V!
5l~r !. ~23!

Solving Eqs.~22! and ~23! locates a stationary point of
F̃. This point could be a minimum, a maximum or a saddle
point. To drive the system to aminimumof the free energy
that satisfies the constraints in Eqs.~7! and ~8!, the descrip-
tive variables are evolved along the path generated by

]r0~r !

]t
52q0H dF

dr0~r !
28p2m̄J , ~24!

]r1~r ,V!

]t
52q1H dF

dr1~r ,V!
2l~r !J , ~25!

wheret is a pseudo-time variable andq0 andq1 are positive
proportionality constants. This scheme is a generalization of
the method of steepest descent,23 which is a local minimiza-
tion algorithm.

In order to determiner0 and r1 through Eqs.~24! and
~25!, one needs the values of the Lagrange multipliers. The
direct method of solving for the variables in terms of the
Lagrange multipliers and then solving a set of equations for
the latter is not practical in this case. Since the densities
cannot be written as explicit functions of the Lagrange mul-
tipliers, one must solve for both the densities and the
Lagrange multipliers iteratively, which is very time consum-
ing.

Alternatively,24 integrating Eq.~24! over the system vol-
ume and applying the mass conservation constraint to the
left-hand side, it is found that

05E dr
dF

dr0~r !
28p2Vm̄, ~26!

whereV is the volume of the system. Thus, for givenr0 and
r1, m̄ is obtained from

m̄5
1

8p2V E dr
dF

dr0~r !
. ~27!

Similarly, integrating Eq.~25! over all solid angles and ap-
plying the constraint in Eq.~8! to the left-hand side yields

l~r !5
1

8p2 E dV
dF

dr1~r ,V!
. ~28!
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Using Eqs. ~27! and ~28!, the Lagrange multipliers are
evolved in time along withr0 and r1 until a minimum is
reached.

D. Numerical techniques

Due to the complexity of Eqs.~24!, ~25!, ~27!, and~28!,
they are solved using numerical methods. Equations~24! and
~25! are partial integrodifferential equations that involve de-
rivatives with respect to time and space. They constitute an
initial boundary value problem, solved for specified initial
data and boundary conditions. Neumann boundary condi-
tions are used because they do not introduce boundary arti-
facts. The initial data is chosen to be in the basin of attraction
of the minimum of interest, and it satisfies both boundary
conditions and constraints.

Spatial and angular discretization is achieved through a
combination of the finite element25 and the finite difference23

methods. The former is superior for solving partial differen-
tial equations over domains with complex geometry, and thus
the overall problem is cast in a finite element formulation.
Both space and angular degrees of freedom are divided into
hexahedral elements. Using an isoparametric formulation, el-
ement geometry and the value of the dependent variables
inside each element are interpolated using linear approxima-
tion functions of the Lagrange family. Numerical integration
is performed using Gauss–Legendre quadrature.25 Since lin-
ear interpolatation functions are used, second partial deriva-
tives of the dependent variables cannot be accurately evalu-
ated using the finite element method. Thus the first and
second partial derivatives ofc in F1 @Eq. ~36!# anddF1 /dc
are conveniently evaluated using a second order finite differ-
ence approximation.

Discretizing Eqs.~24! and~25! with respect to space and
angles converts them into a set of ordinary differential equa-
tions in the values ofr0 and r1 at the interpolation nodes.
The ‘‘time’’ variable in these equations is then discretized
using a first order, mixed explicit/implicit scheme, where the
time step is allowed to adapt dynamically to the nature of the
equations. For stability purposes, the Laplacian term in the
free energy~see Sec. III B! is treated implicitly. For effi-
ciency, the rest of the terms—which are nonlinear—are inte-
grated explicitly in time. The overall discretized problem is
then solved using a preconditioned conjugate gradient
method.26

III. FREE ENERGY OF WATER

A. Classical equation of state

The classical equation of state used in our model is that
developed by Jeffery and Austin.27 It involves a ‘‘bulk’’ part
as well as an explicit contribution from strong hydrogen
bonding, which is important to model the anomalous behav-
ior of water below 4 °C at atmospheric pressure.

Dividing the intermolecular interaction potential into a
dominant repulsive term and a much weaker attractive term,
their ‘‘bulk’’ equation of state is given by

p

cRT
512b* c2

aVWc

RT
1

ac

12lb~T!c
, ~29!

wherep is the pressure,c the number density defined in the
previous section,T the temperature, andR the gas constant.
The second and third terms on the right-hand side account
for the entropy and energy, respectively, of the attractive part
of the interaction between two water molecules. The fourth
term arises from the hard sphere model of the repulsive part
of the interaction.

The explicit contribution from strong hydrogen bonds, in
the form of a free energy density, is approximated by the
expression

f HB~c!522 f cRTln@V01VHB exp~2eHB /RT!#

22~12 f !cRTln@V01VHB#, ~30!

whereV0 is the number of configurations of weak hydrogen
bonds with energy 0,VHB is the number of configurations
of strong, tetrahedral hydrogen bonds with energyeHB , and
f is the fraction of hydrogen bonds that are capable of form-
ing strong bonds.

Combining the two contributions, the classical free en-
ergy density of water in our model is given by

f cl5 f eos1 f HB . ~31!

The ‘‘bulk’’ free energy density is derived from the ‘‘bulk’’
equation of state@Eq. ~29!# using28

f eos~c!5cE
0

c p~c8!

c82 dc8. ~32!

This analytic equation of state is 20–30 times more accurate
than equivalent simple cubic equations in the temperature
range234 to 1200 °C and pressures up to 3000 bar.27

Using their equation of state, the liquid and vapor den-
sities that coexist at equilibrium atT5300 K, which is the
temperature of interest to us, arecl555165.7 mol/m3 and
cv517.14 mol/m3, respectively. Bulk liquid and bulk vapor
at these densities have the same chemical potential and pres-
sure.

B. Gradient correction

The classical equation of state introduced in the previous
section includes no correlation between the concentration at
different points in space. Thus, for example, the concentra-
tion at one point can be that of liquid water while it is that of
water vapor at a point an infinitesimal distance away. As a
result, interfaces between different phases have no width.
Although unphysical, this approximation is acceptable in
macroscopic systems where the length scales of interest are
much larger than the width of an interface.

In mesoscopic systems, however, the characteristic
lengthscale of many interactions is comparable to the width
of the water–vapor interface. Figure 2 is a schematic depic-
tion of a hydrophobic site on a molecule immersed in water.
We hypothesize that the local hydrophobicity induces a low
water density region, the properties of which change gradu-
ally to those of bulk liquid. Thus the atoms at this site inter-
act most strongly with water molecules in the ‘‘vapor’’
phase, followed by those in the interface, followed by those
in the liquid region. None of these three regions is negligible.

929J. Chem. Phys., Vol. 120, No. 2, 8 January 2004 Orientational order at interfaces
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One way to include spatial correlation of descriptive
variables, such as the concentration in our model, is by using
gradient terms. The first to introduce such a correction in his
study of interfaces appears to be van der Waals in 1893.29 He
used a term similar to the one used in our model, described
below. Related classical density functional approaches are
found in Refs. 30–36, and references therein.

Gradient terms vanish for uniform systems, since, by
construction, the classical term is sufficient in that case.
Also, in order to model the liquid–vapor interface of water,
they must be always positive for nonuniform systems. The
latter condition must be satisfied by the gradient correction
because otherwise it will be energetically favorable to form
interfaces and the system would evolve toward ever-
increasing interfacial surface areas.

The simplest form of a gradient correction to the free
energy density is given by

f grad~c~r !!5 1
2 L~c~r !,T!u“c~r !u2, ~33!

whereL(c(r ),T) is a phenomenological parameter that de-
pends on concentration and temperature. As a first step, we

assume here thatL is a function of temperature only. Since
we are interested in phenomena that take place at room tem-
perature and pressure, its value is determined such that it
yields a 10%–90% width of about 7.5 Å for the water–vapor
interface at 300 K. This value is a reasonable starting point
since the value measured experimentally ranges between 6.7
Å ~Ref. 37! and 8 Å.38

Figure 3 shows a planar water–vapor interface obtained
by minimizing F0 with respect tor0 subject to the mass
conservation constraint@Eq. ~7!#, using L54.3310220

J m5/mol2. The initial concentration profile had bulk liquid
in the lower half of the system and bulk vapor in the upper
half of the system. In this simulation, we use 50 0.5 Å finite
elements in thez direction. Figure 4 shows the decrease of
the free energy of the system during the simulation.

C. Anisotropic term

The third contribution to the free energy needed to
model orientational structure at an interface is the first-order
anisotropic term. Thus the expansion ofF @Eq. ~19!# is trun-
cated to first-order, retaining the external-potential-like term.
It seems to be sufficient to model orientation at a planar
interface, and, since order at a droplet’s surface is observed
to be independent of its size,8,9 it should be sufficient to
model orientation at curved interfaces as well.

In order to induce orientation through spatial gradients
of the density, the kernel,F1@r ,V;r0#, is written as an in-
teraction between“c and the two perpendicular vectorsn̂
and m̂ defined in Fig. 5. The vectorsn̂ and m̂ are, respec-

FIG. 2. Schematic depiction of a molecule with a hydrophobic site im-
mersed in water, suggesting that it creates a ‘‘vapor’’–liquid interface.

FIG. 3. 7.5 Å planar water–vapor interface obtained by minimizing a free
energy that consists of the classical equation of state of Sec. III A and a
gradient correction withL54.3310220 J m5/mol2.

FIG. 4. System free energy vs iteration number in the isotropic planar in-
terface simulation discussed in Sec. III B.

FIG. 5. Definition of unit vectorsn̂ andm̂, wheren̂ specifies the direction
of the dipole moment of the water molecule, while both vectors define the
molecular plane.
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tively, equivalent toẑb andx̂b of Fig. 1. In terms of the Euler
angles, they are given by

n̂5sinu cosf x̂1sinu sinf ŷ1cosu ẑ, ~34!

m̂5~2sinx sinf1cosu cosf cosx!x̂

1~sinx cosf1cosu sinf cosx!ŷ2cosx sinu ẑ. ~35!

The simplest form forF1 that is rich enough to capture
the orientational order of water molecules at the interface can
be written as

F1@r ,V;c#5l1~c~r !!u“c~r !u2
“c~r !•n̂1l2~c~r !!

3~“c~r !•n̂!21l3~c~r !!~“c~r !•m̂!2, ~36!

wherec is being used instead ofr0. Among then̂-dependent
terms, the first favors an angle of 180° betweenn̂ and the
gradient whenl1.0 and an angle of 0° whenl1,0. The
second term has a minimum at 90° whenl2.0 and two
minima at 0° and 180° whenl2,0. Thus a balance between
the first and second terms yields the desired angle between
“c and n̂. The last term in Eq.~36! depends on the vector
m̂, and, given a certain alignment forn̂, determines the ori-
entation of the molecular plane with respect to the interface.
It is symmetrical with respect to inversion ofm̂, as required
by the symmetry of the water molecule. As with the second
term, l3.0 favorsm̂ to be perpendicular to“c, while l3

,0 prefers parallel or antiparallel alignment.
For illustrative purposes, before calibrating the model to

reproduce the results of molecular dynamics simulations of
the liquid–vapor interface of water,7 let l1 and l2 be zero
while l3 is given by

l35331025 tanh~5~c2cG!!, ~37!

in units of (J/mol)3(mol/m3/Å) 2. A hyperbolic tangent is
used to obtain a smooth transition between the behavior on
the liquid side and that on the vapor side of the interface. The
concentration,cG , at whichl3 changes its sign is that at the
Gibbs dividing plane in a planar liquid–vapor interface. As-
suming that the interface is normal to thez-axis, the Gibbs
dividing plane is defined to be atzG given by7,30

E
2`

zG
~c~z!2cl !dz52E

zG

`

~c~z!2cv!dz, ~38!

where cv and cl are defined in Sec. III A. It is found that
cG'30785 mol/m3 under the model developed in Secs. III A
and III B.

From the form ofl3 , F1 has the same strength on both
sides of the interface, but the coefficient is positive in the
liquid and negative in the vapor. Thus it is energetically fa-
vorable to havem̂ perpendicular to“c ~i.e., parallel to the
interface! on the liquid side and parallel or antiparallel to“c
~i.e., perpendicular to the interface! on the vapor side.

The results of simulating order at a planar interface,
where the concentration gradient is along thez-axis and
where there is no dependence onx, y and f, are shown in
Figs. 6–8. Initially,r0 is given by the concentration profile
in Fig. 3 whiler1 is taken to be zero everywhere. The same
number of spatial elements as in the isotropic case above was

used. Theu andf directions were divided into elements of
0.05p each, while only one element was used forf since
there is no dependence on it.

Figure 6 showsf̂ as a function ofx for several values of
u averaged over a 3 Å slab on the liquid side and a 3 Åslab
on the vapor side of the Gibbs dividing plane. Due to the
symmetry of the water molecule, any function ofx satisfies
f (x1p)5 f (x) and thus it suffices to plotf̂ for x between 0
andp only. It is seen from the two graphs that all values of
x are equally likely whenn̂ is perpendicular to the interface
(u50), sincem̂ in this case is parallel to the interface no
matter what the value ofx is. ForuÞ0, the slab on the liquid
side has a maximum atx590°, wherem̂ is parallel to the
interface, and the slab on the vapor side has maxima atx
50°,180° wherem̂ is perpendicular to the interface. The
distributions are narrowest foru590°.

Figure 7~a! shows f̂ 8, defined by

f̂ 8~r ,u!5E
0

2p

dxE
0

2p

df f̂ ~r ,V!, ~39!

averaged over a 3 Å slab on the liquid side and a 3 Åslab on
the vapor side of the Gibbs dividing plane, respectively. The

FIG. 6. Free energy minimizing orientational probability density,f̂ , as a
function ofx at severalu values in the case whereF1 is given by Eqs.~36!
and ~37!, ~a! on the liquid side and~b! on the vapor side of the planar
liquid–vapor interface of water.
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distribution is quite interesting because, although there is no
explicit dependence ofF1 on n̂, the distribution has a maxi-
mum for n̂ perpendicular to the interface on the liquid side
andn̂ parallel to the interface on the vapor side. This result is
expected since whenn̂ is perpendicular to the interface,m̂ is
always parallel to it, which is the energetically favorable
orientation on the liquid side. On the vapor side,n̂ prefers to
be in the interface plane because this implies thatm̂ has the
highest probability to be perpendicular to the interface

Figure 7~b! showsf̂ 9, the probability distribution ofmz ,
the z component ofm̂ defined in Eq.~35!, again averaged
over 3 Å slabs on both sides of the interface. The normalized
probability density, defined by

f̂ 9~r ,mz!5E dV f̂ ~r ,V!d~mz1sinu cosx!, ~40!

is approximated by the integral

f̂ 9~r ,mz!'E dV f̂ ~r ,V!Ae2((mz1sin u cosx)/a)2
. ~41!

The parametera is chosen to yield reasonable sampling con-
sidering the discretized nature of the numerically computed

probability, while the coefficientA is used to normalizef̂ 9 to
unity. From the graphs, it is seen thatf̂ 9 has a maximum at
mz50 on the liquid side, and maxima at 1 and21 on the
vapor side, as expected from the form ofF1 and the results
presented in Figs. 6 and 7~a!.

It is seen from the figures that there is more ordering on
the vapor side than on the liquid side of the interface. This is
due to the fact that the concentration gradient is larger on the
vapor side than on the liquid side, and, as suggested by our
model, larger gradients induce more ordering.

The change in the free energy of the system over the
course of the minimization is shown in Fig. 8. The absolute
magnitude of the orientation-dependent energy term is found
to be about four orders of magnitude smaller thanF0 . Since
the profile ofr0 stays almost the same throughout the simu-
lation, most of the change in the free energy comes from
change inr1, explaining why the change in the total free
energy is so small. This difference in magnitude, which is
also seen in the case of water molecules below, justifies the
expansion in Eq.~19!.

Back to the case of water molecules at the liquid–vapor
interface, it is seen from molecular dynamics simulations7

that the dominant feature of the orientation of water mol-
ecules at the interface forT5298 K is the almost parallel
alignment of their dipole moments to it. This requires the
second term in Eq. ~36! to be dominant, with
l2.0. Since the dipole moments make a small angle with
the interface and point in two different directions on the two
sides, the first term should be much weaker than the second
one andl1 must change signs when passing from the liquid
side to the vapor side, i.e., at the Gibbs dividing plane. The
simulations also show that there is weak preferred orienta-
tion of the molecular plane parallel to the interface on the
liquid side and perpendicular to it on the vapor side. Thusl3

should also change signs atcG .
These observations are reproduced by the set of values

~see Fig. 9!

l152331029 tanh~5~c2cG!!,

FIG. 7. Free energy minimizing~a! f̂ 8 @defined in Eq.~39!# as a function of

u and ~b! f̂ 9 @defined in Eq.~40!# as a function ofmz at the planar liquid–
vapor interface of water in the case whereF1 is given by Eqs.~36! and~37!.

FIG. 8. Energy of system vs iteration number in the simulation of orienta-
tional order at the planar liquid–vapor interface of water in the case where
F1 is given by Eqs.~36! and ~37!.
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l251.731025~ tanh~5~c2cG!!14.2!, ~42!

l35331025~ tanh~5~c2cG!!10.6!,

wherel1 is in units of (J/mol)3(mol/m3/Å) 3 andl2 andl3

are in units of (J/mol)3(mol/m3/Å) 2. The results of using
these values in simulating orientational order at a planar in-
terface with initial data and numerical details like those in
the previous example~except that theu direction is divided
into twice as many elements! are shown in Figs. 10–12.
Figure 10 shows the profile ofc at the beginning and the end
of the simulation, which are found to be very close to each
other. The free energy of the system throughout the simula-
tion is shown in Fig. 11. The probability distributions ofu, f̂ 8
defined in Eq.~39!, averaged over 3 Å slabs on both sides of

FIG. 9. The coefficientsl1 , l2 , andl3 @given in Eq.~42!# in F1 used to
model water orientation at the liquid–vapor interface.

FIG. 10. Initial ~diamonds! and final ~1’s! concentration profiles for the
planar liquid–vapor interface of water in a free energy minimization simu-
lation whereF1 is given by Eqs.~36! and ~42!.

FIG. 11. System free energy vs iteration number for simulation of the planar
liquid–vapor interface of water withF1 given by Eqs.~36! and ~42!. The
slight rise in free energy is a result of small numerical error.

FIG. 12. Free energy minimizing~a! f̂ 8 @defined in Eq.~39!# as a function of

u and ~b! f̂ 9 @defined in Eq.~40!# as a function ofmz at the planar liquid–
vapor interface of water withF1 given by Eqs.~36! and ~42!.
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the interface are shown in Fig. 12~a!. The distributions have
maxima at about 99° on the liquid side and about 77° on the
vapor side. The distribution ofmz , i.e., f̂ 9 @defined in Eq.
~40!# averaged over 3 Å slabs on both sides of the interface,
shown in Fig. 12~b!, indicates that a majority of water mol-
ecules hasmz parallel to the interface on the liquid side and
perpendicular to it on the vapor side. Combining these dis-
tributions with those ofu implies that most molecules have
their plane parallel to the interface on the liquid side and
perpendicular to it on the vapor side.

The above results agree well with the molecular dynam-
ics results used to calibrate the model.7 The locations and
heights of the distributions’ maxima are very close to what is
presented there.

IV. RESULTS AND DISCUSSION

A. Surface tension of a planar interface

The formation of an interface between two phases has a
free energy cost whose value per unit area is defined as the
surface tension of the interface. Since, as seen above, the
anisotropic term in the free energy is about four orders of
magnitude smaller thanF0 , the major contribution to the
surface tension comes from the equation of state and gradient
terms.

In our model, retaining onlyF0 , the surface tension of a
planar interface normal to thez-axis is given by30,36

g5LE
2`

`

dzS dc

dzD
2

. ~43!

As determined in Sec. III B, takingL54.3310220

J m5/mol2 and using the free energy minimizing concentra-
tion profile in Fig. 3, it is found thatg'135 mN/m. Experi-
mentally, the surface tension is measured to be about 72
mN/m at 300 K,39 and thus our result is about twice the
observed value. This discrepancy is most probably due to the
simplicity of the gradient correction used.

Better values for the surface tension can be obtained by
using an expression forL that is a function of concentration
and that involves two parameters that are calibrated to match
both the interface width and the surface tension. One can
also use other gradient terms in the correction, such as
u“cu4, for example. We have limited this study to the form in
Eq. ~33! with a constantL as we are mainly concerned with
the orientationof water molecules at the liquid–vapor inter-
face.

B. Surface potential of a planar interface

The net orientation of water molecules in the liquid–
vapor interface causes a layering of their charge density, pro-
ducing an electric field. The surface potential thus measures
the work performed in moving a test charge from the vapor
phase to the liquid phase, across this field. An expression for
the surface potential,Df, is7,12,40

Df[f~2`!2f~`!

5E
2`

`

Ez~z!dz

52
1

e0
E

2`

`

Pz~z!dz2
1

e0
@Qzz~2`!2Qzz~`!#, ~44!

wherePz is thez-component of the molecular dipole density
and Qzz is the zz-component of the molecular quadrupole
density. They are given by

Pz~z!5K (
m

d~z2zm!F(
j

qm jzm jG L
5c~z!^Pz~V!& f̂ ,z , ~45!

Qzz~z!5K (
m

d~z2zm!S 1

2 (
j

qm jzm j
2 D L

5c~z!^Qzz~V!& f̂ ,z , ~46!

where the sum overm goes over all molecules in the system,
the sum overj goes over all atoms in a molecule,qm j is the
charge of thej th atom in themth molecule,zm is the space-
fixed z coordinate of the position of the center of themth
molecule about which the multipoles are evaluated, andzm j

is the space-fixedz component of the position of thej th
atom in themth molecule. The quadrupole moment defined
in Eq. ~46! is not the conventional quadrupole moment of
zero trace, but has a finite trace. The angle brackets^¯&
denote ensemble averaging of microscopic variables and
^¯& f̂ ,z indicate an averaging over the Euler angles

^¯& f̂ ,z[E
V

dV¯ f̂ ~z,V!. ~47!

Since Pz is proportional to^cosu&, its contribution is
limited to within the interface region, where there is prefer-
ential orientation. It is thus a reflection of the degree and
type of ordering at the interface. On the other hand, the quad-
rupole moment contributes through its values in the two bulk
phases far from the interface and hence does not yield any
information about the interface region. In fact,Qzz(6`)
5c(6`)3 1

3NAQ, whereQ is the trace of the quadrupole
tensor of the water molecule andNA is Avogadro’s number.

Equation~44! is thought to be exact because all higher
multipole moments enter it through their derivatives which
vanish at6` since both limits correspond to translationally
invariant phases. A controversial point, however, is the de-
pendence of Eq.~44! on the point in the molecule about
which the multipole expansion is performed. Since the water
molecule is neutral, its dipole moment is independent of the
chosen molecular center. However, the quadrupole moment
does depend on it. Thus different values for the surface po-
tential are obtained depending on the choice of molecular
center, which seems to contradict its exactness.

Nevertheless, as this equation is commonly used to com-
pute the surface potential, we use it to compare the predic-
tion of our model to those of others. Since our model is
calibrated to reproduce data obtained through molecular dy-
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namics simulations that use the SPC/E model,16 we use this
model to obtain the dipole and quadrupole moments of the
water molecule, whose values are found to bem57.83
310230 C m andQ56.78310240 C m2 ~taking the molecu-
lar center to be at the position of the oxygen atom!. Using
Eq. ~44!, the surface potential is found to be20.758 V. It is
different from the value obtained in the molecular dynamics
simulations7 since, in our simulations, the density profile and
width of the interface are different from theirs. Furthermore,
the orientational probability density obtained in our simula-
tions is slightly different from theirs.

However, it is in qualitative agreement with the results
of others.7 As seen from Table IV in the aforementioned
reference, values ofDF obtained using different water mod-
els vary in magnitude, but they are all negative with an ab-
solute value less than 1 V. As noted there, it is difficult to
compare values of the surface potential obtained theoreti-
cally to values obtained experimentally. This is because, in
electrochemical experiments, electrostatic and chemical con-
tributions to the surface potential are difficult to separate and
because these experiments deal with dilute electrolytes
which are different from a pure solvent.7

One source of error in our calculations—and those of
others—is the use of a nonpolarizable water model, where
the charge distribution in a water molecule is assumed to be
that suitable for the liquid state. In reality, the charge distri-
bution in a water molecule, and thus its multipole moments,
depend on the environment surrounding it. However, since
the concentration of water molecules on the vapor side is
almost negligible compared to that on the liquid side, this
error is likely not very significant. Another, probably less
significant, source of error in all of these models is the as-
sumption that water molecules are rigid.

C. Isotropic droplets

Equilibrium droplets of several sizes atT5300 K were
simulated by minimizingF0 with respect tor0, starting with
profiles that had liquid density at the center which gradually
decayed to that of vapor at the boundary. Cubic elements of
1 Å sides were used to discretize space. Care had been taken
to have enough vapor surrounding the droplets so that finite
system size effects were minimized. Some runs were re-
peated using a much larger system, i.e., with more vapor
around the droplets, and the results were found to be the
same. The final, free energy minimizing droplets had radii
ranging from 13 Å~about 300 water molecules! to 91 Å
~about 105 water molecules!. A typical droplet~of radius 28
Å! is shown in Fig. 13. The energy of the system throughout
this simulation is shown in Fig. 14.

It is observed that droplets with a smaller radius have a
density higher than that of bulk liquid in the middle. As the
radius gets larger, the density goes to that of infinite bulk
liquid. Similarly, the density of the vapor surrounding
smaller droplets is quite high, and it goes to that of bulk
vapor at equilibrium with infinite liquid as the droplets get
bigger. Table I summarizes these observations, where the ra-
dius of a droplet,r , is calculated by using the relationN
5 4

3pr 3cl , whereN is the total number of moles of water in
the system.

A relation between vapor pressure at equilibrium with a
droplet and its radius is given by41

Pr~T!5P`~T!expS 2g

cRT

1

r D , ~48!

wherer is the radius of the droplet,Pr is the temperature-
dependent vapor pressure corresponding to a droplet of ra-
dius r , P` is the temperature-dependent vapor pressure of a
vapor at equilibrium with infinite bulk liquid,T is the tem-
perature,R is the gas constant,g is the coefficient of surface
tension, andc is the density of the liquid inside the droplet.
Inherent to this relation is the approximation that the coeffi-
cient of surface tension is independent of droplet size.

Taking the logarithm of both sides of this equation, it is
seen that

ln~Pr~T!!5 ln~P`~T!!1
2g

cRT

1

r
. ~49!

FIG. 13. Cross section through a droplet of 28 Å radius simulated as de-
scribed in Sec. IV C. Three contour lines for 55 000 mol/m3,
25 000 mol/m3, and 100 mol/m3 are shown.

FIG. 14. System free energy as a function of iteration number in simulation
of the droplet of radius 28 Å shown in Fig. 13.
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Thus a plot of ln(Pr) versus 1/r should yield a straight line
whosey-intercept givesP`(300) and whose slope givesg.
Such a plot for the data presented in Table I, together with
the straight line that fits it best, are shown in Fig. 15. As
seen, the fit is very good. The straight line has ay-intercept
of 10.58 and a slope of 21.7 Å. They-intercept corresponds
to P`'39340.1 Pa, which is 8% lower than the actual vapor
pressure exerted bycv . Usingc5cl in the expression for the
slope, the fit to the simulation data yieldsg'150 mN/m,
which is 11% higher than the value obtained using Eq.~43!.

The results obtained here are acceptable given the many
approximations involved in calculating them. First, we are
assuming that the coefficient of surface tension does not de-
pend on droplet size, but it has been observed through mo-
lecular dynamics simulations that surface tension does de-
pend on it.8 Second, we have usedc5cl in Eq. ~49!, but, as
seen from Table I, the density in the middle of the droplet
depends on its size as well. Third, the definition of droplet
radii is somewhat arbitrary.

Another relation between the radius of a droplet, the
pressure inside it (Pin), the pressure of the vapor at equilib-
rium with it (Pout) and its surface tension, is the Laplace
equation for capillary pressure:42

g5
r

2
~Pin2Pout!. ~50!

It is derived by imposing mechanical equilibrium on a
‘‘piece’’ of the droplet’s surface, where the higher pressure
inside the droplet is balanced by the pressure of the vapor
surrouding the droplet and surface tension. The additional
force from surface tension allows the existence of such high
densities inside the droplet.

Using the pressure corresponding to the concentration at
the center of the droplet asPin , the surface tension of the
droplets in Table I is plotted in Fig. 16. It is seen that the
surface tension increases with radius for small droplets, as
observed in previous molecular dynamics simulation
results.8,9 However, the smallest droplet considered here
might be too small for Eq.~50! to be valid. For larger drop-
lets, which have more ‘‘macroscopic’’ character, the surface
tension decreases with radius. Except for the largest droplet,
the surface tension seems to be reaching a plateau at about
100 mN/m. Although, apparently coincidentally, the surface
tension obtained for the largest droplet lies close to the ex-
perimental value of 72 mN/m,39 it is inconsistent with the
rest of our results. The significant decrease in surface tension
for the largest droplet might be due to finite system size
effects.

Although the accuracy of the values obtained for the
surface tension using Eq.~50! is not certain, surface tension
values are definitely in qualitative agreement with each other,
with the values obtained using Eqs.~43! and ~48!, and with
experimental measurements.39 More accurate calculations of
pressure as a function of space using a mesoscopic formula
are under way.43

As observed earlier in modeling orientation at the planar
interface, the profile ofr0 does not change much when the
anisotropic term in the free energy is included and the free
energy in minimized with respect both tor0 and r1. Thus
the above results are valid in the general case where orien-
tation is accounted for.

FIG. 15. Natural logarithm of the pressure~in Pa! vs the inverse of droplet
radius. The discrete data points are those obtained from the simulations,
while the straight line is from the fit to these data points.

FIG. 16. Surface tension of water droplets in Table I as a function of their
radii, calculated using the Laplace equation for capillary pressure@Eq. ~50!#.

TABLE I. Density in the middle of droplets (cm) and of vapor at equilib-
rium with them (cv), as functions of droplet size.

r (Å) cm(mol/m3) cv(mol/m3)

12.9 58054.4 86.9
20.6 57849.6 45.1
27.8 56901.6 34.2
36.1 56445.6 28.2
46.5 56168.0 25.1
59.2 55937.6 22.7
65.3 55855.6 22.1
91.0 55534.4 19.8
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D. Order at the surface of a droplet

As with planar interfaces, the liquid–vapor interface at
the surface of a droplet exhibits anisotropy that is not present
inside the droplet or in the vapor surrounding it. Figure 17
shows the orientational order at the surface of a droplet
whose radius is 20.6 Å. Plotted in the figure is^n"ns(r )& r ,
wherens(r ) is the unit vector normal to the surface at a point
r and the angle brackets indicate averaging over all angles at
that point. As expected, there is no ordering inside the drop-
let or in the vapor surrounding it. At the interface, the aver-
age dipole moment points toward the center on the liquid
side of the Gibbs dividing surface@defined in Eq.~38!# and
toward the vapor on the vapor side of the Gibbs dividing
surface, in agreement with the behavior observed at a planar
interface.

Numerically, space was divided into cubic elements of
1 Å sides, while the range of angular coordinates was di-
vided into 0.1p30.1p30.1p elements. The angular dis-
cretization was coarse compared to the planar interface case,
but this was unavoidable due to computational limitations.
Notice, however, that the results obtained in a similar simu-
lation but with half the number of angular elements in each
direction ~results not shown here! were very close to the
results obtained in this simulation. Moreover, sincer0 was
not expected to change much during the simulation, it was
fixed at its initial value to speed up the calculations.

V. CONCLUSION

A model that predicts the position-orientation number
density of water in mesoscopic structures such as interfaces
and droplets has been developed. It is based on an expansion
of the Helmholtz free energy about the isotropic state, retain-
ing terms up to first order. The zeroth order term, which has
the major contribution, consists of a classical equation of
state term and a gradient correction. The first order term, an
external potential-like contribution, induces orientational or-
der due to density gradients.

Regarding orientation at the interface, the model repro-
duces recent molecular dynamics simulation results7 in de-
tail. It predicts that water molecules orient their dipole mo-
ments almost parallel to the interface, pointing with a small
angle toward the bulk phase on the side of which they reside.
Moreover, there is a tendency to have the molecular plane
parallel to the interface on the liquid side and perpendicular
to it on the vapor side.

One part of the model that must be improved is the gra-
dient correction in the isotropic part of the free energy. As
presented in the examples, the surface tension of the liquid–
vapor interface as calculated from our model is almost twice
as large as that measured experimentally. Since the first order
term in the free energy is much smaller in magnitude than
the isotropic part, and since the classical equation of state
used in our model generelly yields good results,27 this error
in the surface tension is likely a reflection of the shortcom-
ings of the gradient correction used.

Treating water as a continuum using the expression for
the free energy developed in this paper is an important step
towards the efficient modeling of macromoleculesin vitro
and in vivo. Such systems are large and include many water
molecules, the explicit treatment of which is time consum-
ing. However, combining the above expression for the Helm-
holtz free energy of water with an appropriate force field
describing interatomic interactions and free energy of solva-
tion will be a much more efficient methodology.22

Furthermore, the theoretical framework upon which this
water model is based is general and can be used to study
other systems as well. It is applicable to liquid crystals, such
as to the study of order in a homogeneous ferromagnetic-like
material.22 When generalized to multiple species, this for-
malism can be applied to the self-assembly of molecules into
membranes.28 Since such systems are very large and difficult
to model with atomic detail, a density functional approach
like that presented here might make their study more fea-
sible.
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