/_\ I P I The Journal of
Chemical Physics
Classical density functional theory of orientational order at interfaces: Aplication to

water
Khuloud Jagaman, Kagan Tuncay, and Peter J. Ortoleva

Citation: The Journal of Chemical Physics 120, 926 (2004); doi: 10.1063/1.1630012
View online: http://dx.doi.org/10.1063/1.1630012

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/120/2?ver=pdfcov
Published by the AIP Publishing

Advertisement:

AIP - Re-register for Table of Content Alerts

Publishing

/7

Create a profile. Sign up today!



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/586982248/x01/AIP-PT/JCP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Khuloud+Jaqaman&option1=author
http://scitation.aip.org/search?value1=Kagan+Tuncay&option1=author
http://scitation.aip.org/search?value1=Peter+J.+Ortoleva&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.1630012
http://scitation.aip.org/content/aip/journal/jcp/120/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 2 8 JANUARY 2004

Classical density functional theory of orientational order at interfaces:
Application to water
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Department of Chemistry, Indiana University, Bloomington, Indiana 47405 and Center for Integrative
Molecular Biosciences, The Scripps Research Institute, San Diego, California 92121

Kagan Tuncay and Peter J. Ortoleva
Department of Chemistry, Indiana University, Bloomington, Indiana 47405

(Received 9 June 2003; accepted 6 October 2003

A classical density functional formalism has been developed to predict the position-orientation
number density of structured fluids. It is applied to the liquid—vapor interface of pure water, where
it consists of a classical term, a gradient correction, and an anisotropic term that yields order through
density gradients. The model is calibrated to predict that water molecules have their dipole moments
almost parallel to a planar interface, while the molecular plane is parallel to it on the liquid side and
perpendicular to it on the vapor side. For a planar interface, the surface tension obtained is twice its
experimental value, while the surface potential is in qualitative agreement with that calculated by
others. The model is also used to predict the orientation of water molecules near the surface of
droplets, as well as the dependence of equilibrium vapor pressure around them on their size.

© 2004 American Institute of Physic§DOI: 10.1063/1.1630012

I. INTRODUCTION and account for long range electrostatic interactions accu-
rately through the Ewald summation technidgie.
Although bulk water in the liquid or vapor phase is iso-
tropic at room temperature and pressure, net orientational
order at the interface has been observed experimentaliy,
molecular dynamics simulatiofi& and through phenomeno- Il. FORMULATION
logical density functional calculatiod8-**The nature of this  A. Descriptive variables
orientation is an |mportan_t issue in the study of mesoscopic To identify a set of variables that describe the medium,
phenomena, such as the interface between two homogeneots

) rst consider a molecule of arbitrary composition and shape,
phases or the disturbance of a homogeneous phase due to thé - .
: . S reated as a rigid body. It has three translational and three
immersion of a macromolecule in it.

/rotational degrees of freedom. The three translational degrees

Although quantum mechanics and mixed quantum e .

. . . ) . of freedom can be taken as the position,of an arbitrary
classical molecular dynamics simulations yield the most de- oint in the moleculdpoint C in Fig. 3, such as its center of
tailed information about an interface, they are time consum? . b 9- 2 X
. L . ) mass or its center of absolute charge. The three rotational
ing and suffer from statistical sampling errdPsTreating

. ) . ) : . degrees of freedom are best described by the three Euler

water as a continuum is an attractive alternative, in which — . .

) . angles)=(¢,6,x), which represent the rotation of a set of

case a density functional approach must be used to model the . -

. d : . body-fixed axes centered at &,f/,z,-frame in Fig. 3 about
profile and orientational structure at the interface. However . . .,

. ) . . a coordinate system that is also centered ak @'z’ -frame

recent density functional studies of the liquid—vapor,

interfacd?are not in good agreement with molecular dy- in Fig. 1) but is always parallel to the space-fixed coordinate

namics simulations as regards the orientation of the molecusiyStem kyzframe in Fig. 1. The three Euler angles used in

lar plane and the dipole moment on the vapor side our model follow they-conventiort”
plane P . vap ' Based on this description of one molecule, a collection
In this paper, we use a field theoretical approach to de-

. . . of N molecules treated as a continuum is characterized by its
vise a phenomenological expression for the Helmholtz free

energy of fluids that accounts for molecular structure. Theﬁgiltlon-orlentaﬂon number densip(r,(2). By normaliza-
expression contains a sufficient number of terms to model ™

the phenomenon of interest. We apply this approach to de-

termine the position-orientation density of water molecules drdQp(r,Q)=N. (1)

at the liquid—vapor interface. The parameters of the model

are determined by fitting results to those of the moleculain practice, both for computational and model development
dynamics simulations by Sokhan and Tildedleynce the reasons, it is convenient to divide into two parts: one
SPC/E water mod#l used in these simulations is one of the orientation-dependent and another orientation-independent.
better potentials availabé:'® Furthermore, they use a rela- The motivation for this division is seen by expandingn
tively large number of water molecules in their simulationsgeneralized spherical harmonics:

0021-9606/2004/120(2)/926/13/$22.00 926 © 2004 American Institute of Physics
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FIG. 1. Relation between space-fixedy@) and body-fixed X,ypz,) coor-
dinates. The intermediate set’'¢'z’) moves with the body but is always
parallel to the space fixed set.

o | |
P =2 2 2 pion") D D)%, vl
where
21+1 |
(1) = gz | GO} (0)p(r,00). ®

Since thep,,,, are independenfy can be divided into two
independent parts,

p(r,.Q)=p°r)+p'(r,Q), 4
without any loss of generality. The two terms are given by

1
P0)=pond )= 5 | 92p(1,00) ®
and
S | |
P M= X 2 pima(1)Din()*
1
=p(r,Q)—Wf dQp(r,Q). (6)
By definition, p° and p? satisfy
f drp%(r)= l (7)
P 87T2'
f dQpl(r,Q)=0. (8)

The latter constraint follows from the properties of the
DImn-21
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s Cp(r.Q) pi(r,Q)
f(r,Q)= C(I’) —f0(1+—po(T , (10)

wheref0= 1/(872) is the orientational probability density in
an isotropic medium. These two functions satisfy the con-
straints

f dre(r)=N, (11

f dof(r,Q)=1. (12)

B. Helmholtz free energy

0

In terms of p° and p!, the Helmholtz free energy is

given by

Flp°p'1=E[p%p']-THp%p"],
whereE is the internal energy of the system,its tempera-
ture, andsS its entropy. WhileE includes terms that might
favor some orientational orde®, always favors a state of no
order.

Assuming thate can be expanded as a series about the
isotropic state, it is written as

(13

1
1% =B 1+ 3, 7 [ drd0ydnao

X(I)|[r1,Ql,...,r| ,Q| ,po]

X pi(ry,Qq) - pi(r,,Q)), (14)
where
Y _( S'E
CI)|[I‘1,Ql,...,I’|,Q|:P ]= 5P(r1,91)"'5p(r|,ﬂ|) po.
(15

The functional derivatives are evaluated at the isotropic state.
For cases where the major contribution to the free energy
comes from the isotropic term, a truncated expansion is suf-
ficient to capture the phenomena of interest. As will be seen
in Sec. lll, this assumption is valid for water.

The entropy term, on the other hand, is divided into two
parts:

% pt1=Sp°1+ASp%p'],
where S, is the entropy of the isotropic medium aid is
the excess entropy due to anisotropy. The formulaAfSris

derived by noting that the excess entropy densify), at a
pointr in space is given by

(16)

For convenience, two additional functions are defined in

terms ofp® and p®. The first is the orientation-independent
number density, given by

c(r)zf dQp(r,Q)=8m2p%r). 9)

s(r)E—R(fde(r,Q)Inf(r,Q)—fdeOInfO)

—R(fdgf(r,mmf(r,m—f de(r,Q)lnfo)

It is equivalent to the number density used when molecular

orientation is not taken into account, such as in equations of
state, for example. The second function is the normalized

orientational probability density, defined by

f(r,Q)

fo

=-R

fdm(r,n)ln 17

|
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The total excess entropy in the system is the weighted inte- _ o 1 o 1 » 0
gral of s over the whole system: Fle".p 1=F[p".p ]—ﬁ(f dr8mp-(r)—N
— 1
AS[PO,Pl]EJ' dre(r)s(r) J'dr)\(r)f de (r,Q) (22
is defined. In this equationy is a Lagrange multiplier asso-
=— RJ drdQ(p°(r) ciated with the mass conservation constréi. (7)], while
\(r) is a Lagrange multiplier function associated with the
1 i 1 i i ivati
N p(r,Q) corlstramt onp~ [Eq. (8)]. Setting the functional derivatives
+pi(r.))ln| 1+ po(ry | (18) of F to zero, the equilibrium conditions are given by
. . oF _
Inserting the expressions fd&& and S from Egs. (14), 6—0—=8772,u, (22
(16), and (18) into Eq. (13), the Helmholtz free energy is p(r)
given by SE N s
5'01('.'0) - (r) ( )
0 19_ 0 0 1
Flp™.p"1=Folp HRTJ drdQ(p(r)+p7(r.Q2)) Solving Egs.(22) and (23) locates a stationary point of

1 Q = 1 F. This point could be a minimum, a maximum or a saddle

1:P (r, )) +> = | dr,d0,--dr,dq,  Point. To drive the system to minimumof the free energy
P:(f) =1 ! that satisfies the constraints in E¢®) and (8), the descrip-

tive variables are evolved along the path generated by

XIn

><<I>|[r1,Ql,...,r|,Q|;po]
0
XpH(ry, 0y, Q) ay 2O _qo( 5‘%_8#25], (24
D
- e [ TR >} (25
at op~(r,Q)
Folp°]=Eo[p°]— TS[p°]. (20) P

wheret is a pseudo-time variable amg andq, are positive

The first term in the expansiof,, is the only term that proportionality constants. This scheme is a generalization of
survives when the medium is isotropic. For water, it consist§he method of steepest descéhivhich is a local minimiza-
of a classical partsee Sec. Il A plus a gradient correction tion algorithm. o )
that accounts for the finite width of interfacésee Sec. In order to determing” and p~ through Eqs(24) and
Il B). The other terms in the expansion are kernel-type inte{25), one needs the values of the Lagrange multipliers. The
grals of powers Ole- The first order term, for example, can direct method of solving for the variables in terms of the
be thought of as an external potential-like term. The secon&adrange multipliers and then solving a set of equations for
order term, on the other hand, has two-body interaction chathe latter is not practical in this case. Since the densities
acter. In general, theth-order term involves am-body  cannot be written as explicit functions of the Lagrange mul-
interaction-like kernel. As explained in Sec. Il C, an expan-tiPliers, one must solve for both the densities and the
sion up to first order appears to be sufficient to capture in!_agrange multipliers iteratively, which is very time consum-
terfacial water orientation phenomena. Ing. o .

Although the above formalism has been developed with ~ Alternatively;” integrating Eq/(24) over the system vol-
water in mind, it is general and applies to any structureciMé and applying the mass conservation constraint to the
fluid. A ferromagnetic-like phenomenon, induced by the secleft-hand side, it is found that
ond order term, is presented elsewh&&here, the degree SF
of ordering in the homogeneous bulk is studied as a function o:j dr 5T_8772VE (26)
of interaction strength. This example was also used to verify po(r)

our numeri.cal approach by comparing nume.rical re;ults With/vherev is the volume of the system. Thus, for givefand
the analytical results that are obtained via a blfurcatlonpl, « is obtained from

analysis.
_ 1 f . SF )
8 ) 50y 27

Similarly, integrating Eq(25) over all solid angles and ap-
The mesoscopic structures of interest arise from theplying the constraint in Eq8) to the left-hand side yields

minimization of F with respect top® and p?, subject to the

constraints in Eqs.7) and (8), respectively. Using the A(r)= _f d0 oF

method of Lagrange multipliers, an auxiliary functional 8 Spt(r, Q)"

C. Free energy minimization

(28)
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Using Egs. (27) and (28), the Lagrange multipliers are wherep is the pressure; the number density defined in the
evolved in time along withp® and p* until a minimum is  previous sectionT the temperature, and the gas constant.

reached. The second and third terms on the right-hand side account
for the entropy and energy, respectively, of the attractive part
D. Numerical techniques of the interaction between two water molecules. The fourth

term arises from the hard sphere model of the repulsive part

Due to the complexity of Eqg24), (25), (27), and(28), of the interaction.

they are solved using numerical methods. Equati@dsand The explicit contribution from strong hydrogen bonds, in

(25) are partial integrodifferential equations that involve de-the form of a free energy density, is approximated by the
rivatives with respect to time and space. They constitute ARy pression

initial boundary value problem, solved for specified initial
data and boundary conditions. Neumann boundary condi- fne(¢)=—2fcRTIN[Qo+ Qg exp(— eyg/RT)]
tions are used because they do not introduce boundary arti- -~ -~
facts. The initial data is chosen to be in the basin of attraction 2(1=1)CeRTIN Qo+ e, (30
of the minimum of interest, and it satisfies both boundarywhere(}, is the number of configurations of weak hydrogen
conditions and constraints. bonds with energy 0Q),5 is the number of configurations
Spatial and angular discretization is achieved through &f strong, tetrahedral hydrogen bonds with enetgy, and
combination of the finite elemefitand the finite differencd  f is the fraction of hydrogen bonds that are capable of form-
methods. The former is superior for solving partial differen-ing strong bonds.
tial equations over domains with complex geometry, and thus ~ Combining the two contributions, the classical free en-
the overall problem is cast in a finite element formulation.ergy density of water in our model is given by
Both space and angular degrees of freedom are divided into _
. . . . fcl feos+ fHB ' (31)
hexahedral elements. Using an isoparametric formulation, el-
ement geometry and the value of the dependent variableEhe “bulk” free energy density is derived from the “bulk”
inside each element are interpolated using linear approximazauation of stat¢Eq. (29)] using®
tion functions of the Lagrange family. Numerical integration cp(c)
is performed using Gauss—Legendre quadratugince lin- feos(c)ch —-—dc’. (32
ear interpolatation functions are used, second partial deriva- o €
tives of the dependent variables cannot be accurately evald-his analytic equation of state is 20—30 times more accurate
ated using the finite element method. Thus the first andhan equivalent simple cubic equations in the temperature
second partial derivatives afin ®; [Eq. (36)] and 5P,/ 45c range— 34 to 1200 °C and pressures up to 3000%ar.
are conveniently evaluated using a second order finite differ-  Using their equation of state, the liquid and vapor den-
ence approximation. sities that coexist at equilibrium &t=300 K, which is the
Discretizing Eqs(24) and(25) with respect to space and temperature of interest to us, acg=55165.7 mol/m and
angles converts them into a set of ordinary differential equae,=17.14 mol/ni, respectively. Bulk liquid and bulk vapor
tions in the values op® and p! at the interpolation nodes. at these densities have the same chemical potential and pres-
The “time” variable in these equations is then discretizedsure.
using a first order, mixed explicit/implicit scheme, where the
time step is allowed to adapt dynamically to the nature of the
equations. For stability purposes, the Laplacian term in thgy Gradient correction
free energy(see Sec. IlIB is treated implicitly. For effi- ) _ ) ) _
ciency, the rest of the terms—which are nonlinear—are inte- The classical equation of state introduced in the previous
grated explicitly in time. The overall discretized problem is section includes no correlation between the concentration at
then solved using a preconditioned conjugate gradienc,giifferent points in space. Thus, for example, the concentra-
method2® tion at one point can be that of liquid water while it is that of
water vapor at a point an infinitesimal distance away. As a
result, interfaces between different phases have no width.
Although unphysical, this approximation is acceptable in
A. Classical equation of state macroscopic systems where the length scales of interest are

The classical equation of state used in our model is thaf?uch larger than the width of an interface.

developed by Jeffery and Austflt involves a “bulk” part In mesoscopic systems, however, the characteristic
as well as an explicit contribution from strong hydrogen lengthscale of many interactions is comparable to the width

bonding, which is important to model the anomalous behanf the water—vapor interface. Figure 2 is a schematic depic-

ior of water below 4 °C at atmospheric pressure. tion of a hydrophobic site on a molecule immersed in water.
Dividing the intermolecular interaction potential into a W& hypothesize that the local hydrophobicity induces a low

dominant repulsive term and a much weaker attractive termVater density region, the properties of which change gradu-
their “bulk” equation of state is given by ally to those of bulk liquid. Thus the atoms at this site inter-

act most strongly with water molecules in the “vapor”
p x . avwC ac phase, followed by those in the interface, followed by those
——=1-b*c— 29 I . . . .
in the liquid region. None of these three regions is negligible.

lll. FREE ENERGY OF WATER

CRT RT " 1-ab(T)c’
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FIG. 2. Schematic depiction of a molecule with a hydrophobic site im-FIG. 4. System free energy vs iteration number in the isotropic planar in-
mersed in water, suggesting that it creates a “vapor”-liquid interface. terface simulation discussed in Sec. Il B.

One way to include spatial correlation of descriptive 55me here that is a function of temperature only. Since
variables, such as the concentration in our model, is by usinge are interested in phenomena that take place at room tem-
gradient terms. The first to introduce such a correction in hi%erature and pressure, its value is determined such that it
study of interfaces appears to be van der Waals in 86 yields a 10%-90% width of about 7.5 A for the water—vapor
used a term similar to the one used in our model, describefhierface at 300 K. This value is a reasonable starting point
below. Related classical density functional approaches argnce the value measured experimentally ranges between 6.7
found in Refs. 30—36, and references therein. A (Ref. 37 and 8 A%®

Gradient terms vanish for uniform systems, since, by gigyre 3 shows a planar water—vapor interface obtained

constr_uction, the classical 'Ferr_n is suffi<_:ient in that caseby minimizing F, with respect t0p° subject to the mass
Also, in order to model the liquid—vapor interface of water, .servation constrainfEq. (7)], using A=4.3x10" 2

they must be always positive for nonuniform systems. They nf/mop2, The initial concentration profile had bulk liquid
latter condition must be satisfied by the gradient correction, ihe |ower half of the system and bulk vapor in the upper

because otherwise it will be energetically favorable to formp ¢ of the system. In this simulation, we use 50 0.5 A finite
interfaces and the system would evolve toward evergements in the direction. Figure 4 shows the decrease of

increasing interfacial surface areas. _ the free energy of the system during the simulation.
The simplest form of a gradient correction to the free

energy density is given by

— 1 2

farad ©(1))= 2 AL(D). DIV (DI 33 The third contribution to the free energy needed to
whereA(c(r),T) is a phenomenological parameter that de-model orientational structure at an interface is the first-order
pends on concentration and temperature. As a first step, V\&]isotropic term. Thus the expansionl-_o'[Eq_ (19)] is trun-
cated to first-order, retaining the external-potential-like term.
It seems to be sufficient to model orientation at a planar
interface, and, since order at a droplet’s surface is observed
to be independent of its siZ€, it should be sufficient to
model orientation at curved interfaces as well.

In order to induce orientation through spatial gradients

C. Anisotropic term

o of the density, the kernetpy[r,Q;p°], is written as an in-

3 teraction betweerVc and the two perpendicular vectons
<E andm defined in Fig. 5. The vector§ andh are, respec-

=)

Y i

H H
T fi
00 1 " 1 " 1 " 1 1
-10.0 5.0 0.0 5.0 10.0
Z (Angstroms) o "

FIG. 3. 7.5 A planar water—vapor interface obtained by minimizing a freeFIG. 5. Definition of unit vector$ andrh, wheref specifies the direction
energy that consists of the classical equation of state of Sec. Ill A and af the dipole moment of the water molecule, while both vectors define the
gradient correction with\ =4.3x 10" 2% J n?/mol. molecular plane.
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tively, equivalent taz, and&,, of Fig. 1. In terms of the Euler 0.15 — T T T
angles, they are given by om0 (@
A= sin 6 cospX+ Sin 6 Sin ¢ §+ cos62, (34 014
M= (—siny sin¢+ cosh cos¢ cosy)X 0.13
+(siny cos¢+ cosh sing cosy)y—cosy sinfz. (35 (:: 0.12
—

The simplest form fod; that is rich enough to capture
the orientational order of water molecules at the interface car
be written as

@[, Q;¢]=N1(c(r)|Ve(r)]2Ve(r) - A+ N,(c(r))
X (Ve(r)-A)2+Ng(c(r))(Ve(r)-m)?,

0.1

0.10

0.09 . 1 . 1 ) 1 . 1
020 T 1 T 1 T 1 T 1

(36)

wherec is being used instead pf. Among theA-dependent
terms, the first favors an angle of 180° betweeand the
gradient whenm\ ;>0 and an angle of 0° when;<0. The
second term has a minimum at 90° whep>0 and two
minima at 0° and 180° whex,<0. Thus a balance between
the first and second terms yields the desired angle betweec
Vc andf. The last term in Eq(36) depends on the vector

M, and, given a certain alignment fér determines the ori-
entation of the molecular plane with respect to the interface.
It is symmetrical with respect to inversion 0f, as required

by the symmetry of the water molecule. As with the second
term, A ;>0 favorsr to be perpendicular t¥ c, while A,

<0 prefers parallel or antiparallel alignment.

For illustrative purposes, before calibrating the model to
reproduce the results of molecular dynamics simulations of
the liquid—vapor interface of watéret \; and\, be zero
while A5 is given by

x

0.2 04 0.6

x/m(rad.)

0.8 1.0

FIG. 6. Free energy minimizing orientational probability density,as a
function of y at several values in the case wherfk; is given by Eqs(36)
and (37), (8 on the liquid side andb) on the vapor side of the planar
liguid—vapor interface of water.

37)

in units of (J/mol)X (mol/m*/A)2. A hyperbolic tangent is
used to obtain a smooth transition between the behavior on

the liquid side and that on the vapor side of the interface. The

concentrationgg, at which\; changes its sign is that at the used. Theg and ¢ directions were divided into elements of
Gibbs dividing plane in a planar liquid—vapor interface. As-0.057 each, while only one element was used #rsince

A3=3X%10 °tanh(5(c—cg)),

suming that the interface is normal to theaxis, the Gibbs
dividing plane is defined to be ag given by *°

[ c@-cndz=- [ “(c1-c,z (39

wherec, andc, are defined in Sec. Il A. It is found that

there is no dependence on it.

Figure 6 showd as a function ofy for several values of
0 averaged ovea 3 A slab on the liquid side aha 3 Aslab
on the vapor side of the Gibbs dividing plane. Due to the
symmetry of the water molecule, any function p&atisfies
f(x+ m)=1(x) and thus it suffices to pI&tfor x between 0

Cce~30785 mol/m under the model developed in Secs. 11l A and only. It is seen from the two graphs that all values of

and Il B.
From the form ofA;, @4

sides of the interface, but the coefficient is positive in the
liquid and negative in the vapor. Thus it is energetically fa-

vorable to haveh perpendicular tdvc (i.e., parallel to the
interface on the liquid side and parallel or antiparallel¥a
(i.e., perpendicular to the interfacen the vapor side.

The results of simulating order at a planar interface,

where the concentration gradient is along thexis and
where there is no dependence xyny and ¢, are shown in
Figs. 6-8. Initially,p° is given by the concentration profile

x are equally likely wherf is perpendicular to the interface

has the same strength on both (#=0), sincem in this case is parallel to the interface no

matter what the value of is. For 8+ 0, the slab on the liquid
side has a maximum at=90°, wheret is parallel to the
interface, and the slab on the vapor side has maximg at
=0°,180° whererh is perpendicular to the interface. The

distributions are narrowest far=90°.
Figure 7a) showsf’, defined by

2m

-~ 27T ~
f’(r,t9):jO dy . dof(r,Q), (39

in Fig. 3 while p! is taken to be zero everywhere. The sameaveraged ovea 3 A slab on the liquid side aha 3 Aslab on
number of spatial elements as in the isotropic case above waise vapor side of the Gibbs dividing plane, respectively. The
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0.60 —rT r 1 1 17 "7 7T "T7 1T 17 | ! ! ! ! i
-0.196738 ) ]
0.55} [ ]
@’ -0.196742 ]
0.50 o [ ]
S A I ]
> -0.196746 4
= [ |
0451 o -
o s |
-0.196750 -
0.40 [ ]
-0.196754 ]
L L A L L 1 A L
030t e ) L 0 1000 2000 3000 4000
00 01 02 03 04 05 06 07 08 09 1.0 iteration number
o/w(rad.)
FIG. 8. Energy of system vs iteration number in the simulation of orienta-
080T T T T T T T T "~ 1" tional order at the planar liquid—vapor interface of water in the case where
[ i ®, is given by Eqgs(36) and(37).
0.70
060l probability, while the coefficienA is used to normalizé” to
W | unity. From the graphs, it is seen thidthas a maximum at

m,=0 on the liquid side, and maxima at 1 ardlL on the
vapor side, as expected from the form®jf and the results
presented in Figs. 6 anddJ.
It is seen from the figures that there is more ordering on
[ ] the vapor side than on the liquid side of the interface. This is
- - due to the fact that the concentration gradient is larger on the
| B S S T S S S S S vapor side than on the liquid side, and, as suggested by our
1.0 08 06 -04 02 00 02 04 06 08 1.0 model, larger gradients induce more ordering.
m The change in the free energy of the system over the
course of the minimization is shown in Fig. 8. The absolute
FIG. 7. Free energy minimizing) f' [defined in Eq(39)] as a function of magnitude of the orientation-dependent energy term is found
¢ and(b) " [defined in Eq(40)] as a function ofn, at the planar liquid—-  to be about four orders of magnitude smaller tifgn Since
vapor interface of water in the case whdre s given by Eqs(36) and(37). the profile Ofpo stays almost the same throughout the simu-
lation, most of the change in the free energy comes from
Shange inp!, explaining why the change in the total free
energy is so small. This difference in magnitude, which is

explicit dependence ob, onf, the distribution has a maxi- also seen in the case of water molecules below, justifies the
mum for A perpendicular to the interface on the liquid side S x
expansion in Eq(19).

andf parallel to the interface on the vapor side. This result is Back to the case of wat lecul t the liquid—
expected since whefmis perpendicular to the interfacé is . o water molecules at the liqul \gapor
always parallel to it, which is the energetically favorable'merface’ I '§ seen from molecular. dyngmms simulations
orientation on the liquid side. On the vapor sidgyrefers to that the dom"?a”t feature of the or.|entat|on of water mol-
be in the interface plane because this implies thdias the :I(i:glnerfweitt tgf théﬁrEEilédrr:ozn?egn}:s |tsot?[e 'I?Fll?;orsetq%?rfgilhe
highest probability to be perpendicular to the interface second term in Eq. (36 to be dominant, with

Figure qb) show§f”, the prgbability distribgtion ofn,, N>>0. Since the dipole moments make a small angle with
the z component offf de_fmed n Eq.(35), again average_d e interface and point in two different directions on the two
over 3 A slabs on both sides of the interface. The normalize ides, the first term should be much weaker than the second
probability density, defined by one and\; must change signs when passing from the liquid

- - ) side to the vapor side, i.e., at the Gibbs dividing plane. The

f"(r’mz)zf dQf(r,Q)8(m,+sin 6 cosy), (40 simulations also show that there is weak preferred orienta-
tion of the molecular plane parallel to the interface on the
liquid side and perpendicular to it on the vapor side. Thyis
- - . 2 should also change signs @&t .
f”(r,mz)mf dQf(r,Q)Ae((MmaFsindcosnia)”, (41) These observations are reproduced by the set of values
(see Fig. 9

0.50

040k

4

distribution is quite interesting because, although there is n

is approximated by the integral

The parametea is chosen to yield reasonable sampling con-
sidering the discretized nature of the numerically computed \;=—3x10"°tanh(5(c—cg)),
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0 [ 5 $-0.19682 | i
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2L _ L
-0.19686 L L 1
[ 0 5000 10000 15000 20000
4| . . .
, 1 . ! . . , . , iteration number
30780 30782 30784 30786 3 30788 30790 FIG. 11. System free energy vs iteration number for simulation of the planar
concentration (mol/m™) liquid—vapor interface of water witkb, given by Egs.(36) and (42). The

slight rise in free energy is a result of small numerical error.

FIG. 9. The coefficienta;, \,, and\; [given in Eqg.(42)] in &, used to
model water orientation at the liquid—vapor interface.

08 T T T T T T T T
N,=1.7X10 >(tanH5(c—cg))+4.2), (42) 0.7
A3=3x10 (tanh(5(c—cg))+0.6), 0.6

where ; is in units of (J/mol)x (mol/m*/A)2 and\, and\,
are in units of (J/molx (mol/m*/A)2. The results of using
these values in simulating orientational order at a planar in-~ g 4
terface with initial data and numerical details like those in

the previous exampléexcept that thed direction is divided 0.3
into twice as many elementare shown in Figs. 10-12.
Figure 10 shows the profile afat the beginning and the end
of the simulation, which are found to be very close to each
other. The free energy of the system throughout the simula: I
tion is shown in Fig. 11. The probability distributions @ff’ 0.0 . 1 L L L 1 . L
defined in Eq(39), averaged ove3 A slabs on both sides of 0.0 02 0.4 0.6 08 10

0.5

0.2

01 .

0/x(rad.)
] T 1
| 0.8
X, ] 0.7
a0k % i
® $
£ I . 1 0.6
S 30| . .
e [ J Sy
¢8 [ ? ] 05
T 20} ]
o 92
10 | b4 4 0.4
b's
i % . -
0.0 |.|.|.|M 08—
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z (Angstroms) Mz

FIG. 10. Initial (diamonds and final (+’s) concentration profiles for the ~FIG. 12. Free energy minimizing) f' [defined in Eq(39)] as a function of
planar liquid—vapor interface of water in a free energy minimization simu- # and(b) f” [defined in Eq(40)] as a function oin, at the planar liquid—
lation where®, is given by Eqs(36) and (42). vapor interface of water witkb; given by Eqs.(36) and(42).
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the interface are shown in Fig. . The distributions have A ¢=¢(—o)— ()
maxima at about 99° on the liquid side and about 77° on the

vapor side. The distribution af,, i.e., f” [defined in Eq.

(40)] averaged owe3 A slabs on both sides of the interface,

shown in Fig. 12b), indicates that a majority of water mol- 1 (e 1

ecules h_a$nZ parqllel to the mterfape on the I_|q_U|d side an<_j - P,(2)dz— —[Q,—*)—Q,,*)], (44)

perpendicular to it on the vapor side. Combining these dis- €0 J -~ €o

tributions with those ofg implies that most molecules have whereP, is thez-component of the molecular dipole density

their plane parallel to the interface on the liquid side and zZ

perpendicular to it on the vapor side. and sz is the zz—cqmponent of the molecular quadrupole
density. They are given by

J:Ez(z)dz

ics results used to calibrate the modélhe locations and
heights of the distributions’ maxima are very close to whatis ~ Pz(2)= < % o(z—2zp)

The above results agree well with the molecular dynam-
> G2
presented there. '

:C(Z)<PZ(Q)>%,Z7 (45)
IV. RESULTS AND DISCUSSION sz(2)=<2 5(Z_Zm)<%2 qmjzzmj)>
A. Surface tension of a planar interface " :

:C(Z)<QZZ(Q)>%,Z! (46)

The formation of an interface between two phases has a

free energy cost whose value per unit area is defined as thghere the sum oven goes over all molecules in the system,
surface tension of the interface. Since, as seen above, thge sum ovejj goes over all atoms in a moleculgy,; is the
anisotropic term in the free energy is about four orders ofharge of thgth atom in themth moleculez,, is the space-
magnitude smaller thaf,, the major contribution to the fixed z coordinate of the position of the center of theh
surface tension comes from the equation of state and gradief{olecule about which the multipoles are evaluated, apd

terms. is the space-fixed component of the position of thgth

In our model, retaining onlf,, the surface tension of a atom in themth molecule. The quadrupole moment defined
planar interface normal to theaxis is given by** in Eq. (46) is not the conventional quadrupole moment of

zero trace, but has a finite trace. The angle brackets
oc dc\?2 denote ensemble averaging of microscopic variables and

YZAfde(d—z) (43 (---); , indicate an averaging over the Euler angles
As determined in Sec. IlIB, takingA=4.3x10 % ()i= fﬂdﬂ“-f(z,ﬂ). (47)
JnP/mol? and using the free energy minimizing concentra-
tion profile in Fig. 3, it is found thaty~135 mN/m. Experi- Since P, is proportional to{cosé), its contribution is

mentally, the surface tension is measured to be about 7@mited to within the interface region, where there is prefer-
mN/m at 300 K3° and thus our result is about twice the ential orientation. It is thus a reflection of the degree and
observed value. This discrepancy is most probably due to thgype of ordering at the interface. On the other hand, the quad-
simplicity of the gradient correction used. rupole moment contributes through its values in the two bulk
Better values for the surface tension can be obtained bphases far from the interface and hence does not yield any
using an expression fok that is a function of concentration information about the interface region. In fa@,(=*x)
and that involves two parameters that are calibrated to matck c( %) X iNAQ, whereQ is the trace of the quadrupole
both the interface width and the surface tension. One catensor of the water molecule amd, is Avogadro’s number.
also use other gradient terms in the correction, such as Equation(44) is thought to be exact because all higher
|Vcl|4, for example. We have limited this study to the form in multipole moments enter it through their derivatives which
Eg. (33) with a constant\ as we are mainly concerned with vanish at+< since both limits correspond to translationally
the orientation of water molecules at the liquid—vapor inter- invariant phases. A controversial point, however, is the de-
face. pendence of Eq(44) on the point in the molecule about
which the multipole expansion is performed. Since the water
molecule is neutral, its dipole moment is independent of the
chosen molecular center. However, the quadrupole moment
does depend on it. Thus different values for the surface po-
The net orientation of water molecules in the liquid— tential are obtained depending on the choice of molecular
vapor interface causes a layering of their charge density, praenter, which seems to contradict its exactness.
ducing an electric field. The surface potential thus measures Nevertheless, as this equation is commonly used to com-
the work performed in moving a test charge from the vapompute the surface potential, we use it to compare the predic-
phase to the liquid phase, across this field. An expression fdion of our model to those of others. Since our model is

the surface potentialy ¢, is”*%4° calibrated to reproduce data obtained through molecular dy-

B. Surface potential of a planar interface
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namics simulations that use the SPC/E mdfiele use this x

model to obtain the dipole and quadrupole moments of the g g = o & g =B

water molecule, whose values are found to e 7.83 A D A ———

X10 30 Cm andQ=6.78x10 “° C n? (taking the molecu- Z BE000

lar center to be at the position of the oxygen atoldsing | an ﬁrj

Eq. (44), the surface potential is found to be0.758 V. It is | 4000

different from the value obtained in the molecular dynamics | = o

simulationg since, in our simulations, the density profile and ::;:;

width of the interface are different from theirs. Furthermore, o P

the orientational probability density obtained in our simula- ﬁ

tions is slightly different from theirs. . 000
However, it is in qualitative agreement with the results o

of others’ As seen from Table IV in the aforementioned

reference, values Af® obtained using different water mod- P

els vary in magnitude, but they are all negative with an ab- | i

solute value less than 1 V. As noted there, it is difficult to

compare values of .the surfac_e potential o_btalned theore_t 7IG. 13. Cross section through a droplet of 28 A radius simulated as de-

cally to values obtained experimentally. This is because, iR¢rped in Sec. IVC. Three contour lines for 55000 mdym

electrochemical experiments, electrostatic and chemical cores 000 mol/m, and 100 mol/rd are shown.

tributions to the surface potential are difficult to separate and

because these experiments deal with dilute electrolytes

which are different from a pure solvefit. A relation between vapor pressure at equilibrium with a
One source of error in our calculations—and those Ofdroplet and its radius is given By

others—is the use of a nonpolarizable water model, where

the charge distribution in a water molecule is assumed to be

that suitable for the liquid state. In reality, the charge distri-

bution in a water molecule, and thus its multipole moments : . .

. N . wherer is the radius of the drople®, is the temperature-
depend on the environment surrounding it. However, since .
. .~ .dependent vapor pressure corresponding to a droplet of ra-
the concentration of water molecules on the vapor side is,. .
. R . diusr, P, is the temperature-dependent vapor pressure of a
almost negligible compared to that on the liquid side, this I e Lo
o - vapor at equilibrium with infinite bulk liquidT is the tem-

error is likely not very significant. Another, probably less . . .

L . . peratureR is the gas constany; is the coefficient of surface
significant, source of error in all of these models is the as: ~ " i< th v of the liauid inside th |
sumption that water molecules are rigid tension, and: 1S the Qenslty of the |qq|d |q3|de the drop EI'.

’ Inherent to this relation is the approximation that the coeffi-
cient of surface tension is independent of droplet size.
Taking the logarithm of both sides of this equation, it is
Equilibrium droplets of several sizes @300 K were  seen that
simulated by minimizing, with respect tq°, starting with oy 1
profiles that had liquid density at the center which gradually  |n(p_ (T))=In(P..(T))+ Rk (49)
decayed to that of vapor at the boundary. Cubic elements of CRTT
1 A sides were used to discretize space. Care had been taken
to have enough vapor surrounding the droplets so that finite
system size effects were minimized. Some runs were re-  -0.4760 ————1——1——1——
peated using a much larger system, i.e., with more vapo!
around the droplets, and the results were found to be the [
same. The final, free energy minimizing droplets had radii  _5 4752
ranging from 13 A(about 300 water moleculggo 91 A |
(about 18 water molecules A typical droplet(of radius 28 = -0.4763
A) is shown in Fig. 13. The energy of the system throughout=
this simulation is shown in Fig. 14. 2 [
It is observed that droplets with a smaller radius have a > -0.4765
density higher than that of bulk liquid in the middle. As the g
C
[}

_ [{ 2y 1)
Pr(T)—Pm(T)ex ﬁ? , (48)

C. Isotropic droplets

-0.4761} 4

-0.4764

(1

-0.4766

radius gets larger, the density goes to that of infinite bulk 1
liquid. Similarly, the density of the vapor surrounding _04767' ]
smaller droplets is quite high, and it goes to that of bulk ’ |

vapor at equilibrium with infinite liquid as the droplets get 04768 . 1 . 4 o
bigger. Table | summarizes these observations, where the re 0 20 40 60 80 100 120 140
dius of a dropletr, is calculated by using the relatidd iteration number

_4_.3 : :
=3mr°c;, whereN is the total number of moles of water in g, 14. System free energy as a function of iteration number in simulation
the system. of the droplet of radius 28 A shown in Fig. 13.
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TABLE I. Density in the middle of dropletsc(,) and of vapor at equilib- 40 --r-rrrrr-r--r--r——r—rTrrerer e
rium with them (,), as functions of droplet size. L .
130 4
r(A) C(mol/m?®) ¢, (mol/nt)
12.9 58054.4 86.9 120 1
20.6 57849.6 45.1 - :
27.8 56901.6 34.2 _uop 8
36.1 56445.6 28.2 c . \«——\ ]
46.5 56168.0 25.1 > 100} -
59.2 55937.6 22.7 £ ]
65.3 55855.6 22.1 >~ 90} 4
91.0 55534.4 19.8 I )
80 |- i
70 o
Thus a plot of InP,) versus 17 should yield a straight line (2| S I I B P P P B T I P P P B I P P P
whosey-intercept givesP..(300) and whose slope gives 0 10 20 30 40 50 60 70 &0 90 100
Such a plot for the data presented in Table I, together with r (Angstroms)

the stralgh_t I_me that fits it best, a_re Shown n _Flg. 15. ASFIG. 16. Surface tension of water droplets in Table | as a function of their
seen, the fit is very good. The straight line hag-mtercept  ragii, calculated using the Laplace equation for capillary predgqe(50)].
of 10.58 and a slope of 21.7 A. Theintercept corresponds
to P,,~39340.1 Pa, which is 8% lower than the actual vapor
pressure exerted lg, . Usingc=c;, in the expression for the
slope, the fit to the simulation data yielde~150 mN/m, y= L(P- —P,) (50)
which is 11% higher than the value obtained using @8). 20 Mo
The results obtained here are acceptable given the many is gerived by imposing mechanical equilibrium on a

approx'imations involvegl .in calculating them.. First, we aréuniece” of the droplet's surface, where the higher pressure
assuming that the_coeff|C|e_nt of surface tension does not dgsqige the droplet is balanced by the pressure of the vapor
pend on droplet size, but it has been observed through MGy ro,ding the droplet and surface tension. The additional
lecular dynamics simulations that surface tension does dggce from surface tension allows the existence of such high
pend on i Second, we have used-c, in Eq. (49), but, as densities inside the droplet.

seen from Table |, the density in the middle of the droplet gjng the pressure corresponding to the concentration at
depends on its size as well. Third, the definition of droplet,o center of the droplet a8, the surface tension of the

radii is somewhat arbitrary. droplets in Table | is plotted in Fig. 16. It is seen that the

Another relation between the radius of a droplet, theg,tace tension increases with radius for small droplets, as
pressure inside itH;,), the pressure of the vapor at equilib-

! o . . ) observed in previous molecular dynamics simulation
rium with it (Po,) and its surface tension, is the Laplace yoq1ts8° However, the smallest droplet considered here
equation for capillary pressuf@:

might be too small for Eq(50) to be valid. For larger drop-

lets, which have more “macroscopic” character, the surface
tension decreases with radius. Except for the largest droplet,
the surface tension seems to be reaching a plateau at about

124 100 mN/m. Although, apparently coincidentally, the surface
tension obtained for the largest droplet lies close to the ex-
12.0 perimental value of 72 mN/n¥T, it is inconsistent with the
rest of our results. The significant decrease in surface tension
o for the largest droplet might be due to finite system size
:,5) 16 effects.
2 Although the accuracy of the values obtained for the
g surface tension using E¢G0) is not certain, surface tension
c "2 values are definitely in qualitative agreement with each other,
with the values obtained using Eqg.3) and (48), and with
10.8 experimental measuremenritsMore accurate calculations of
pressure as a function of space using a mesoscopic formula
are under waf®
104 . L . L . L . As observed earlier in modeling orientation at the planar
0.00 0.02 0.04 0.06 0.08 interface, the profile 0p® does not change much when the
1/r (1/Angstrom) anisotropic term in the free energy is included and the free

. . . . . 1
FIG. 15. Natural logarithm of the pressuiia Pa vs the inverse of droplet energy In minimized Wlth, re;pect both bi? andp - Thus .
radius. The discrete data points are those obtained from the simulation&,he_ abpve results are valid in the general case where orien-
while the straight line is from the fit to these data points. tation is accounted for.
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b d Regarding orientation at the interface, the model repro-
3 3 o - o o o duces recent molecular dynamics simulation reSuitsde-
I T

3

1 = N . . . . .
tail. It predicts that water molecules orient their dipole mo-

T TTTITTTTTTT o 012 ments almost parallel to the interface, pointing with a small
= - g;g angle toward the bulk phase on the side of which they reside.
] 566 Moreover, there is a tendency to have the molecular plane
] 0.04 parallel to the interface on the liquid side and perpendicular
o e to it on the vapor side.
] o0n | One part of the model that must be improved is the gra-
- o0 m 2$ dient correction in the isotropic part of the free energy. As
] o0 | presented in the examples, the surface tension of the liquid—
— 10 w0 vapor interface as calculated from our model is almost twice
] as large as that measured experimentally. Since the first order
i P term in the free energy is much smaller in magnitude than
] the isotropic part, and since the classical equation of state
1 =0 used in our model generelly yields good resalftshis error

in the surface tension is likely a reflection of the shortcom-
FIG. 17. Cross section through a droplet of radius 20.6 A. The color scaldNgs of the gradient correction used.
indicates the value afn-n,) as defined in the text. Treating water as a continuum using the expression for

the free energy developed in this paper is an important step

towards the efficient modeling of macromoleculesvitro
D. Order at the surface of a droplet andin vivo. Such systems are large and include many water

As with planar interfaces, the liquid—vapor interface atmolecules, the explicit treatment of which is time consum-

the surface of a droplet exhibits anisotropy that is not preser{!d- However, combining the above expression for the Helm-
inside the droplet or in the vapor surrounding it. Figure 17h0ltz free energy of water with an appropriate force field
shows the orientational order at the surface of a droplefl€Scribing interatomic interactions and free energy of solva-
whose radius is 20.6 A. Plotted in the figure(ieny(r)),,  ton will be a much more efficient methodology. _ _
whereng(r) is the unit vector normal to the surface at a point ~ Furthermore, the theoretical framework upon which this
r and the angle brackets indicate averaging over all angles ¥fater model is based is general and can be used to study
that point. As expected, there is no ordering inside the drop®ther systems as well. Itis applicable to liquid crystals, such
let or in the vapor surrounding it. At the interface, the aver-2S t0 t.hezzstudy of order in a homogeneous ferromagnetic-like
age dipole moment points toward the center on the liquidnaterial™ When generalized to multiple species, this for-
side of the Gibbs dividing surfadelefined in Eq.(38)] and malism can fE)e.applled to the self-assembly of molecul'es into
toward the vapor on the vapor side of the Gibbs dividingmembraneg. Since such systems are very large and difficult

surface, in agreement with the behavior observed at a plan&p Model with atomic detail, a density functional approach
interface. like that presented here might make their study more fea-

Numerically, space was divided into cubic elements ofSiPI€:
1 A sides, while the range of angular coordinates was di-
vided into 0.17X0.17X 0.1 elements. The angular dis- ACKNOWLEDGMENTS
cretization was coarse compared to the planar interface case, . .
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