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Abstract A method is introduced for simulating long timescale macromolecular structural
fluctuations and transitions with atomic-scale detail. The N -atom Liouville equation for the
macromolecule/host medium system provides the starting point for the analysis. Order pa-
rameters characterizing overall macromolecular architecture are demonstrated to be slowly
evolving.

For single-stranded macromolecules, a curvilinear coordinate provides a way to intro-
duce the order parameters. Using a multiscale approach, Fokker–Planck equations are de-
rived. A nanocanonical method for constructing the lowest order solution to the Liouville
equation and the equivalence of long-time and ensemble averages avoid the tedious book-
keeping needed to preserve the number of degrees of freedom (required in earlier methods).
The method overcomes the large energy barriers that plague other approaches for estimating
rates of transition between macromolecular conformations. A reduced dynamics is derived
for the friction dominated limit. New experimental methods for observing macromolecular
dynamics and medical sciences applications are discussed.

Keywords Macromolecular conformations · Multiscale analysis · Protein folding · RNA
folding · DNA folding · Fokker–Planck equations

1 Background

Predicting macromolecular structural dynamics over long times requires a multiscale ap-
proach. Small molecules or ions interact with a macromolecule through atomic-scale
processes. The complexing of two or more macromolecules occurs through atomic-scale
configurations. While nanoscale architecture and dynamics are of central interest in many
phenomena, it is atomic-scale effects which cumulatively give rise to them.
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Macromolecular states are related to free-energy landscapes mediated by atomic-scale
fluctuation entropic contributions. To use a calibrated interatomic force field as a basis for
a parameter free macromolecular theory, an all-atom formulation is required. Yet, to fully
understand the nanoscale structure and dynamics of a macromolecule, one must develop
methods to simulate hundreds of thousands of atoms over the long timescales that typify
biomacromolecular phenomena. Macromolecular complexes like viruses or other bionanos-
tructures, and their interaction with drugs or cell surface receptors, involve even more atoms.
In summary, macromolecular systems must be understood via an integration of effects span-
ning many scales in space and time. Computational molecular dynamics (MD) is discussed
extensively in the literature [1–12] and methods were introduced to solve the problem of
multiple time scales encountered in these simulations. Most of these methods [13–16] like
TJMTS [13] use the separation of the equations of motion into fast and slow parts, running
many small time steps for the rapidly changing terms keeping the slowly varying ones con-
stant before updating the latter using a large time step. RESPA [14–16] uses the same idea
while correcting for the errors encountered when approximating the equation of motion by
adjusting the time step dynamically. MD is a powerful approach for smaller-size, shorter-
time phenomena; however, it is presently impractical for simulating large macromolecules
and other nanosystems over millisecond times or longer.

Another difficulty is the need to account for solvent effects. In biological systems, the
solvent influence the structure and dynamics of the macromolecule; thus, omitting it from
the simulation will not lead to realistic results. Models based on a continuum representation
of the solvent have been developed [17] and proved to be a less expensive alternative to full
atomistic models. These, however, face difficulties in quantitatively describing a number of
essential effects such as the role of hydrogen-bonding and hydrophobicity. Other problems
are encountered due to the fact that solvent effects change over different size scales (see
Ref. [17] for a review).

The Smoluchowski equation has been applied to polymer dynamics [18]. This work
yields insights into long timescale fluctuating polymer dynamics. However, it does not take
full advantage of the multiple timescale character of these systems and therefore, does not
integrate an interatomic force field. It is not based on the reduction of the Liouville equation.
In addition, Kirkwood’s generalized diffusion equation assumes slowly evolving variables.
However, in the cited work above, it was used as a starting point to the method with fast
variables such as the atomic positions (see however Sect. 4 below).

Advances in the modeling of many-atom systems hold great promise for addressing
the above challenges. An all-atom multiscale analysis of the Liouville equation provides
a method to derive generalized Fokker–Planck (FP) equations in cases where slow variables
can be constructed explicitly [19, 20].

In previous multiscale analysis methods [21–25], FP equations were also derived starting
from the Liouville equation. However, these only focused on particles devoid of atomic-scale
structure in order to avoid difficulties encountered in preserving the total number of degrees
of freedom. AMA (all-atom multiscale analysis) developed earlier [19] solve this problem
by removing the secular behavior from the full N -atom probability density while introducing
the order parameters; a direct analysis of the time dependence of the perturbation expansion
was used instead of integration of fast variables. The nanocanonical ensemble was developed
through entropy maximization constrained by the statistical average position of the center of
mass of the nanoparticle. AMA was applied to the study of viral structural transitions [20]
where the nanocanonical ensemble introduced was defined by the viral center of mass and
dilatation.

The objective of the present work is to modify AMA to arrive at a theory of macromole-
cular dynamics. AMA provides a coarse-grained model, but does not neglect the internal
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structure of the nanosystem as is essential for the macromolecular conformational studies
discussed above. In summary, AMA captures both atomic and nanoscale behaviors simulta-
neously.

The systems of interest are sufficiently complex that the FP equations cannot always
be written directly. Thus, we derive them using a modified AMA approach. AMA uses a
seven-step algorithm.

Step 1: The system is described in terms of N classical atoms interacting via bonded and
non-bonded forces.

Step 2: A set of order parameters, e.g. center of mass, orientation or overall deformation
of each nanoscale component, is set forth; Newton’s equations and statistical arguments
are used to show that these variables evolve on timescales long relative to that of atomic
vibrations or collisions.

Step 3: The N -atom kinetic and potential energies are expressed in terms of the slow vari-
ables Φ and residual dependence on the set of atomic momenta and positions Γ .

Step 4: The solution of the Liouville equation (i.e. the probability density ρ for all atomic
positions and momenta) is reformulated to make its dependence on Γ (both directly and
through the slow variables Φ) explicit. Importantly, Φ is not an additional set of dynamical
variables. Through this reformulation, one avoids the tedious algebra to ensure there are
only 6N degrees of freedom. Rather, our ρ(Γ,Φ, t) formulation expresses the two distinct
dependencies that capture the multiscale character of a nanosystem.

Step 5: A perturbation parameter ε is identified (e.g. the ratio of the mass of a typical atom
to that of a nanoparticle); statistical arguments about the sum of many terms of fluctuating
sign and the assumption that the system is close to momentum equilibrium are adapted;
with this, the Liouville equation becomes

∞∑

n=0

εn

(
∂

∂tn
−Ln

)
ρ = 0, (1.1)

where tn = εnt and Ln is the contribution to the Liouville operator that is O(εn);Ln

emerges naturally due to the way in which the slow variables, the length and mass ratios,
and other physical factors appear in the Liouville equation.

Step 6: An expansion of ρ in powers of ε is introduced and the Liouville equation is solved
order-by-order.

Step 7: The solution to various orders in ε is examined and, by asserting that the n-th order
solution ρn is well behaved for large time t0, the generalized FP equation is obtained; we do
not ensure these conditions by integrating out the fast variables (e.g. the direct dependence
of ρ on Γ ); this approach of earlier studies leads to technical difficulties when one wishes
to use an all-atom description of the nanoparticle. Rather, we use the statistical mechanical
theorem “the long-time average is equivalent to the ensemble average”.

Advantages and details of this seven-step procedure are explained elsewhere [19, 20].
AMA, as outlined above, facilitates the derivation of FP equations for nanometer scale

structures. Here we implement AMA by introducing curvilinear coordinates that capture the
overall structure of a macromolecule. A new automated method for constructing the order
parameters is presented which eliminates the need to develop special software to account for
the detailed atomic structure of the monomer units. These order parameters capture overall
features of single-stranded macromolecules and are used to define the new nanocanonical
ensemble as explained in Appendix 1. Innovations also include introducing two different
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scales of the order parameters in the development of the ensemble, the impact of which is
discussed.

Full FP and reduced (friction-dominated, Smoluchowski-type) equations that we derive
here provide a method for practical simulations through their implied Langevin equations.
Though atomic details are preserved, simulation time will tremendously decrease since the
number of order parameters is much less than that of atoms in the system. The thermally-
averaged forces and friction coefficients in these equations can be estimated using molecu-
lar dynamics [20]. The derivation presented here implies the structure of the cross-friction
coefficients matrix and gives statistical mechanical formulas for these coefficients and the
thermal average forces.

In what follows, we develop the theory and computational algorithm that make these
advances in macromolecular simulation for large systems evolving over biologically relevant
timescales feasible. Formal developments are provided in Sects. 2 to 4 and conclusions are
drawn in Sect. 5.

2 Curvilinear Coordinates, Order Parameters, and Scaling

The conformation of single-stranded macromolecules is described here in terms of order pa-
rameters. The latter are shown to evolve slowly in time relative to the 10−12 second timescale
of atomic collision and vibration, an essential property of an order parameter. The potential
energy of the composite macromolecule/host system is then expressed in terms of these or-
der parameters and residual, single-atom coordinate dependencies. The overall structure of a
single-stranded macromolecule is described by a curve �r that depends on an arc length-like
parameter τ . This �r/τ relationship is parameterized by factors that ultimately turn out to be
viable order parameters capturing overall macromolecular structure. In addition, we retain
all-atom resolution by keeping certain residual atomistic variables.

We define τ such that τ = 1 corresponds to one end (i.e. �r at τ = 1 is close to the center-
of-mass (CM) of the first monomer), while L is the value of τ near the CM of the terminal
monomer of the L-monomer macromolecule. A set of kmax vector order parameters �Φ∗ =
{ �Φ∗

1 , . . . , �Φ∗
kmax

} is introduced such that the curve characterizing overall macromolecular
conformation takes the form

�r(τ, �Φ∗
) =

kmax∑

k=1

�Φ∗
k uk(τ ). (2.1)

We take τ to increase monotonically from 1 to L as �r(τ, �Φ∗
) progresses along the strand.

In particular, τ� is designed such that �r(τ�, �Φ∗
) is the point on the curve lying closest to

the CM of the �-th monomer. If the uk are polynomials of low order, then �r(τ, �Φ∗
) bends

smoothly as τ varies from 1 to L; if the uk are oscillatory functions of τ , then �r(τ, �Φ∗
)

has coiled or globular structure. Thus, proper choice of the uk can capture much of the
character of a macromolecule with only a few terms, i.e. kmax � N (see Fig. 1 for example).
However, the choice of the order parameters �Φ∗

k as coefficients of specific functions uk may
be too restrictive in some problems; thus the relationship between �r(τ, �Φ∗

) and the order
parameters can be nonlinear to advantage (e.g. an order parameter could be the frequency of
a periodic function). Such nonlinear relationships can be included in the present approach,
but will not be considered here.

If the basis functions uk(τ ) vary on the scale of the macromolecule, i.e. do not have
short-scale variations in the interval 1 < τ < L, then we expect the �Φ∗

k to evolve slowly
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Fig. 1 �r(τ, �Φ∗
) for Alamethicin with kmax = 19. The black dots are the position of the CM of each monomer.

See more details about the plot in Appendix 2

in time since they simultaneously involve many atoms, as is demonstrated in detail below.
However, macromolecules like proteins can have sharp bends. In that case, we suggest that
the uk can be chosen as piecewise smooth functions that match at the “joints”. This mixed
smooth/joint structure will be addressed elsewhere.

According to AMA [19, 20], order parameters must be expressed in terms of the nanos-
tructure’s atomic configuration. Here, this is accomplished through a mass-weighted least-
squares approach, i.e. by minimizing the deviation D defined via

D = 1

2

L∑

�=1

m∗
�

m∗∗ |�r(τ�, �Φ∗
) − �R∗

� |2, (2.2)

where �R∗
� and m∗

� are the CM and mass of monomer �, respectively; and m∗∗ is the mass of
the whole macromolecule.

The �Φ∗
k are chosen to minimize D; setting ∂D/∂ �Φ∗

q = �0 yields

L∑

�=1

m∗
�
�R∗
�uq(τ�) =

kmax∑

k=1

L∑

�=1

m∗
�

�Φ∗
k uk(τ�)uq(τ�), (2.3)

constituting kmax linear equations from which the �Φ∗
k are to be obtained.

As the �R∗
� depend on the coordinates of the atoms in monomer �, the solution of (2.3)

has the form �Φ∗
k = �Φ ′

k where the �Φ ′
k depend on the locations of all the atoms in the macro-
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molecule. It is convenient to introduce an inner product via

(uq, uk) ≡
L∑

�=1

m∗
�

m∗∗ uq(τ�)uk(τ�). (2.4)

Choosing the basis functions to be orthonormal, i.e. (uk, uq) = δkq , yields

�Φ∗
k = ( �R∗, uk) ≡

L∑

�=1

�R∗
�uk(τ�)

m∗
�

m∗∗ ≡ �Φ ′
k. (2.5)

With this, �Φ∗
is now shown to serve as the set of order parameters on which a multiscale

analysis can be based.
When the basis functions are properly selected, the order parameters �Φ∗

k are slowly vary-
ing as follows. Newton’s equations imply

d �Φ∗
k

dt
= −L �Φ∗

k , (2.6)

where L is the Liouville operator for the N-atom system (macromolecule plus host medium).
This implies

d �Φ∗
k

dt
=

N∑

i=1

�pi

mi

(
∂ �R∗

�(i)

∂�ri

)
m∗

�(i)

m∗∗ uk(τ�(i))Θi (2.7)

where �(i) indicates the monomer in which atom i resides; mi and �pi are the mass and
momentum of atom i; and Θi is zero except when atom i is in the macromolecule, in which
case it is one. By definition,

�R∗
� =

N∑

i=1

mi

m∗
�

�riΘ
�
i , (2.8)

where Θ�
i is zero except when atom i is in the �-th monomer, in which case it is one.

With this

d �Φ∗
k

dt
= 1

m∗∗

L∑

�=1

�P ∗
� uk(τ�) ≡ �Π∗

k

m∗∗ , (2.9)

�P ∗
� =

N∑

i=1

�piΘ
�
i . (2.10)

This completes the introduction of the order parameters �Φ∗
and associated momenta �Π∗

.
Let ε2 = m/m∗∗ where m is the mass of a typical atom in the macromolecule. Thus,

ε−2 = Nm where Nm is the number of atoms in the macromolecule. Assume that the macro-
molecule’s range of migration and the monomers’ mass are O(ε−1). Since there are L

monomers, the above imply that L and �R∗
� are O(ε−1) also. �Φ∗

k is a sum of O(ε−1) terms,
each of O(ε0); hence �Φ∗

k is O(ε−1). If the total momentum of monomer �, �P ∗
� , is thermal-

ized (i.e. P ∗2
� /m∗

� is typically kBT ), then �P ∗
� is O(ε−1/2). As �Π∗

k is a sum of L terms of
fluctuating direction, then for the thermalized system, �Π∗

k scales as the square root of the
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contributing terms times the scaling of one term; thus it scales as ε−1, not ε−3/2 (i.e. many
of the L terms in �Π∗

k cancel each other). Therefore,

d �Φ∗
k

dt
= ε

�Πk

m
,

d �Φk

dt
= ε2

�Πk

m
, (2.11)

for �Φk = ε �Φ∗
k , �Πk = ε �Π∗

k . We conclude that both �Φk and �Φ∗
k are slow variables. As dis-

cussed further below, the �Φ∗
k account for configurational changes that create large poten-

tial energy variations, while the �Φk account for large-scale conformational, rotational, and
migration changes that do not create appreciable changes in nearest-neighbor interatomic
distances.

Newton’s equations imply that the �Π∗
k evolve via

d �Π∗
k

dt
=

N∑

i=1

uk(τ�(i)) �FiΘi ≡ �fk, (2.12)

where �Fi is the force on atom i. �fk is assumed to scale as O(ε0) due to cancellation of the
individual forces when the system is near equilibrium. With this and the introduction of the
scaled quantity �Πk , one obtains

d �Πk

dt
= ε �fk, (2.13)

so that �Πk evolves slowly, although �Π∗
k does not. It is concluded that the �Φ∗

k , �Φk , and �Πk

constitute a set of 3kmax vector order parameters on which our multiscale analysis of macro-
molecular dynamics can be built. Note that in the above scaling arguments, it is assumed that
the uk did not fluctuate rapidly in sign. This is consistent with our picture that the macro-
molecule bends smoothly, i.e. the radius of curvature is large compared to the typical nearest
monomer distance.

Individual atomic positions �ri are taken to have coherent behavior from the order para-
meters, and a residual (incoherent) component �σi for atom i such that

�ri = �r(τ�(i), �Φ∗
)Θi + �σi. (2.14)

Given that (2.5) provides a relationship between the order parameters and the atomic posi-
tions, this becomes a relationship between the residuals �σi and the atomic coordinates.

From the above, we conclude that �Φ∗
and �Π co-evolve on the ε−1 timescale, while �Φ

evolves on the ε−2 scale. Thus, relative to the slowly varying order parameter �Φ , the pair
�Φ∗

, �Π are expected to be highly fluctuating quantities that should be treated stochastically,
while �Φ displays quasi-macroscopic behavior, as noted in Appendix 1.

The N -atom potential V (�r1, . . . , �rN) is next expressed in terms of coherent and resid-
ual dependencies via �Φ∗

, �Φ , and �σ(�r1, . . . , �rN).V has both short and long-range contribu-
tions. Short-range interactions include the bonded forces and the r−12 repulsive core of the
Lennard-Jones potential, while coulomb and r−6 potentials are common long-range forces.
In reality, the interactions change character smoothly as distance between atoms increases.
Thus, rather than writing V as a sum of long and short-range parts, we adopt the more re-
alistic form V (�r1, . . . , �rN ; ε�r1, . . . , ε�rN). Using (2.14), which relates �ri to the residual and
coherent parts, we have the function
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Ul(�r1, . . . , �rN ; �Φ∗
, �Φ; ε)

= V

({
Θi

[
kmax∑

k=1

�Φ∗
k uk(τ�(i)) + �σi

]
+ (1 − Θi)�ri, i = 1, . . . ,N

}
;

{
Θi

[
kmax∑

k=1

�Φkuk(τ�(i)) + ε�σi

]
+ ε(1 − Θi)�ri, i = 1, . . . ,N

})
. (2.15)

From the potential one may write the force �Fi on atom i in the form

�Fi = �Fi(0) + ε �Fi(1), (2.16)

where �Fi(0) arises from the �ri -dependence of V while �Fi(1) is from the ε�ri -dependence. Note
that �Fi(0) and �Fi(1) have dependence on ε through the long-range dependency of V . Thus �fk

is given by �fk = �fk(0) + ε �fk(1), where

�fk(0) = −
(

∂U

∂ �Φ∗
k

)

�Φ∗
k′ �=k

, �Φ;�r1,...,�rN
, �fk(1) = −

(
∂U

∂ �Φk

)

�Φk′ �=k , �Φ∗;�r1,...,�rN
. (2.17)

In this way, the k-force is divided into a strong part �fk(0) (that one would expect to have zero
thermal average as the system rapidly adjusts) and a more persistent but weaker force �fk(1).
In the remainder of this presentation we assume that the host medium only has short-range
interactions and that the ε�ri term in the long-range dependence can be neglected as ε is
small. Thus

U = U(�r1, . . . , �rN ; �Φ∗
, �Φ) (2.18)

is the form of the N -atom potential. Under this assumption, �Fi(0) and �Fi(1) of (2.16) have no
ε dependence, but rather depend on �r1, . . . , �rN , �Φ∗

, and �Φ only.
The kinetic energy can also be expressed in terms of coherent and residual momentum

contributions. However, as in earlier [19, 20], this has little impact on the multiscale devel-
opment for the quasi-equilibrium conditions of interest here.

3 A CAM Fokker–Planck Equation for Macromolecular Dynamics

The development to follow has three major advances over our earlier analysis [19, 20].
First, we introduce an automated procedure to generate the order parameters as described
in Sect. 2. Second, we build the multiscale analysis on the order parameters �Φ∗

and �Φ
simultaneously; this is key to allowing for the interaction of multiple nanosubunits, i.e. with
�Φ alone, one would encounter overlapping atomic configurations and the forces generated

thereby could lead to violations of the multiscale ansatz. Finally, the latter advance allows
us to build the analysis on the more realistic assumption that while the short-range forces
are large their thermal average acting on a nanoscale structure is small. This allows one to
avoid the assumption that the force acting on the nanostructure is small instantaneously.

The order parameters introduced in Sect. 2 are now used to develop a multiscale theory
of macromolecular dynamics based on the N -atom probability density ρ and the seven-step
scheme outlined in Sect. 1. First, we make the ansatz that ρ has the dependence

ρ = ρ(Γ, �Φ∗
, �Φ, �Π, t0, t), (3.1)
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where t = {t1, t2, . . .} and tn = εnt . In this way, ρ depends on Γ = { �p1, �r1, . . . , �pN, �rN } both
directly, and indirectly through �Φ∗

, �Φ , and �Π . The chain rule implies that the Liouville
equation ∂ρ/∂t = Lρ takes the form (1.1). In the CAM framework this implies

∞∑

n=0

εn ∂ρ

∂tn
= (L0 + εL1 + ε2L2)ρ, (3.2)

L0 = −
N∑

i=1

[ �pi

mi

· ∂

∂�ri

+ �Fi(0) · ∂

∂ �pi

]
, (3.3)

L1 = −
kmax∑

k=1

[ �Πk

m
· ∂

∂ �Φ∗
k

+ �fk(0) · ∂

∂ �Πk

]
, (3.4)

L2 = −
kmax∑

k=1

[ �Πk

m
· ∂

∂ �Φk

+ �fk(1) · ∂

∂ �Πk

]
− Ξ, (3.5)

Ξ = 1

ε

N∑

i=1

�Fi(1) · ∂

∂ �pi

Θi. (3.6)

When operating on ρ in the form (3.1), derivatives with respect to the �ri and �pi in L0

are taken at constant �Φ∗
, �Φ , and �Π , while those with respect to �Φ∗

k , �Φk , and �Πk in L1

and L2 are to be taken at constant Γ . In writing the operator Ξ , we have assumed that
the slowly varying potential is only weakly correlated with the atomic momenta so that Ξ

should be treated as O(ε0) due to the many cancellations that occur when it operates on a
quasi-equilibrium distribution.

Expanding ρ in an integer power series in ε, the lowest-order solution to (3.2) is found
to be

ρ0 = e−βH0

Q(β, �Φ∗
, �Φ)

W( �Φ∗
, �Φ, �Π, t), (3.7)

where W is the coarse-grained probability distribution for �Φ∗
, �Φ , and �Π that only depends

on the slow times t . H0 and the nanocanonical partition function Q are given in Appendix 1.
Continuing the perturbation analysis to O(ε), we get

ρ1 =
∫ t

0
dt ′eL0(t−t ′)

[
−ρ̂

∂W

∂t1
+L1ρ̂W

]
. (3.8)

Using (3.4), the statistical mechanical postulate “the longtime and ensemble average for
equilibrium systems are equal”, and removing the secular behavior, as developed in detail
earlier [19, 20], implies

∂W

∂t1
= −

kmax∑

k=1

�Πk

m
· ∂W

∂ �Φ∗
k

, (3.9)

upon recalling that �fk(0) is a large amplitude force and is assumed to have zero thermal
average:

β �f th
k(0) = ∂ lnQ

∂ �Φ∗
k

= �0. (3.10)
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With this, we obtain the solution

ρ1 = −ρ̂

∫ t

0
dt ′eL0(t−t ′)

kmax∑

k=1

�fk(0) ·
(

β
�Πk

m
+ ∂

∂ �Πk

)
W. (3.11)

To O(ε2), we get

ρ2 =
∫ t

0
dt ′eL0(t−t ′)

[
−ρ̂

∂W

∂t2
− ∂ρ1

∂t1
+L1ρ1 +L2ρ0

]
. (3.12)

Using (3.4), (3.5), (3.7), and (3.11), and continuing as above, implies

∂W

∂t2
= −

kmax∑

k=1

[ �Πk

m
· ∂

∂ �Φk

+ �f th
k(1) · ∂

∂ �Πk

]
W +

kmax∑

k,k′=1

��γ kk′
∂

∂ �Πk

·
[
β

�Πk′

m
+ ∂

∂ �Πk′

]
W. (3.13)

The thermal average force �f th
k(1) can be computed using molecular dynamics and the long-

time average, i.e.

�f th
k(1) = limit

t→∞
1

t

∫ 0

−t

dt ′e−L0t ′ �fk(1), (3.14)

�fk(1) =
N∑

i=1

�Fi(1)uk(τ�(i))Θi. (3.15)

The friction coefficients are related to force auto-correlation functions:

γkαk′α′ =
∫ ∞

0
dt0(fkα(0)(0)fk′α′(0)(t0))

th, k, k′ = 1, . . . , kmax, α,α′ = 1,2,3. (3.16)

The result (3.13) appears to be in error as additional terms from ∂ρ̂

∂ �Φk
are not presented. It

is found that these terms would have violated detailed balance and conservation of total
probability (i.e. the integral of W over all �Πk and order parameters should be a constant).
However, the omitted terms drop from the analysis when an additional contribution to ρ1

that is a null vector of the operator L0 − ∂
∂t0

is included in ρ1. This theme will be developed
in more detail in future work.

Combining (3.9) and (3.13), we arrive at a reconstituted equation for W , the FP equation.
A special case is when �fk(0) depends on �Φ rather than both �Φ and �Φ∗

. In that event, there
are solutions for which W is independent of �Φ∗

. With this, we obtain

∂W

∂τ
= D′W −

kmax∑

k=1

[ �Πk

m
· ∂

∂ �Φk

+ �f th
k(1) · ∂

∂ �Πk

]
W, (3.17)

D′ =
kmax∑

k,k′=1

��γ kk′
∂

∂ �Πk

·
[
β

�Πk′

m
+ ∂

∂ �Πk′

]
, (3.18)

where τ = t2 = ε2t .
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4 Friction-Dominated (Smoluchowski) Dynamics

When the macromolecule is immersed in a viscous medium or is in intimate content with
itself or surrounding macromolecules, we expect that friction effects could dominate the
inertial terms in (3.17). Examples include RNA or DNA in a viral capsid or the genomic
macromolecules in a bacterium or eukaryotic nucleus. The derivation of the Smoluchowski
equation from an FP equation for a simpler case has been demonstrated earlier [26]. In
this section, we examine the friction-dominated limit via a perturbation analysis as applied
to (3.17).

In this limit, the ��γ kk′ are large. To express this, we rewrite (3.17) in the form

DW = η
∂W

∂τ
+ η

kmax∑

k=1

[ �Πk

m
· ∂W

∂ �Φk

+ �f th
k(1) · ∂W

∂ �Πk

]
, (4.1)

D =
kmax∑

k,k′=1

��gkk′
∂

∂ �Πk

·
[
β

�Πk

m
− ∂

∂ �Πk′

]
, (4.2)

where ��gkk′ = η��γ kk′ , η−1 being a typical value of the γkαk′α′ (α,α′ = 1,2,3). In this frame-
work, η is small in the friction-dominated regime.

Expanding W in a power series in η,

W =
∞∑

j=0

Wjη
j , (4.3)

we carry out an order-by-order analysis.
To O(η0) the FP equation (4.1) implies DW0 = 0. This admits the solution

W0 = exp[−β
∑kmax

k=1 Π2
k /2m]

B
Ψ ( �Φ,τ0, τ1, . . .) ≡ ŴΨ, (4.4)

for reduced distribution Ψ (to be determined in the higher order analysis), τn = ηnτ

(n = 0,1, . . .), and factor B that normalizes Ŵ .
Terms of O(η1) yield

∂W0

∂τ0
= −

kmax∑

k=1

[ �Πk

m
· ∂W0

∂ �Φk

+ �f th
k(1) · ∂W0

∂ �Πk

]
+DW1. (4.5)

Integration of both sides of (4.5) over all �Πk shows that Ψ is independent of τ0. Upon using
(4.4) for W0, (4.5) becomes

0 = −
kmax∑

k=1

�Πk

m
·
[

∂Ψ

∂ �Φk

− β �f th
k(1)Ψ

]
+DW m

1 , (4.6)

where W1 = ŴWm
1 . Consider a solution in the form Wm

1 = �A1 · �Π1 + · · · + �Akmax · �Πkmax .
With this, we find

kmax∑

q=1

3∑

α=1

Πqα

m

[
∂Ψ

∂Φqα

− βf th
qα(1)Ψ − βGAqα − β

kmax∑

q̂=1

3∑

α̂=1

gq̂α̂qαAq̂α̂

]
= 0, (4.7)
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G =
kmax∑

k=1

tr(��gkk), (4.8)

where tr indicates the trace. As this must hold for arbitrary Πqα , we conclude

β

kmax∑

q̂=1

3∑

α̂=1

[Gδqq̂δαα̂ + gq̂α̂qα]Aq̂α̂ = ∂Ψ

∂Φqα

− βf th
qαΨ, (4.9)

constituting 3kmax equations to be solved for the Akα .
Collecting terms of O(η2), yields

∂W0

∂τ1
= −

kmax∑

k=1

[ �Πk

m
· ∂W1

∂ �Φk

+ �f th
k(1) · ∂W1

∂ �Πk

]
+DW2. (4.10)

Integration over all �Πk yields

∂Ψ

∂τ1
= − 1

β

kmax∑

k=1

3∑

α=1

∂Akα

∂Φkα

. (4.11)

Let χq̂α̂qα = Gδqq̂δαα̂ + gq̂α̂qα , and Jqα = ∂Ψ
∂Φqα

− βf th
qαΨ , then (4.11) becomes

β

kmax∑

q̂=1

3∑

α̂=1

χq̂α̂qαAq̂α̂ = Jqα, (4.12)

which can be rewritten as

− 1

β
Aqα =

kmax∑

q̂=1

3∑

α̂=1

χ−1
q̂α̂qα

Jq̂α̂ , (4.13)

where (χ−1)qαq̂α̂(χ)qαq̂α̂ = −β2δqq̂δαα̂ . With this, we get

− 1

β

∂Aqα

∂Φqα

=
kmax∑

q̂=1

3∑

α̂=1

χ−1
qαq̂α̂

∂Jq̂α̂

∂Φqα

. (4.14)

Inserting (4.14) in (4.11) yields

∂Ψ

∂τ1
=

kmax∑

q,q̂=1

3∑

α,α̂=1

χ−1
qαq̂α̂

∂

∂Φqα

[
∂Ψ

∂Φq̂α̂

− βf th
q̂α̂Ψ

]
. (4.15)

Thus, Ψ satisfies a diffusion-like equation wherein �f th
k(1) acts like an applied field that tends

to focus density in �Φ-space to places where Uth is a minimum. In addition, Ψ is driven to
the equilibrium distribution that is proportional to exp(−βUth) so that if the macromolecule
is in one free energy well, it gradually readjusts itself so that it has probability of being in
others via a diffusion-like spreading of Ψ .
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5 Conclusions

The all-atom, multiscale analysis and the curvilinear coordinate order parameters hold great
promise for the efficient simulation of large macromolecules over long periods of time. Since
the formulation is all-atom, interactions of macromolecules with drug molecules or cell
surface receptors can be investigated; as our framework is multiscale, conclusions on whole
macromolecule conformational dynamics induced by these interactions can be derived. The
friction-dominated case (Sect. 4) provides Smoluchowski-type approximations relevant for
systems such as the viral genome with its capsid, a macromolecule in a viscous host medium,
or genomic macromolecules in a bacterium, mitochondrium, or nucleus.

Advances in molecular dynamics make the thermal average force and friction-tensor
computations feasible (see Ref. [20] for a brief review). Freedom to choose the basis func-
tions uk(τ ), or other representation of �r(τ, �Φ∗

), allows for the optimization of the method by
tailoring it to particular phenomena. For example, one could use basis functions to character-
ize two conformations (and their rotational equivalents) and then the theory would provide
an estimate of the rate of transition between them.

The conceptual framework developed here suggests the following simulation algorithm.
Equivalent to the FP equation is a set of Langevin equations for the order parameters �Φ and
related momenta �Π :

d �Φ
dt

= �Π, (5.1)

d �Π
dt

= f th + f f r + A, (5.2)

for thermal average force f th, frictional forces f f r , and random forces A whose correlation

is determined by the friction tensors. As f th and f f r change on a timescale much longer
than that of the random force, modern solution techniques for solving stochastic differential
equations [27] such as hybrid stochastic methods that divide the dynamics into fast and slow
processes [28–30] can be used to solve (5.1, 5.2) using timesteps that are on the order of
the characteristic time for changes in �Φ and �Π . The latter can be 10−3 seconds or longer, in
sharp contrast to the 10−13 second timestep needed in molecular dynamics. Thus, this 1010

difference can easily absorb the extra computations needed at each timestep to carry out the
ensemble averaging required to obtain f th and f f r . In this way, the present framework can
make large macromolecule, all-atom, long-time simulations feasible that cannot be achieved
otherwise.

The ability to capture all-atom detail in long-time macromolecular simulations will al-
low one to develop a detailed understanding of experimental data. Consider a double-well
free energy profile underlying two distinct macromolecular conformations. If a magnetic
nanoparticle is attached to one end and an oscillatory magnetic field is applied, then several
distinct resonances are expected. The latter include a harmonic-like oscillation within each
well, and a tumbling of the macromolecule/nanoparticle complex. These resonances depend
on the amplitude of the applied field, indicating the possibility of a resonant induced hopping
between the free energy wells. Judicious positioning and choice of the mass of the attached
magnetic nanoparticle could probe distinct resonances. If a quantum dot was also attached
to the macromolecule, florescent fluctuations at the frequency of the applied magnetic field
could improve signal-to-noise ratios, facilitating the detection of macromolecular structural
transitions and fluctuations.
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The present approach has a number of applications to key biological macromolecular
phenomena. Complexing of a transcription factor at one gene could create long-range con-
formational changes that can regulate another. Attachment of a therapeutic agent to mRNA
transcribed from a given gene could change its conformation and thus alter its translation
kinetics. Detection of sequence abnormalities in the DNA via SNP could be analyzed by
major conformational implications for the transcripts or translates of the affected gene.

Given the need for long-time simulation of macromolecular dynamics with atomic-scale
resolution, it is our hope that the methods developed here will facilitate pure and applied
research in macromolecular phenomena.

Appendix 1: The Nanocanonical Ensemble

An entropy maximization approach is now used to construct an ensemble for a nanosystem,
and will serve as the lowest order statistical state for the multiscale analysis of the Liouville
equation. The lowest order equation in the multiscale perturbation hierarchy of Sect. 3 is
L0ρ0 = 0. Recalling that L0 involves partial derivatives with respect to the set of atomic
positions and momenta Γ at constant values of the order parameters �Φ∗

, and the scaled
variables �Φ and �Π , it is seen that ρ0 can be any function of (1) variables in the null space of
L0, and (2) �Φ∗

, �Φ , and �Π . As we seek quasi-equilibrium solutions of the Liouville equation,
we conjecture that the relevant ensemble underlying ρ0 can be deduced via maximization
of the entropy S,S = −kB

∫
d6NΓρ0 lnρ0, subject to normalization and physical constraints

relevant to the nanosystem of interest.
For isothermal systems, we take the ensemble to have a canonical flavor by constraining

the entropy maximization to a given average energy. In our physical picture of the nanosys-
tem, �Φ∗

represents intermediate space and time scale dynamics of the nanosystem, and
therefore only its average can be constrained, and similarly for �Π which, from Sect. 2,
evolves on the same timescale as �Φ∗

. However, �Φ is so slowly varying that its value can
be considered known, i.e. is quasi-macroscopic, and not just its average value is known.
Thus, we construct the “pre-nanocanonical ensemble” with probability ρ�μ�κ determined by

maximizing the auxiliary function S̃ defined via

S̃ = S − kB

∫
d6NΓ

{
λ + βH0 −

kmax∑

q=1

3∑

α=1

(μqαΦ
′
qα + κqαΠ

′
qα)

}
ρ�μ�κ (6.1)

where �Φ ′
and �Π ′

are expressions for �Φ∗
and �Π in terms of Γ,H0 is the Hamiltonian gener-

ating L0, and λ,β, �μ, and �κ are Lagrange multipliers. Maximizing S̃ over all ρμκ implies

ρ�μ�κ = exp{−βH0 + �μ �Φ ′ + �κ �Π ′}
Z(β, �μ, �κ, �Φ)

, (6.2)

Z(β, �μ, �κ, �Φ) =
∫

d6NΓ exp{−βH0 + �μ �Φ ′ + �κ �Π ′}. (6.3)

Proceeding as earlier [19], we seek a more general solution of L0ρ0 = 0 expressed as a linear
combination of the ρ�μ�κ . The final consequence of this computation is

ρ0 = e−βH0

Q(β, �Φ∗
, �Φ)

W( �Φ∗
, �Φ, �Π, t), (6.4)
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where

Q(β, �Φ∗
, �Φ) =

∫
d6NΓ δ( �Φ∗ − �Φ ′

) exp(−βH0). (6.5)

Some of the dependence on �Π that would have been in Q cancels with a factor in
exp(−βH0) via a statistical argument [19], while the remainder was embedded in W . With
this, H0 as it appears in (6.4) is given by

H0 = K + U( �Φ∗
, �Φ, �r1, . . . , �rN), (6.6)

and W is a residual probability factor that depends on t = {t1, t2, . . .},U is the N -atom
potential energy expressed in terms of the order parameters and residual dependence on
the atomic position, and K is p2

1/2m1 + · · · + p2
N/2mN . We term ρ0 the “nanocanonical”

probability density.

Appendix 2: The Basis Functions

Optimum choice of basis functions leads to order parameters that are best suited for the
system and phenomenon of interest. For example, the DNA of bacteria and mitochondria is
organized as a closed loop. In that case, uk(τ ) is best chosen to be a periodic function of τ .
Whatever basis functions are used, they should fit the following criteria: (1) they should be
orthonormal, and (2) they should not include a weighing function so that all points along the
macromolecule can be treated in an equivalent manner. This suggests that, among common
orthogonal polynomials, Legendre polynomials would be the most suitable. However, the
orthogonality conditions of the latter involve an integral instead of a discreet sum as is
needed in our case. Using the Gram-Schmidt process, we modify the Legendre polynomials
to generate a set of discreetly orthonormal polynomials; i.e. the set of basis functions is
generated such that (2.4) is satisfied.

To demonstrate the use of these basis functions take the peptide antibiotic Alamethicin as
an example. Alamethicin consists of 20 amino acids and is known to assume a helical con-
formation [31]. To create Fig. 1, the positions of the backbone atoms are used as a starting
point. These are taken from a pdb file for one structural conformation of Alamethicin. The
center of mass of each monomer is calculated (the black dots in Fig. 1). For this structure,
19 polynomials are needed for an accurate representation. Applying (2.5), we obtain the set
of order parameters, and (2.1) is then used to plot the curve. Since the algorithm used to
generate the basis functions yields the values of uk at the integer values of τ only, we use a
least-square fitting method in order to find the coefficients that define each polynomial.

Performing the suggested simulation algorithm described in Sect. 5 would yield the fluc-
tuating dynamics of the macromolecule. Note, different values of the order parameters give
different structures over the time coarse of evolution while the basis functions are generated
only once at the beginning. While there is 57 order parameters in this description, the num-
ber of atomistic degrees of freedom is 867. Since the CPU requirement increases roughly
with the square of the number of degrees of freedom, our approach has great advantage.
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