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THE SEARCH FOR AND EXTENSION OF ELEMENTARY ATTRACTORS 

As a concrete example for discussion let us consider a reacting diffusing sys- 
tem. We introduce an N dimensional column vector: * of concentrations which is 
taken to obey the continuity equation 

where D and 5 are the matrix of diffusion coefficients and column vector of chemi- 
cal rates, respectively. One approach that has been used to  analyze this prototype 
equation is to seek various attracting subspaces in the N-dimensional concentra- 
tion space embedded in the rate law 3 [ q]. 

Consider the associated ordinary differential equation to ( I )  corresponding to 
homogeneous evolution * h ( t ) ,  

Let M be the dimension of the attracting subspace. Examples of attracting sub- 
spaces are the stable steady state (M = 0), the limit cycle (M = 1) and the in- 
varient torus (M = 2). Orbits within the M dimensional subspace may by defi- 
nition be determined by M characteristic parameters { = I{, , 12, . . . , { M I .  In 
the absence of diffusion, D = 0, it is clear that there are inhomogeneous solutions 
with the parameters <, varying from point to  point. The question then arises 
regarding the possibility of new phenomena due to  the presence of “weak diffu- 
sion” such that a t  each point I, * is close to  some point on the attractor a em- 
bedded in (2). This concept has been applied for limit cycles using the method of 
constrained  coordinate^,'-^ singular perturbation theory for plane waves,) fre- 
quency renormalization for periodic solutions3 and multiple time scales4 and 
integral equat iom5 We adopt a multiple time scale procedure here since it ap- 
pears to be the most elegant and contains the flexibility afforded by most of the 
other procedures. 

A complete weak diffusion picture involves the consideration of appropriate 
lengths to scale the effect of diffusion. We introduce a characteristic diffusion 
coefficient D, and a reaction time T, and let 33 = D,D and 5 = T,-’F. With 
this we may construct the characteristic reaction-diffusion length L, such that 
f.: D,T,.  Now we may rewrite (1) in scaled form by using dimensionless time 
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t ' ( t  = T, t ' )  and position ~ ' k  = 4') for a class of phenomena varying in space 
on a scale L.  With this we obtain (letting V 2  denote the Laplacian with respect to 
1') 

where the length scale ratio c is defined by 

With such a scaling argument the quantity t presents itself as a natural smallness 
parameter, which may be used to develop asymptotic solutions for weakly in- 
homogeneous phenomena, € << 1. The key assumption is that the only length 
scale in the solution is L (an ansatz that is known to breakdown in certain wave 
and multiple scale phenomena'). 

To properly carry out such a procedure we must recognize that even within 
the context of the assumption that the class of phenomena is on one (long) length 
scale, we must be able to  account for many possible time scales. This manifests 
itself, for example, in the wavevector dependence of the frequency (dispersion 
relation) for plane chemical waves.'-' Thus we introduce a sequence of time scales 
7, such that 7, = c " t ' .  If the attractor a is to  characterize the solutions as 
t - 0 then the spatio-temporal extensions of the characteristic parameters ci 
must only vary on the slower times 7,, n 2 1. Otherwise the leading term 
in \k in an expansion of the form 

fl  = o  
will not obey the scaled homogeneous equation 

guaranteeing that 3(o) is on a. Denoting an arbitrary orbit on the attractor as 
c # J ( T , { ) ,  where again ( are the parameters fixing the orbit, we have O(0) = 

c # J ( T ~ ,  t o  lowest order. 
To first order in one obtains (making developments for { similar to that in 

( 5 )  

where the linear operator L is a/a70 -Q(\k(o)) and a(*)  is aF/a \k .  Both terms 
on the RHS of (7) are not zero since Q(o) implicitly depends on 7, t l  and L' via 
the characteristic parameters (@', 71, 7 2 ,  . . .), e.g., 

and similarly for DV2\k(o) .  A key observation that one now must make is that the 
quantities /d{(o)j are in the null space of the operator L (as can be easily 
seen by taking the derivative of (6) with respect to  {(oU). Thus in order that (7) 
may be solved the RHS must be orthogonal to  this null space. This introduces M 
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orthogonality conditions, which are indeed partial differential equations for 
cc0,. This program has been carried out successfully for the case of the limit cycle4 
(a one dimensional attractor). For the limit cycle the single parameter { is the 
phase of the oscillation. The theory has been used to study a variety of wave phe- 
nomena in systems with a homogeneous oscillation.’-’ The theory has also been 
applied to multiply periodic attractors such as the invarient torus (M = 2).6 

The Polarator-A Soluble Model of Multiply Periodic 
Spatio- Temporal Evolution 

A class of three variable model systems has been introduced to which exact 
multiply periodic spatio-temporal solutions have been found.6 It demonstrates 
some of the general features of certain multiple dimension ( M  2 2) attractors, 
i.e., the existence of multiparameter families of solutions. Consider the polar 
variables R ,  0, 4 to evolve according to the homogeneous dynamics R = R B ( R ) ,  e = T ( R ) ,  6 = P(R) ( -  = d/dt). A model reacting-diffusing system has been 
constructed by transforming to Cartesian variables ( X  = R sin 0 cos 4, Y = 
R sin 0 sin 4, Z = R cos 0)  and letting the “chemical species” X, Y , Z  also 
diffuse via Fick’s law. Exact solutions of these reaction diffusion equations have 
been presented. For example in  the case where the diffusion coefficients of X, Y ,  
and 2 are all equal one may show that solutions of the form of two copropagating 
waves with different frequencies. In  this case X ( r , r )  ( r  being the spatial co- 
ordinate for a one dimensional infinite system) takes the form 

X ( r , t )  = iRk[sin (a+ + w + t  + kr) + sin (a- + w - t  + k r ) ] ,  

where a, are constant phases, w,(kz) = T(Rk)  f P ( R k )  and Rk is the solution of 
B(Rk) = k2D, D being the diffusion coefficient. This phenomena represents a two 
parameter family (k, a+ - a-) of solutions, corresponding to the fact that the 
system has a 2-dimensional multiply periodic attractor (the sphere at B ( R )  = 0) 
in the homogeneous kinetics. (There is, of course, a third trivial parameter cor- 
responding to the translational invarience of space.) 

Chaotic Attractors 

For a chaotic attractor (see several articles in this volume) trajectories for 
homogeneous evolution on the attractor which initially differ by an arbitrarily 
small amount separate to a distance of order of the dimensions of the attractor 
as t - m. Hence the derivatives such as &$/afp,; for some Ti  (the “secular 
characteristic parameters”) that appear in the theory become unbounded as 
T~ - m. Thus if we are to have weakly inhomogeneous extensions then these 
TOi must be constant since the slow times T.?, cannot keep up with T ~ .  Al- 
ternatively, the weakly distorted attractor pictures must be modified for chaotic 
attractors. For “weakly chaotic” attractors, where the separation of nearby orbits 
occurs on a slow time scale, then weakly inhomogeneous solutions might be con- 
structed as bifurcations. Thus consider systems such that as a parameter of the 
homogeneous kinetics F is varied multiply periodic orbits become chaotic with the 
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time scale for the separation of initially close orbits that diverges as this parameter 
passes through a critical value, multiple periodicity bifurcating to weak chaos. In 
this case a bifurcation analysis for inhomogeneous evolution may be possible. This 
approach is presently being investigated. 

For chaotic attractors which do not arise as a continuous bifurcation from 
multiple periodicity to weak chaos, a weakly perturbed attractor class of solutions 
for persistent spatio-temporal evolution with nonconstant secular characteristic 
parameters does not seem possible. In this case steep spatial gradients will build 
up and jumping from segment to segment of the chaotic attractor seems iminent. 
This would lead to the possibility of rapidly propagating transition layers for 
systems such as the Lorenz attractor where the time scale to relax to the attractor 
is much shorter than that of the evolution within it for certain ranges of param- 
eters. Clearly inhomogeneous phenomena in systems with chaotic attractors are 
yet to be well understood and present themselves as interesting and challenging 
problems. 

CATASTROPHE THEORY AND JUMPING BETWEEN 
KINETIC BEHAVIOR SURFACES 

The characteristic length and time scales embedded in a phenornonological 
continuity equation such as (1) may vary over several orders of magnitude. For 
example let the first f species in the column vector 3 participate in a sequence 
of reactions that occur on a time scale tf that is much shorter than the char- 
acteristic time Tof all other reactions. We may make this fact explicit by writing 

3 = c - ~ F ~ ,  t t f / T  << I ,  (9 )  

where F, contains only slow time scale processes (i.e., rate parameters of order 
e o  = 1 in the time scale ratio t. The diagonal matrix H has all elements zero except 
the firstfelements, which are for simplicity all unity. With this (9 )  becomes 

a 3  - = DV23 + t-HFS[‘k]. 
at 

For small E it is clear that 3 must either (1) vary rapidly in space or time or (2) 3 
must lie near one of the attracting intersections of the “behavior surfaces” 

F , , i [ 3 ]  = 0, i = 1,2 ,... f 
in concentration (3) phase space. Thus the spatio-temporal evolution of the sys- 
tem consists of a finite or infinite sequence of rapid transitions between attracting 
branches of the intersection of the surfaces Fs,i = 0 separating smooth space-time 
variations on these intersections. 

The question immediately arises as to how we may make general classifications 
of the phenomena that can occur in such systems. First we must be able to catego- 
rize the general topologies of these behavior surfaces and a start in this direction 
has been made using catastrophe theory.’ Next we must be able to construct solu- 
tions to the problem in both the rapidly varying jumps between branches of the 
behavior surface and the constrained evolution lying on points in phase (3) space 
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near the attracting branches of the behavior surface. The technique of matched 
asymptotic expansions has been used t o  study these phenomena in reaction dif- 
fusion systems by a number of authors (see the citations in Reference 7). 

Preliminary work combining catastrophe theory and matched asymptotic tech- 
niques to  classify and predict phenomena appears t o  be a very promising direction 
in the future. From the preliminary studies7 it is clear that for one fast variable 
(f = 1)and four or fewer slow variables ( N  5 5 )  that the four cuspoid catastro- 
phes of Thom characterize all the basic features that can arise on the behavior 
surface. Some results for multiple fast variables, f 2 2, have been obtained using 
the umbilic catastrophies. The approach thus far has led to the classification or 
discovery of a variety of propagating chemical wave phenomena such as the pulse, 
the finite train of pulses, the single jump pulse with smooth return, front multi- 
plicity, wave train encroachment, and a variety of other phenomena (details and 
references are to  be found in Reference 7). 

DIFFUSIONAL BEHAVIOR SURFACES 

Multiple scales in diffusion are not uncommon. Let this be emphasized, for 
example, by introducing a factor t n  ( f i j s  similar in structure to  H of the previous 
section) in the diffusion matrix, 0 = tHD,  where all the elements in b are of order 

’unity in t and by proper choice of \k we can take 0 to be diagonal. With this 
(1 ) becomes 

- -  a* - 2 D v * *  + 319 
at 

It is assumed that there is only one time scale in 5: 
A consideration of steady states 9 * ( ~ )  in such systems shows how multiple 

diffusion scales Q - 0) bring out “diffusional behavior surfaces” in 5. Multi- 
plying (11) by c - H  and noting that \k* is independent of time we obtain 

EV%* + € - k  9 = 0. (12) 

Clearly as t - 0 the spatial profile **(L) either varies rapidly in space or lies on 
attracting branches of the diffusional behavior surfaces 

T i [ * ]  = 0,  i = 1 ,2 , .  . . d ,  (131 

for the d species i = I ,  2 , .  . . d with small diffusion coefficients chi. Here, as  in 
the case of multiple time scales discussed in the previous section, a combined pro- 
gram of catastrophe theory and matched asymptotic expansions has been sug- 
g e ~ t e d . ~  A very complete and elegant treatment of the multiple diffusion approach 
for two species ( N  = 2)  systems has been carried out by Fife who also considered 
the possibility of simultaneous multiple scaling of diffusion and rate p r o c e ~ s e s . ~  
The combined program of catastrophe theory and matched asymptotic expansions 
for classification or prediction of qualitatively new of phenomena is certain t o  un- 
fold a great richness of possibilities. 
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BIFURCATION FROM UNSTABLE SUBSPACES 

Bifurcation theory has been used in the study of the onset of new states that 
arise when one state of the system loses its stability. Indeed many beautiful ex- 
amples of this have been given in this conference. The possibility of bifurcation of 
new states from unstable states of physicochemical systems brings about a variety 
of interesting phenomena. For example the loss of stability of an oscillatory sys- 
tem has been ~ o n s i d e r e d . ~  When one or more of the Floquet exponents (that de- 
termine the stability of the limit cycle to  small inhomogeneous perturbations) has 
a real part that transverses the origin, new inhomogeneous and possibly aperiodic 
states of evolution may arise. In this context it would be interesting to  develop 
these ideas for the bifurcation from more complex states such as similarly weakly 
unstable aperiodic or chaotic subspaces. 

PADB APPROXIMANTS AND CENTER WAVES 

Recently it has been shown that Pad6 approximants may be used to  construct 
center waves (circular and spiral) that are either periodic or aperiodic. l 3  The 
scheme involves a well-defined ordering scheme for coupling the wave center (core) 
to  the plane-wave-like outer regions. The parameters of the PadC’s are generated 
as solutions of simple differential equations. 

SELECTED PHYSICOCHEMICAL BIFURCATIONS 

Perhaps it would be of interest to  point out a number of physicochemical 
phenomena which have not received a great deal of attention in the context of 
bifurcation theories. 

insect Flight. Many insects (for example flies) have a wing beat rate that 
exceeds the maximum nerve repetitive firing rate. Thus the individual wing beats 
cannot be triggered by individual nervous signals. However, it is known that the 
wing-thorax system is to a good approximation, a damped oscillator with a fre- 
quency of the correct order of magnitude. Furthermore flight muscle has the in- 
teresting property that when stretched it tends to  contract (in excess of the elastic 
force!) presumably due to the contraction chemical kinetics. Using a simple model 
of a damped oscillator coupled to  a simple contractile chemical kinetics it has 
been shown that such a system can enter a state of auto-o~ci l la t ion.~ 

Fucus Egg Symmetry Breaking. In the very beautiful experiments of Jaffe and 
others it has been shown that the state of spherically symmetric membrane poten- 
tial makes a transition to an asymmetric state with a net north-south polarity. 
This is believed to be the essence of the asymmetric cell differentiation re- 
sponsible for the root/leaf differentiation that characterizes the subsequent 
biomorphogenesis. Introducing a set of electrophysiological equations and a sim- 
ple model it has been shown that the polarized states may bifurcate from the 
spherically symmetric solutions.* 

Spontaneous Pattern Formation in Precipitating Systems. It has been shown 
experimentally that the state of uniform precipitation from a supersaturated phase 
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may spontaneously make a symmetry breaking (pattern forming) transition."1° 
A simple theory based on diffusion and the competition of small and large par- 
ticles for the growth material has been presented and describes many of the 
features of this phenomena." 

Nonlinear Phenomena at Local Sites of Reaction. It has become clear that a 
great variety of phenomena (including multiple states, oscillations, propagating 
waves and chaotic evolution) may occur in reacting diffusing systems with bulk 
kinetics. Studies on systems where reactions are localized t o  membranes or cata- 
lytic walls have indicated that this variety also exists in systems with heterogeneous 
kinetics." When many local sites are present cooperative phenomena, in analogy 
to equilibrium phase transitions, may arise." The description of these systems 
may often be reduced to  sets of coupled nonlinear integral equations. Many of the 
mathematical methods used t o  describe nonlinear phenomena in systems with 
homogeneous kinetics, including bifurcation and attractor perturbation theory, 
have been applied to the analysis of these ~ y s t e r n s . ~  

Electrochemical Waves. In the best known example of chemical wave prop- 
agation, the Belousov-Zaikin-Zhaboutinsky reaction, most important chemical 
species are ionic yet the strong tendency toward charge neutrality that couples 
ionic motions has been neglected in most theories of these waves. Recently full 
account of the electrochemical nature of chemical waves in ionic media has been 
taken.I2 It has been shown that, in the presence of imposed fields, chemical waves 
in such media can be forced t o  remain stationary and  even breakdown, making a 
transition to  qualitatively new modes of wave propagation.'2 

1. 
2. 
3. 
4 .  

5 .  
6. 

7. 

8. 
9. 

10. 

1 1 .  

12. 
13. 

REFERENCES 

ORTOLEVA, P. & J. Ross. 1973. J .  Chem. Phys. 58: 5673. 
ORTOLEVA, P. 1976. J. Chem. Phys. 64: 1395. 
ORTOLEVA, P. & J .  Ross. 1974. J .  Chem. Phys. 60: 5090. 
ORTOLEVA. P. 1978. Selected topics from the theory of nonlinear phenomena in 

KOPELL, N. & L. HOWARD. 1973. Stud. Appl. Math. 52: 291, 
DELLEDONNE, M. & P. ORTOLEVA. In press. Turbulent spatio-temporal dynamics in 

FEINN, D. & P. ORTOLEVA. 1977. J. Chem. Phys. 67: 21 19. (See also the work of Fife 

ORTOLEVA, P. 1977. J. Theoret. Biol. 

FEINN, D.,  P. ORTOLEVA, W .  SCALF, S. SCHMIDT & M. WOLFF. In Press. Spontaneous 

BIMPONG-BOTA, E. K. ,  A.  NITZAN, P. ORTOLEVA & J .  ROSS. 1977. J .  Chem. Phys. 

SCHMIDT, S. & P. ORTOLEVA. 1977. J .  Chem. Phys. 
ORTOLEVA. P. 1978. J .  Chem. Phys. In press. 

physico-chemical systems. Adv. Theor. Chem. 

reacting-diffusing systems: Results for a soluble model. J .  Chem. Phys. 

and Stanshine and Howard cited therein.) 

FLtCKER, M.  R. & J .  ROSS. 1974. J .  Chem. Phys. 60:3458. 

pattern formation in precipitating systems. (J.  Chem. Phys.). 

66: 3650; and references cited. 


