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All-atom multiscaling and new ensembles for dynamical nanoparticles
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(Received 2 May 2006; accepted 7 June 2006; published online 24 July 2006)

Viruses and other nanoparticles have mixed microscopic/macroscopic character. Thus it is natural to
develop an understanding of their dynamics via a multiscale analysis of the Liouville equation
following prescriptions introduced for the study of Brownian motion. However, the internal
dynamics of the atoms constituting a nanoparticle introduces conceptual and technical difficulties
associated with a description involving both the atomistic and nanometer scale properties of these
systems and the potential overcounting of degrees of freedom. To overcome these difficulties we
introduce a “nanocanonical” ensemble method to facilitate the multiscale analysis of the all-atom
Liouville equation. Our approach overcomes technical difficulties associated with the removal of
secular behavior, which leads to Fokker-Planck-type equations. Our approach ensures removal of all
secular behavior in the N-atom probability density and not just that of a reduced distribution. Being
based on a calibrated interatomic force field, our method has the potential to yield parameter-free
universal models for nanoparticle dynamics including viral migration in complex media and viral

phase transitions and disassembly. © 2006 American Institute of Physics.

[DOL: 10.1063/1.2218838]

. BACKGROUND

Multiscale analysis has been the subject of interest over
the past century starting with Brownian motion as analyzed
by Einstein.' In many of these studies, Fokker-Planck
equations are derived for structureless particles starting from
the Liouville equation. This focus on structureless particles
stems in part from the technical challenges of avoiding the
overcounting of degrees of freedom, especially as encoun-
tered in the process of analyzing the secular (divergent as
time becomes large) behaviors that ultimately imply a
Fokker-Planck equation. For example, the nanoparticle
center-of-mass (c.m.) position and momentum are them-
selves dependent on atomic variables and are therefore not
independent degrees of freedom. Thus one cannot integrate
over all atomic configurations without addressing the fact
that most of them are not consistent with a given c.m. posi-
tion of the nanoparticle. In contrast, in the present approach
we remove secular behavior from the full N-atom probability
density and not solely from an integrated reduction of it. This
not only addresses concerns that the integration method for
deriving Fokker-Planck equations may leave some secular
behavior in the N-atom probability density but also avoids
the technical difficulties involved with performing these in-
tegrations in a manner that maintains the number of degrees
of freedom.

To overcome these difficulties, we introduce slowly
varying quantities not as dynamical variables but through
Lagrange multipliers which emerge in defining the ensemble
that characterizes the lowest order solution to the Liouville
equation. We find this approach to be more consistent with
the notion of coarse graining; i.e., nanoparticle “position” is
more rigorously to be thought of as an averaged quantity and

YURL: http://sysbio.indiana.edu. Electronic mail: ortoleva@indiana.edu

0021-9606/2006/125(4)/044901/8/$23.00

125, 044901-1

hence should be characterized via an ensemble of c.m. posi-
tions, and similarly for nanoparticle momentum and the
N-atom state of the nanoparticle/host system. Thus the nano-
particle c.m. position does not characterize the ensemble of
internal atomic states, rather the ensemble average c.m. po-
sition does. We show that this view naturally leads to the
introduction of a “nanocanonical ensemble” that has formal
analogs to the grand canonical ensemble.

The introduction of notions allows for the practical
implementation of an approach to complex nanoparticles
such as viruses and nanoscale intracellular structures. It has
great advantage when considering viruses or other systems
involving intrananoparticle degrees of freedom. We will em-
phasize virus and other life-system studies in much of the
remainder of this section, although applications in biotech-
nology and materials science are also envisioned.

Biological systems that involve the dynamics of nano-
particles interacting with a host medium include chromo-
somes, ribosomes, proteosomes, and viruses. The functioning
of these particles cannot be understood in terms of a body
without internal structure. For example, a virus can undergo
structural phase transitions in response to changes in its sur-
roundings. Ribosomes interact with macromolecules during
translation in ways that are sensitive to their detailed molecu-
lar structure (i.e., can respond to RNA sequence). Chromo-
somes make dramatic changes during replication, again a
process involving the sensing of atomic-scale details. To
simulate these dynamical biochemical processes, a time-
dependent formalism that captures both atomic and nanom-
eter scales is required.

Intraviral bodies experience fluctuating dynamics in a
constrained space. For example, gold nanoparticles (quantum
dots) may be used to probe the assembly, disassembly, or
fluctuations of a viral capsid. Nanomaterial synthesis within
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a viral capsid by the use of viral phase transitions has been
demonstrated.'>'® The dynamics of these systems reflects the
interplay of the fluctuations of the capsid and the internal
particles, the interactions between the particles, and the
screening or dielectric properties of the medium within the
capsid. Thus the entrapped nanoparticles may form long-
lived clusters, adhere to the capsid inner surface, and induce
capsid phase transitions or disassembly. The all-atom, multi-
scale formulation presented here is designed to address these
systems whose character emerges via the interplay of atom-
istic and nanoscale phenomena. Other approaches to nano-
particle modeling (with an emphasis on viruses) are briefly
reviewed below to clarify the need for the present approach.

Lumped models reduce the atomic-scale detail to allow
for determination of overall structure and some aspects of
viral stability and phase transitions.'” These models do not
capture atomic-scale detail; therefore they cannot predict the
consequences of an interaction with a drug or cell receptor
that may trigger or repress these transitions. They do not
allow for an estimation of the effects of pH or salinity on
these phenomena. Such models must be recalibrated for each
virus and host medium; thus one might question whether the
desired answer is built into the computation by calibration so
that the predictive power and extension of results from one
virus (or even one strain) to another is questionable.

Symmetry-constrained models of a whole-virus capsid
have been developed using an all-atom approach.18 However,
a virus likely does not disassemble or make a structural
phase transition via a simultaneous and equivalent
displacement/rotation of all hexamers, pentamers, or other
protein units. Rather initiation of instability is local, starting
with a motion or deformation of a single protein or other
subunit, and then propagates across the whole virus. Further-
more, as symmetry is imposed, the docking of a single or a
few drug molecules at selected sites is a symmetry-breaking
process that cannot be investigated by the restricted symme-
try approach.

Computational molecular dynamics (MD) is discussed
extensively in the literature.'”° MD has been used to model
drug/viral protein interactions and their implications for in-
fection. Computational studies were done using stochastic
boundary conditions around a single viral protomerzs’31 and
periodic boundary conditions.'® These studies reveal physical
properties of the human rhinovirus (HRV) protomer, such as
compressibility, which have been conjectured to be related to
the ability of antiviral drugs to inhibit infection, a conclusion
not based on whole-virus results, however. While MD is a
powerful approach for smaller size, shorter time phenomena,
it is apparently not yet practical for whole virus, millisecond
to hour time scale modeling.31

Normal mode analysis has been used to study whole-
virus conformational changes of icosahedral virus
capsids.”_3 > In these studies, various methods are applied to
reduce the number of degrees of freedom including the elas-
tic network model and the rotation/translation of blocks
(RTB) method. Icosahedral symmetry was used to simplify
normal mode calculations via group theory. van Vlijmen and
Karplus34’35 reported atomic level normal mode calculations
of icosahedral viruses with a basis set of molecular dihedral
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angles and the uniform rotation/translation of separate capsid
proteins under icosahedral symmetry. These calculations pro-
vide insights into the conformational changes of icosahedral
virus capsids. However, they cannot address the very local
and highly nonlinear nature of the drug-virus interaction and
the initiation and propagation of a phase transition across a
virus and are not appropriate for a viral disassembly study.

In this study, we present a rigorous all-atom theory of
nanoparticle dynamics that captures the interplay of their
atomic and nanoscale behaviors in a parameter-free and gen-
eral manner. Being based on a calibrated interatomic force
field, our method has the potential to yield parameter-free
universal models for nanoparticle dynamics including viral
migration in complex media, viral phase transitions and dis-
assembly, and interaction with interfaces and cell mem-
branes.

In Sec. II we introduce the multiscale approach and il-
lustrate the technical challenges it presents for an all-atom
analysis of structured nanoparticles. The ‘“nanocanonical”
ensemble is developed in Sec. III and is shown to overcome
the aforementioned difficulties that otherwise impede the
derivation of Fokker-Planck equations for structured nano-
particles. The nanocanonical approach is fully developed in
Sec. IV for a structured nanoparticle migrating in, and re-
sponding to, a complex host medium. Generalizations and
conclusions are presented in Sec. V.

Il. LIOUVILLE EQUATION, MULTISCALE
FORMULATION

The scaling approach and the challenges involved in the
analysis of the Liouville equation for structured nanopar-
ticles are now introduced. Consider an N-atom system com-
prised of a nanoparticle of N* atoms and a host medium of
N—N" atoms. To characterize the differences in length, mass,
and time scales involved in a nanosystem we introduce a
unifying smallness parameter &(<<1). Thus the nanoparticle
c.m. momentum and position are £~'P and £~'R. With this,
the N-atom probability density p is considered to be a func-
tion of the scaled c.m. momentum and position, as well as
the momenta and positions I'={p;,r;,i=1,...,N} of the N
atoms in the system. A key point is that the multiple distinct
dependencies in p does not imply a violation of the restric-
tion on the number of degrees of freedom; rather this is to
state that p has multiple scale character—here the long range
migration of the large mass nanoparticle in the presence of
the rapidly fluctuating atomic variables I'.

Using the chain rule, p in the above multiscale form
satisfies (see Appendix A)

ap

E=(£0+82£1)p, (2.1)
Y p; J J

Lo=—2| - —+F,-—|, 2.2

‘ %[”ll 5'1'1'+ l dpi:| @2
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P 9 J
Li=—— ——f — (2.3)
m JR P

In this formulation we have introduced the dimensionless
parameter & such that e?=m/m" for typical atomic mass m
and nanoparticle mass m". The net force ef on the nanopar-
ticle can be written in terms of the individual atomic forces
F,,

N

ef= E ®iFi’

i=1

(2.4)

where ©; is 1 for atoms within the nanoparticle and 0 for
host atoms. The net force on the nanoparticle is taken to be
small; for the quasiequilibrium states of interest there is
much cancellation of the forces on the nanoparticle from
those on individual atoms. It is further assumed that external
forces are weak. Alternative scalings for nanoparticle mass,
momentum, position, and force can also be adopted to inves-
tigate other classes of behavior, but the above will serve to
illustrate the present methodology. That derivatives in £ are
at constant P and R, while those in £, are at constant I, does
not imply that I', P, and R are independent degrees of free-
dom; rather they arise due to our attempt to express p’s mul-
tiscale character. Thus any integration over all states of the
system would be over the dependence on I, including that in
P and R.

The multiscale development proceeds by expanding p in

a series in &2,

©

P = E pn(FsPsRst()9t)82na
n=0

(2.5)

where 1,=&?"t and t={t,,t,,...} is the collection of times
characterizing the slow behaviors, i.e., that evolve on times
of order 72, ¢, and longer.

The lowest order distribution is assumed to reflect the
quasiequilibrium nature of the biological phenomena of in-
terest, i.e., py is independent of #,. Using the chain rule for
31 dt (so that dp/ dt=dpl dty+&>dpl dt;++ - -), the lowest order
problem becomes

£0p0 =0. (26)
This equation yields solutions which are functions of the
Hamiltonian H that generates L, i.e.,

H0= + V, (27)

I =

P
=1 2m;
where V is the N-atom potential. For example, p, could be
the canonical distribution exp(—BH,) which is normalized by
the partition function Q,

0= f d°"T exp(- BH,), (2.8)

where d*"NT'=d’p,d’r,---d*pyd®ry. The * on the integration
implies that R and P must be fixed, i.e., for any quantity A,
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% N
f dTA = f d6Nr5(P—sE @ip,-)

i=1

N
X 5<R > ®imiri/m*>A. (2.9)

i=1

Such integrals can be accomplished via Monte Carlo meth-
ods and a constant P, R-constrained generation of I" configu-
rations. The O(&°) analysis typically concludes with the in-
troduction of the slowly varying factor W(P,R,?), i.e., p,
=Q 7' exp(-BH,)W. In Secs. III and IV we demonstrate how
the above formulation can be placed on more rigorous foot-
ing.

A difficulty with the above formulation is that while
solving (2.6) one must keep the delta functions in (2.9) and
the constrained integrations as part of the higher order mul-
tiscale analysis. For example, a key difficulty arises in ana-
lyzing the O(&?) equation,

d 0,
(——ﬁo)pe—ﬂwlpo. (2.10)

aty an

To solve this equation one must recognize that the right-hand
side (RHS) can have contributions from the null space of L.
In this recognition one would like to arrive at an expression
for JW/dt, by ensuring that the resulting secular behavior
(i.e., divergence at large f,) is removed. The difficulty is that
in the classic approach an expression for dW/dt; follows
from applying [“d® T to both sides of (2.10) and then using
the fact that acceptable probability distributions vanish as
|p;| — ©, and invoking periodic boundary conditions on the r;
dependence of the probability. In studies of structureless
nanoparticles this directly implies [d®*T'L,A=0 for any dis-
tribution A and wherein particle N+1 is the structureless
nanoparticle. This yields the Fokker-Planck equation when
computations are carried out to O(g*). The strategy is not
clear for the structured nanoparticle wherein the constrained
integration [“d®T" must be used to preserve the P, R depen-
dence of p. This and related difficulties stem from the fact
that unlike for the traditional approach, the structured nano-
particle’s atomic coordinates are already a complete set of
dynamical variables so that either P, R are redundant or
ignoring their relation to I" would allow for atomic configu-
rations that are inconsistent with P and R. Hence to avoid
overcounting the number of degrees of freedom the [*d®T
constrained integrals must be used. But then the boundary
conditions on the p;,r; cannot be readily utilized.

A more fundamental question also arises. Even if one
can derive an expression for dW/dt; via a I' integration, the
question remains that although secular behavior is removed
from a reduced aspect of p, (e.g., ["d®Tp,), it is still not
demonstrated that all the secular behavior in p; itself has
been removed. What is needed is an approach wherein the
nanoparticle c.m. degrees of freedom, or something related
to them, are not independent dynamical variables which must
ultimately be related to I', and a method that will remove all
the secular behavior without resorting to I" integration. Such
an approach is developed in Secs. III and IV.
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The N-atom potential V(ry,...,ry) does not explicitly
depend on nanoparticle c.m. position R. This is in contrast
with the case of a structureless nanoparticle which can be
taken as “atom” N+1 whereby ry,; appears in V explicitly.
To resolve this issue, introduce a set of modified coordinates
s; such that s;=r;,—e"'R®,. Thus the atoms in the nanopar-
ticle are described in the relative frame while those of the
host medium are in the laboratory frame. The s; are functions
of ry,...,ry,s;=s;(ry,...,ry) and, like R, are dependent dy-
namical variables. With this, the potential V can be expressed
in the form

V(e 'RO; +s,i=1,... ,N)=U(r,, ..., ry,R), (2.11)

so that the explicit dependence of U on the r is only through
relative configuration {s;,...,sy}. With this the particle de-
rivative of V with respect to R at constant nanoparticle in-
ternal configuration is given by

N
A% 1
(_) =—_E G)iFi:_f-
Spsee S €i=1

2.12
R (2.12)
oSy

Finally note that the s; are not independent, i.e., m;s;0,
+ -+ -mpysy®y=0. This result forwards the multiscale analysis
of the following sections.

. NANOCANONICAL ENSEMBLES

In Sec. IT we considered the nanoparticle to have a par-
ticular momentum and position that characterized the lowest
order solution to the Liouville equation. However, it would
seem more consistent, and is found to have technical advan-
tages, to cast the problem in terms of the dynamics of the
ensemble of uncertain nanoparticle states, i.e., to introduce a
probability distribution with parameters that characterize the
statistics of an ensemble of systems in various nanoparticle
states. In the process of developing this notion, we show that
the conceptual and technical difficulties encountered in Sec.
II are overcome.

To solve the Liouville equation via a multiscale ap-
proach, we first seek a quasiequilibrium solution to the low-
est order equation,

£0p0=0. (31)

As LoP, LR, and LyH, vanish, we seek a solution of (3.1)
that is a function of H, P, and R. The lowest order solution
of interest here is constrained such that the ensemble average
of the I'-dependent quantities Hy, R, and P have prescribed
values (that may vary on the slow timescale), and hence H,,
P, and R themselves are not fixed. This difference from the
approach of Sec. II yields great technical and conceptual
advantages.

Using information theory, one obtains the following dis-
tribution through the imposition of the aforementioned aver-
ages:

e—BHO+;L-P+K-R

=T

This lowest order solution depends on the dynamical vari-
ables I' through H, P, and R. It is implied by entropy maxi-
mization through the introduction of the Lagrange multipli-

(3.2)
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ers B, m, and k. We term m and k reciprocal quantities in
that they will be found to play roles similar to Fourier trans-
form variables, e.g., k will, through inverse transformation,
imply a derivative with respect to c.m. position in a Fokker-
Planck equation, and similarly for the reciprocal momentum
o As is familiar in classical systems, the quasiequilibrium
distribution p,, . separates into a momentum and a position
factor and similarly for the partition function Z(8, u, k).
The partition function (8, u, ) in (3.2) is given by

E(B,/L,K):fdwr exp[- BHy+m-P+x-R]. (3.3)

The integration over all atomic degrees of freedom is unre-
stricted, i.e., one is not burdened with the complexity of
restricting the coordinates of the atoms in the nanoparticle to
a fixed c.m. location, and similarly for the momenta. In ex-
pressions like (3.3) P and R depend on all the viral r;,p;.
This nanocanonical ensemble ensures that atomic configura-
tions which correspond to large departures of the c.m. coor-
dinates from the specified um,x-dependent average values
will be improbable.

Let (...) .« imply a p,, weighted average over all con-
figuration I':(A),, .= Jd®"TAp,, . for any I'-dependent quan-
tity A. The averages (P), , and (R), , are given by

dln =2

oK

dln E
P), =
(P o

(R) = (3.4)

The lowest order equation (3.1) is linear; thus it admits
the more general supposition solution

po= f & ud’ e Y (e, 16,1), (3.5)

for reciprocal distribution W. As p, is unit normalized and
Py 1s normalized by construction, then

f PudcV(p,r,)=1. (3.6)

With this, ensemble averages indicated by superscript m can
be obtained. For example,

P = f & pd® k(P Y (a1, 1), 3.7)
f'”:fd3ud3KJ‘d6NFfﬁ”,K‘I’(M,K,t)
= f & pud® k{8 Y (1), (3.8)

One may relate W(u, i, 1) and the nanoparticle momentum-
position density W. By definition

W(P,r,t) = J d3,U,d3K< 5(p - P) 5(1' - R)>[.L,K‘P(M? K, t) .
(3.9)

The definition of the delta function implies
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W(p,r,t) = f dr f P ud’kd(p -P)Sr-R)

><exp(—,BH0+p,-p+n'-r)
E(B,pm, )

V(pm, K1),
(3.10)

Defining Q(B,p,r) via

Q(B.p.r) = f d°"T &(p - P) &(r - R)exp(~ BHo), (3.11)

one obtains

Wip,r,z V(. K.t
M_Jd3ﬂd3K€M'P+K'rM (312)

o(B.p.x) EB.p.K)’

so that W/Q and W/E are related via a bilateral Laplace
transform. The inverse of this relationship casts W/Z in
terms of an interesting integral of W/Q over imaginary nano-
particle momenta and positions (see Appendix B).

The results (3.12) and (3.5) imply

e BHo

= mW(P,R,t).

oo (3.13)

Note that here W depends on P and R, which, in turn, are
functions of I' and hence are dependent dynamical variables.
In contrast, p and r in (3.10) are not dynamical variables
(e.g., dp/dp; is zero).

As we are interested in developing an equation of mo-
tion for W, we adopt (3.13) as the starting point of our analy-
sis rather than the W formulation. This is shown to rather
directly lead to an equation for W in the next section wherein
we show that this follows by removing secular behavior us-
ing a method that does not involve an integration over I'.

Before proceeding further, we examine the structure of
QO in more detail. First we introduce a configurational factor
Z(B,R) such that

N
Z(B,R) = J &Pry - d3rN5<R - mirii/m*)e_ﬂv,

i=1

(3.14)

where the R dependence of V is noted in (2.11). Similarly we
introduce a momentum factor Y such that

N
Y(B.P) = J &’p; -~d3pN6<P—sE ipi)e-ﬂK, (3.15)
i=1

N

K= p’2m;.
i=1

(3.16)

With this, Q(B,P,R)=Y(8,P)Z(8,R). Introducing the new
variables 77; via p;=;+em;0;P/m and neglecting terms that
vanish as € — 0, one finds
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N N
Y=fd3771...d377,\,5<2 @iﬁi)exp<_,32 i)

i=1 i1 2m;

so that Y, and hence Q, is independent of P. Thus we write
O(B,R) in the developments of the next section. From its
definition and (2.12),

d1ln Q/6R = B, (3.17)

where f is the scaled net force on the nanoparticle averaged
over all atomic configurations consistent with the nanopar-
ticle having c.m. at £'R.

IV. DERIVATION OF THE FOKKER-PLANCK
EQUATION

The objective of the present section is to complete the
nanocanonical derivation of a Fokker-Planck equation for
structured nanoparticles. The starting point is the lowest or-
der solution (3.13). As pointed out at the end of the previous
section, Q does not depend on P and thus is written Q(8,R)
henceforth. With this we rewrite p, as

¢ BHo PR )

Po Q(ﬂ,R)W( ’ ’t) PW
By writing (4.1) in this form, we do not take P and R to be
independent variables. The apparent independence of P and
R, as in the partial derivatives in £, and L, is only to
highlight the distinct ways (direct in I' itself and indirect
through P and R) that p depends on the all-atom state I'. To
be sure one could take P and R to be dynamical variables
and then eliminate six atomic variables (e.g., p; and r;). But
this would lead to a cumbersome formulation with much
tedious bookkeeping and complexity of computation.

An equation for W is obtained via an examination of
higher order terms in the Liouville equation. To O(&?) and in
light of (2.11) and (2.12) the Liouville equation implies,
upon dropping the 0 on 7, henceforth,

4.1)

w

2 |V R e e B
(at_ﬁ())pl_ [ A (t P)W+m IR

at,

aw
+f- 5}/35 G(I',P,R;W)p, (4.2)

where f arises from a dQ/dR term as in (3.17): in the
present context

fih = f dNT pf. (4.3)

This yields, upon taking p; to be zero at t=0, a solution of
the form

t
pr= J dt' LGP, R; W)p. (4.4)
0
Assembling the above results and using LyH, LyP,
and LoR vanish, and eﬁo("”)[G(I‘ P, R;W)p]
=peLo=)G(I',P,R; W) yields
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ow P c?W ow
p1=- t—+f ar' ‘0("’{ +f —
a ), m R P

+ B% (f- fth)W} }f).

Secular behavior is seen in the dW/dt; term. However, there
are others as well. For example, with the change of variables
t'=t+7 one has

Y. Miao and P. Ortoleva

(4.5)

: 0
fdt’eﬁo("")f=f df(7) =t/ for large 1. (4.6)

0 -

A fundamental hypothesis of statistical mechanics as-
serts the equivalence of time and ensemble averages in qua-
siequilibrium systems. This implies

0
limit 1 f df(n) =f"h, (4.7)

t— —t

where f(7)=e~£0f. Hence secular behavior is removed from
py if
aw P aw ow

= —fh. —. (4.8)
a m JR P

Combining the above results, one obtains

t

pi=-p J dt’ L= (£ — £ ( fFn i)w, (4.9)
0 m JP

and p;=0 as t— .

Note that these results were obtained without integrating
the Liouville equation at O(g?) over I' and using the fact that
p vanishes as |p,|— o and is periodic in the r;. This tradi-
tional method does not guarantee that the full p; is free of
secular behavior. The present method addresses the full time
dependence of p;, ensuring that p;, and not an integrated
reduction of it, has no secular behavior. Furthermore, the
technical difficulties due to the fact that the I' integrals ap-
plied must be restricted as in (4.3) in order to preserve the
number of degrees of freedom.

To O(&*) one finds

4 dpy  9p
(ot

4.10
or at, o (4.10)

Lpy.

Again with p,=0 at =0, we find

t
' (7W J
p2=J dt'eﬁo(f—l )< p pl
0 at, oy

['lpl)~
Using (4.9) for p; we obtain

w ! P9 d
e 2 [ (22 g 2)
at, Jo m R P

t/ ’ I
xf dt”e‘co(t")(f—f‘h)-(ﬁ +—)W + e
0 m

(4.11)

P
(4.12)

The missing term from dp,/dt, only involves one f—f" term
and is seen upon invoking (4.7) to make no secular contri-
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bution. Using arguments as for p; to ensure that p, has no
secular behavior, and the new variables 7 and o such that
t'=t+7 and "=r+ 7+ 0, we obtain

ow 1" (P 3 3
— =limit — | dt7e 0" c—+f—
(7[2 t—oo ), m JR JP

0 P a)
—Loo (g _ gthy | —_
Xf[_ doe ™ 07(f — ) <Bm+ P w. (4.13)

In obtaining this result, we have used the fact that only the f
factors are propagated by the evolution operators as £yp=0.
To complete the analysis, consider the key term

0 0
gy, = fdre-’iova f do(fo (@)= f2).,  (4.14)

—t —1=7

where faz(a) is the a, Cartesian component of f evolved to
time o. For large but finite ¢ the first integral with the evo-
lution operator exp(—L,7) is approximately 7 times the en-
semble average, i.e.,

0
gy =1 j A0 (f 1 (0) (f o, (o) — )" (4.15)

Since 7 is fixed but ¢ is arbitrarily large, and the integrand
vanishes as o gets large and negative, [i.e., f and f(o) are
independent random variables for large o], we obtain

0
Joay = f do(f o (O)f () — 2. (4.16)
Using this result, secular behavior in p, is removed when
d
— W,
&Pa)

where the tensorial friction coefficient 1, ,, is given by

E Yeren gp (B;

ajay=1

4.17
&tz (4.17)

0
Yera, = f dol(fo, (O)f (@)~ S 121, (4.18)

ie., Vo, a is given by autocorrelation of the force on the
nanoparticle. For anisotropic systems, i.e., a virus migrating
in a membranous cell interior, Ya,a, is a second order tensor
reflecting possible preferred migration directions.

Letting T=¢; we recompose the above results to obtain

WP W W za<ﬁ_ a)W
Fe) S

T~ m R p T Vp
(4.19)

in tensor notation.

Application of (4.19) to specific systems requires the use
of Monte Carlo methods to estimate the friction coefficient
and thermal average force. Note that the above results apply
when the thermal average force evolves on the t, scale, i.e.,
for an externally applied force that varies on a time scale
much longer than that of atomic vibrations and collisions.



044901-7 All-atom multiscaling and new ensembles

V. GENERALIZATIONS AND CONCLUSIONS

The nanocanonical formulation and integration-free re-
moval of secular behavior allow one to overcome conceptual
and technical difficulties encountered in a multiscale analysis
of the Liouville equation for structured nanoparticles. These
difficulties arise from the need to preserve the number of
degrees of freedom in the N-atom system. In Secs. III and IV,
the solution is shown to reside in the recognition that coarse
graining, by nature, involves a probability distribution for the
slow variables that can be built into the lowest order quasi-
equilibrium solution through Lagrange multipliers. These
multipliers play a role analogous to that of the chemical po-
tential in the grand canonical ensemble (where the number of
particles, like the values of slow variables here, is not fixed).
Furthermore, the recognition that the introduction of slow
variables into the N-atom distribution is simply a way to
express its multiscale character, and not to say that these are
new dynamical variable, as well as the removal of secular
behavior without N-atom momentum-position integration,
completes our conceptual scheme.

The nanocanonical methodology can be generalized to
complex systems involving nanoparticles with complex in-
ternal structure or the interaction of multiple nanoparticles.
For example, due to its size, a nanoparticle may experience
phase transitionlike behaviors. In this case the associated or-
der parameters, c.m. position, and orientation constitute a set
of slow variables denoted R; with the latter are conjugate
momenta P. This theme can be extended to many nanopar-
ticle systems and complex host media like a cell’s interior.
As for the c.m. variables of Secs. III and IV, one can intro-
duce a nanocanonical ensemble such that

exp(- BHy+M -P+K-R)

Oy v = , 5.1

Pk =(B.M.K) G-
where

E(,B,M,K) — f d()Nl"e—BHO+M~P+K~R. (52)

The transformation W/E — W/Q follows directly as in Sec.
II1, as does the removal of secular behavior without atomic
momentum-position integration as in Sec. IV. The result of
the multiscale computations is a generalized Fokker-Planck
equation. While computations without the present approach
would require applying [d°*I but with integrations involv-
ing complex restrictions (stemming from the many R, P vari-
ables that must be respected in order to conserve the number
of degrees of freedom). We are pursuing these concepts in an
analysis of viral phase transitions and other biological and
biotechnical contexts.
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APPENDIX A: DECOMPOSITION OF THE LIOUVILLE
EQUATION

The Liouville equation for the N-atom probability den-
sity p(p,,ry,...,Py,Ty,1) is taken to consist of a nanopar-
ticle of N* atoms and a host medium of N—N" atoms. The
Liouville equation for this system can be written as
P o J J
= {&-—+Fi-—}pzﬁbp,

m; or; p;
where F;=—(dV/dr;),  is the force on atom i.

Our development starts by considering p to be dependent
on the nanoparticle c.m. position r* and momentum p*, as
well as individual atomic positions and momenta. Nanopar-
ticle mass m" and c.m. variables are expressed in terms of
atomic variables via

(A1)

i=1

r* N mil'i/m*
p* (=21 P (O (A2)
m" =1 m;

where ;=1 (atom i in the nanoparticle), =0 (otherwise). In
the multiscale analysis the N-body probability density is
taken to have the dependence p“(p;.ry,...,Py-Ty>P -T ,1).
Upon invoking the chain rule, p” is found to satisfy

- N
1% - * 4 14 "
Loprp-| 5 SeSer | p (a3
o m" oot o ap*
where a superscript on an operator implies that
Pi.Ty,....PN-Ty.T, and p* are the independent variables.

Hence (d/dr;)" implies an r; partial derivative keeping it
all pj, r’, and p° constant. Finally,

N #
* ;i d J
£b=-z{&-— F—}

+
=1 Lm; or; p;

This concludes the first reformulation.

Next we introduce a scaling ansatz and further defini-
tions. Taking the scaled variables m"=g7%m, p*=¢~'P, and
r'=¢'R, and introducing a set of scaled times t,=&>"t,n
=0,1,..., the N-atom probability density is taken to have the

(A4)

dependence p”(py.ry,....pN-Tn.P.Ritg.1;,...:8). With
this and the chain rule p** satisfies
> 82”<i—£n>p**=0. (A5)
n=0 (9[”

Letting a superscript ~~ on an operator indicates that
Pi.Ty,---,Pn,-Iy, P, and R are the independent variables, we
find dp™*/dt=(Ly+e>L,)p"", where

N *ok
p; 9 1%
eifn s

£1=_|:_._:| _{f._j| '
m JR P

and ef=F |+ ... +Fy- is the net force on the virus and the **
are dropped for simplicity here and in the derivations of
Secs. II-IV.

(A6)

(A7)
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APPENDIX B: FOURIER/BILATERAL LAPLACE
TRANSFORMATION

Given

A +e

Lth dxef(x), (B1)
one may show that the inverse relation reads

1 (* _
flx)=— f dke ™ f(ik), (B2)
2]

with i=+~1. For two functions f1(x) and f,(x) one has

1 +o° o R +o°
;Tf dke™™f (ik) f(ik) = f dx'fi(x = x")fH(x").
(B3)

Results in Sec. III follow upon generalization to six dimen-
sions. For example, one may obtain the inversion formula

V(pm, K, 1) 1 W(ip,ir,1)
EBpr)  (2m° O(B,ip,ir)’

f d3pd3re—i(/u-p+x-r)
(B4)

Thus W/E is related to the integration of W/Q over all
imaginary momenta and positions.
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